Changeset d18f8a8 in sasmodels


Ignore:
Timestamp:
Dec 1, 2015 10:30:30 AM (9 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
e88bb78
Parents:
eb69cce
Message:

fix multiline equation alignment

Location:
sasmodels/models
Files:
5 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/hollow_cylinder.py

    reb69cce rd18f8a8  
    1919.. math:: 
    2020 
    21     %\begin{align*} % isn't working with pdflatex 
    22     \begin{array}{rl} 
    2321    P(q)           &= (\text{scale})V_\text{shell}\Delta\rho^2 
    2422            \int_0^{1}\Psi^2 
     
    3129    \gamma         &= R_\text{core} / R_\text{shell} \\ 
    3230    V_\text{shell} &= \pi \left(R_\text{shell}^2 - R_\text{core}^2 \right)L \\ 
    33     J_1(x)         &= (\sin(x)-x\cdot \cos(x)) / x^2 \\ 
    34     \end{array} 
     31    J_1(x)         &= (\sin(x)-x\cdot \cos(x)) / x^2 
    3532 
    3633where *scale* is a scale factor and $J_1$ is the 1st order 
  • sasmodels/models/lamellarCaille.py

    reb69cce rd18f8a8  
    3030 
    3131.. math:: 
     32    :nowrap: 
    3233 
    33     %\begin{align*} % isn't working with pdflatex 
    34     \begin{array}{rll} 
     34    \begin{align*} 
    3535    \alpha(n) &= \frac{\eta_{cp}}{4\pi^2} \left(\ln(\pi n)+\gamma_E\right) 
    36               & \\ 
     36              && \\ 
    3737    \gamma_E  &= 0.5772156649 
    38               & \text{Euler's constant} \\ 
     38              && \text{Euler's constant} \\ 
    3939    \eta_{cp} &= \frac{q_o^2k_B T}{8\pi\sqrt{K\overline{B}}} 
    40               & \text{Caille constant} \\ 
    41               & 
    42     \end{array} 
     40              && \text{Caille constant} 
     41    \end{align*} 
    4342 
    4443Here $d$ = (repeat) spacing, $\delta$ = bilayer thickness, 
  • sasmodels/models/lamellarCailleHG.py

    reb69cce rd18f8a8  
    3030 
    3131.. math:: 
     32    :nowrap: 
    3233 
    33     %\begin{align*} % isn't working with pdflatex 
    34     \begin{array}{rll} 
     34    \begin{align*} 
    3535    \alpha(n) &= \frac{\eta_{cp}}{4\pi^2} \left(\ln(\pi n)+\gamma_E\right) 
    36               &  \\ 
     36              &&  \\ 
    3737    \gamma_E  &= 0.5772156649 
    38               & \text{Euler's constant} \\ 
     38              && \text{Euler's constant} \\ 
    3939    \eta_{cp} &= \frac{q_o^2k_B T}{8\pi\sqrt{K\overline{B}}} 
    40               & \text{Caille constant} \\ 
    41               & 
    42     \end{array} 
     40              && \text{Caille constant} 
     41    \end{align*} 
    4342 
    4443 
  • sasmodels/models/lamellarPC.py

    reb69cce rd18f8a8  
    2323 
    2424- *spacing* is the average distance between adjacent layers 
    25   $\left<D\right>$, and 
     25  $\langle D \rangle$, and 
    2626 
    2727- *spacing_polydisp* is the relative standard deviation of the Gaussian 
    28   layer distance distribution $\sigma_D / \left<D\right>$. 
     28  layer distance distribution $\sigma_D / \langle D \rangle$. 
    2929 
    3030 
     
    4949 
    5050 
    51     Z_N(q) = \frac{1 - w^2}{1 + w^2 - 2w \cos(q \left<D\right>)} 
     51    Z_N(q) = \frac{1 - w^2}{1 + w^2 - 2w \cos(q \langle D \rangle)} 
    5252        + x_N S_N + (1 - x_N) S_{N+1} 
    5353 
     
    5656.. math:: 
    5757 
    58     S_N(q) = \frac{a_N}{N}[1 + w^2 - 2 w \cos(q \left<D\right>)]^2 
     58    S_N(q) = \frac{a_N}{N}[1 + w^2 - 2 w \cos(q \langle D \rangle)]^2 
    5959 
    6060and 
     
    6262.. math:: 
    6363 
    64     \begin{array}{rcl} 
    65     a_N &=& 4w^2 - 2(w^3 + w) \cos(q \left<D\right>) 
    66         - 4w^{N+2}\cos(Nq \left<D\right>) \\ 
    67         &&{} + 2 w^{N+3}\cos[(N-1)q \left<D\right>] 
    68         + 2w^{N+1}\cos[(N+1)q \left<D\right>] 
    69     \end{array} 
     64    a_N &= 4w^2 - 2(w^3 + w) \cos(q \langle D \rangle) \\ 
     65        &\quad - 4w^{N+2}\cos(Nq \langle D \rangle) 
     66        + 2 w^{N+3}\cos[(N-1)q \langle D \rangle] 
     67        + 2w^{N+1}\cos[(N+1)q \langle D \rangle] 
    7068 
    7169for the layer spacing distribution $w = \exp(-\sigma_D^2 q^2/2)$. 
  • sasmodels/models/stickyhardsphere.py

    reb69cce rd18f8a8  
    1818.. math:: 
    1919 
    20     %\begin{align*} % isn't working with pdflatex 
    21     \begin{array}{rl} 
    2220    \tau     &= \frac{1}{12\epsilon} \exp(u_o / kT) \\ 
    23     \epsilon &= \Delta / (\sigma + \Delta) \\ 
    24     \end{array} 
     21    \epsilon &= \Delta / (\sigma + \Delta) 
    2522 
    2623where the interaction potential is 
Note: See TracChangeset for help on using the changeset viewer.