Changeset dbde9f8 in sasmodels


Ignore:
Timestamp:
Nov 10, 2015 5:01:46 PM (9 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
3a45c2c, eb588ef
Parents:
2781b2e
Message:

fix slit smearing width only slits

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/resolution.py

    r346bc88 rdbde9f8  
    7474 
    7575    def apply(self, theory): 
    76         print "q calc", self.q_calc 
    77         print "weights", self.weight_matrix.shape 
    7876        return apply_resolution_matrix(self.weight_matrix, theory) 
    7977 
     
    9492    The *weight_matrix* is computed by :func:`slit1d_resolution` 
    9593    """ 
    96     def __init__(self, q, width, height, q_calc=None): 
    97         # TODO: maybe issue warnings rather than raising errors 
    98         if not np.isscalar(width): 
    99             if np.any(np.diff(width) > 0.0): 
    100                 raise ValueError("Slit resolution requires fixed width slits") 
    101             width = width[0] 
    102         if not np.isscalar(height): 
    103             if np.any(np.diff(height) > 0.0): 
    104                 raise ValueError("Slit resolution requires fixed height slits") 
    105             height = height[0] 
    106  
     94    def __init__(self, q, width, height=0., q_calc=None): 
    10795        # Remember what width/height was used even though we won't need them 
    10896        # after the weight matrix is constructed 
    10997        self.width, self.height = width, height 
     98 
     99        # Allow independent resolution on each point even though it is not 
     100        # needed in practice. 
     101        if np.isscalar(width): 
     102            width = np.ones(len(q))*width 
     103        else: 
     104            width = np.asarray(width) 
     105        if np.isscalar(height): 
     106            height = np.ones(len(q))*height 
     107        else: 
     108            height = np.asarray(height) 
    110109 
    111110        self.q = q.flatten() 
     
    171170            \int_{-\Delta q_v}^{\Delta q_v} I(u) du 
    172171    """ 
    173     if width == 0.0 and height == 0.0: 
    174         #print "condition zero" 
    175         return 1 
    176  
     172    #np.set_printoptions(precision=6, linewidth=10000) 
     173 
     174    # The current algorithm is a midpoint rectangle rule. 
    177175    q_edges = bin_edges(q_calc) # Note: requires q > 0 
    178176    q_edges[q_edges<0.0] = 0.0 # clip edges below zero 
    179  
    180     #np.set_printoptions(linewidth=10000) 
    181     if width <= 100.0 * height or height == 0: 
    182         # The current algorithm is a midpoint rectangle rule.  In the test case, 
    183         # neither trapezoid nor Simpson's rule improved the accuracy. 
    184         #print "condition h", q_edges.shape, q.shape, q_calc.shape 
    185         weights = np.zeros((len(q), len(q_calc)), 'd') 
    186         for i, qi in enumerate(q): 
    187             weights[i, :] = np.diff(q_to_u(q_edges, qi)) 
    188         weights /= width 
    189         weights = weights.T 
    190     else: 
    191         #print "condition w" 
    192         # Make q_calc into a row vector, and q into a column vector 
    193         q, q_calc = q[None,:], q_calc[:,None] 
    194         in_x = (q_calc >= q-width) * (q_calc <= q+width) 
    195         weights = np.diff(q_edges)[:,None] * in_x 
    196  
    197     return weights 
     177    weights = np.zeros((len(q), len(q_calc)), 'd') 
     178 
     179    for i, (qi, w, h) in enumerate(zip(q, width, height)): 
     180        if w == 0. and h == 0.: 
     181            # Perfect resolution, so return the theory value directly. 
     182            # Note: assumes that q is a subset of q_calc.  If qi need not be 
     183            # in q_calc, then we can do a weighted interpolation by looking 
     184            # up qi in q_calc, then weighting the result by the relative 
     185            # distance to the neighbouring points. 
     186            weights[i, :] = (q_calc == qi) 
     187        elif h == 0 or w > 100.0 * h: 
     188            # Convert bin edges from q to u 
     189            u_limit = np.sqrt(qi**2 + w**2) 
     190            u_edges = q_edges**2 - qi**2 
     191            u_edges[q_edges < qi] = 0. 
     192            u_edges[q_edges > u_limit] = u_limit**2 - qi**2 
     193            weights[i, :] = np.diff(np.sqrt(u_edges))/w 
     194            #print "i, qi",i,qi,qi+width 
     195            #print q_calc 
     196            #print weights[i,:] 
     197        elif w == 0: 
     198            in_x = (q_calc >= qi-h) * (q_calc <= qi+h) 
     199            weights[i,:] = in_x * np.diff(q_edges) / (2*h) 
     200 
     201    return weights.T 
    198202 
    199203 
     
    214218    function. 
    215219    """ 
    216     height # keep lint happy 
    217220    q_min, q_max = np.min(q), np.max(np.sqrt(q**2 + width**2)) 
    218221    return geometric_extrapolation(q, q_min, q_max) 
     
    235238        ]) 
    236239    return edges 
    237  
    238  
    239 def q_to_u(q, q0): 
    240     """ 
    241     Convert *q* values to *u* values for the integral computed at *q0*. 
    242     """ 
    243     # array([value])**2 - value**2 is not always zero 
    244     qpsq = q**2 - q0**2 
    245     qpsq[qpsq<0] = 0 
    246     return sqrt(qpsq) 
    247240 
    248241 
     
    359352 
    360353 
    361 def romberg_slit_1d(q, delta_qv, form, pars): 
     354def romberg_slit_1d(q, width, height, form, pars): 
    362355    """ 
    363356    Romberg integration for slit resolution. 
     
    366359    that make it slow to evaluate but give it good accuracy. 
    367360    """ 
    368     from scipy.integrate import romberg 
     361    from scipy.integrate import romberg, dblquad 
    369362 
    370363    if any(k not in form.info['defaults'] for k in pars.keys()): 
     
    374367                         (", ".join(sorted(extra)), ", ".join(sorted(keys)))) 
    375368 
    376     _fn = lambda u, q0: eval_form(sqrt(q0**2 + u**2), form, pars) 
    377     r = [romberg(_fn, 0, delta_qv[0], args=(qi,), 
    378                  divmax=100, vec_func=True, tol=0, rtol=1e-8) 
    379          for qi in q] 
     369    if np.isscalar(width): 
     370        width = [width]*len(q) 
     371    if np.isscalar(height): 
     372        height = [height]*len(q) 
     373    _int_w = lambda w, qi: eval_form(sqrt(qi**2 + w**2), form, pars) 
     374    _int_h = lambda h, qi: eval_form(abs(qi+h), form, pars) 
     375    _int_wh = lambda w, h, qi: eval_form(sqrt((qi+h)**2 + w**2), form, pars) 
     376    result = np.empty(len(q)) 
     377    for i, (qi, w, h) in enumerate(zip(q, width, height)): 
     378        if h == 0.: 
     379            r = romberg(_int_w, 0, w, args=(qi,), 
     380                        divmax=100, vec_func=True, tol=0, rtol=1e-8) 
     381            result[i] = r/w 
     382        elif w == 0.: 
     383            r = romberg(_int_h, -h, h, args=(qi,), 
     384                        divmax=100, vec_func=True, tol=0, rtol=1e-8) 
     385            result[i] = r/(2*h) 
     386        else: 
     387            r, err = dblquad(_int_wh, -h, h, lambda h: 0., lambda h: width, 
     388                             args=(qi,)) 
     389            result[i] = r/(w*2*h) 
     390 
    380391    # r should be [float, ...], but it is [array([float]), array([float]),...] 
    381     return np.asarray(r).flatten()/delta_qv[0] 
     392    return result 
    382393 
    383394 
     
    520531 
    521532    def compare(self, q, output, answer, tolerance): 
    522         err = (output - answer)/answer 
    523         idx = abs(err) >= tolerance 
    524         problem = zip(q[idx], output[idx], answer[idx], err[idx]) 
    525         print "\n".join(str(v) for v in problem) 
     533        #err = (output - answer)/answer 
     534        #idx = abs(err) >= tolerance 
     535        #problem = zip(q[idx], output[idx], answer[idx], err[idx]) 
     536        #print "\n".join(str(v) for v in problem) 
    526537        np.testing.assert_allclose(output, answer, rtol=tolerance) 
    527538 
     
    609620        data = np.loadtxt(data_string.split('\n')).T 
    610621        q, delta_qv, _, answer = data 
    611         answer = romberg_slit_1d(q, delta_qv, self.model, pars) 
     622        answer = romberg_slit_1d(q, delta_qv, 0., self.model, pars) 
    612623        q_calc = slit_extend_q(interpolate(q, 2*np.pi/radius/20), 
    613                                delta_qv[0], delta_qv[0]) 
     624                               delta_qv[0], 0.) 
    614625        resolution = Slit1D(q, width=delta_qv, height=0, q_calc=q_calc) 
    615626        output = self.Iq_sphere(pars, resolution) 
     
    629640        form = load_model('ellipsoid', dtype='double') 
    630641        q = np.logspace(log10(4e-5),log10(2.5e-2), 68) 
    631         delta_qv = [0.117] 
    632         resolution = Slit1D(q, width=delta_qv, height=0) 
    633         answer = romberg_slit_1d(q, delta_qv, form, pars) 
     642        width, height = 0.117, 0. 
     643        resolution = Slit1D(q, width=width, height=height) 
     644        answer = romberg_slit_1d(q, width, height, form, pars) 
    634645        output = resolution.apply(eval_form(resolution.q_calc, form, pars)) 
    635646        # TODO: 10% is too much error; use better algorithm 
     647        #print np.max(abs(answer-output)/answer) 
    636648        self.compare(q, output, answer, 0.1) 
    637649 
     
    860872 
    861873def _eval_demo_1d(resolution, title): 
     874    import sys 
    862875    from sasmodels import core 
    863     from sasmodels.models import cylinder 
    864     ## or alternatively: 
    865     # cylinder = core.load_model_definition('cylinder') 
    866     model = core.load_model(cylinder) 
     876    name = sys.argv[1] if len(sys.argv) > 1 else 'cylinder' 
     877 
     878    if name == 'cylinder': 
     879        pars = {'length':210, 'radius':500} 
     880    elif name == 'teubner_strey': 
     881        pars = {'a2':0.003, 'c1':-1e4, 'c2':1e10, 'background':0.312643} 
     882    elif name == 'sphere' or name == 'spherepy': 
     883        pars = TEST_PARS_SLIT_SPHERE 
     884    elif name == 'ellipsoid': 
     885        pars = { 
     886            'scale':0.05, 
     887            'rpolar':500, 'requatorial':15000, 
     888            'sld':6, 'solvent_sld': 1, 
     889            } 
     890    else: 
     891        pars = {} 
     892    defn = core.load_model_definition(name) 
     893    model = core.load_model(defn) 
    867894 
    868895    kernel = core.make_kernel(model, [resolution.q_calc]) 
    869     theory = core.call_kernel(kernel, {'length':210, 'radius':500}) 
     896    theory = core.call_kernel(kernel, pars) 
    870897    Iq = resolution.apply(theory) 
     898 
     899    if isinstance(resolution, Slit1D): 
     900        width, height = resolution.width, resolution.height 
     901        Iq_romb = romberg_slit_1d(resolution.q, width, height, model, pars) 
     902    else: 
     903        dq = resolution.q_width 
     904        Iq_romb = romberg_pinhole_1d(resolution.q, dq, model, pars) 
    871905 
    872906    import matplotlib.pyplot as plt 
    873907    plt.loglog(resolution.q_calc, theory, label='unsmeared') 
    874908    plt.loglog(resolution.q, Iq, label='smeared', hold=True) 
     909    plt.loglog(resolution.q, Iq_romb, label='romberg smeared', hold=True) 
    875910    plt.legend() 
    876911    plt.title(title) 
     
    879914 
    880915def demo_pinhole_1d(): 
    881     q = np.logspace(-3, -1, 400) 
     916    q = np.logspace(-4, np.log10(0.2), 400) 
    882917    q_width = 0.1*q 
    883918    resolution = Pinhole1D(q, q_width) 
     
    885920 
    886921def demo_slit_1d(): 
    887     q = np.logspace(-3, -1, 400) 
    888     qx_width = 0.005 
    889     qy_width = 0.0 
    890     resolution = Slit1D(q, qx_width, qy_width) 
    891     _eval_demo_1d(resolution, title="0.005 Qx Slit Resolution") 
     922    q = np.logspace(-4, np.log10(0.2), 400) 
     923    w = h = 0. 
     924    #w = 0.005 
     925    w = 0.0277790 
     926    #h = 0.00277790 
     927    resolution = Slit1D(q, w, h) 
     928    _eval_demo_1d(resolution, title="(%g,%g) Slit Resolution"%(w,h)) 
    892929 
    893930def demo(): 
     
    895932    plt.subplot(121) 
    896933    demo_pinhole_1d() 
     934    #plt.yscale('linear') 
    897935    plt.subplot(122) 
    898936    demo_slit_1d() 
     937    #plt.yscale('linear') 
    899938    plt.show() 
    900939 
Note: See TracChangeset for help on using the changeset viewer.