# Changeset d18f8a8 in sasmodels

Ignore:
Timestamp:
Dec 1, 2015 10:30:30 AM (7 years ago)
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
e88bb78
Parents:
eb69cce
Message:

fix multiline equation alignment

Location:
sasmodels/models
Files:
5 edited

Unmodified
Removed
• ## sasmodels/models/hollow_cylinder.py

 reb69cce .. math:: %\begin{align*} % isn't working with pdflatex \begin{array}{rl} P(q)           &= (\text{scale})V_\text{shell}\Delta\rho^2 \int_0^{1}\Psi^2 \gamma         &= R_\text{core} / R_\text{shell} \\ V_\text{shell} &= \pi \left(R_\text{shell}^2 - R_\text{core}^2 \right)L \\ J_1(x)         &= (\sin(x)-x\cdot \cos(x)) / x^2 \\ \end{array} J_1(x)         &= (\sin(x)-x\cdot \cos(x)) / x^2 where *scale* is a scale factor and $J_1$ is the 1st order
• ## sasmodels/models/lamellarCaille.py

 reb69cce .. math:: :nowrap: %\begin{align*} % isn't working with pdflatex \begin{array}{rll} \begin{align*} \alpha(n) &= \frac{\eta_{cp}}{4\pi^2} \left(\ln(\pi n)+\gamma_E\right) & \\ && \\ \gamma_E  &= 0.5772156649 & \text{Euler's constant} \\ && \text{Euler's constant} \\ \eta_{cp} &= \frac{q_o^2k_B T}{8\pi\sqrt{K\overline{B}}} & \text{Caille constant} \\ & \end{array} && \text{Caille constant} \end{align*} Here $d$ = (repeat) spacing, $\delta$ = bilayer thickness,
• ## sasmodels/models/lamellarCailleHG.py

 reb69cce .. math:: :nowrap: %\begin{align*} % isn't working with pdflatex \begin{array}{rll} \begin{align*} \alpha(n) &= \frac{\eta_{cp}}{4\pi^2} \left(\ln(\pi n)+\gamma_E\right) &  \\ &&  \\ \gamma_E  &= 0.5772156649 & \text{Euler's constant} \\ && \text{Euler's constant} \\ \eta_{cp} &= \frac{q_o^2k_B T}{8\pi\sqrt{K\overline{B}}} & \text{Caille constant} \\ & \end{array} && \text{Caille constant} \end{align*}
• ## sasmodels/models/lamellarPC.py

 reb69cce - *spacing* is the average distance between adjacent layers $\left$, and $\langle D \rangle$, and - *spacing_polydisp* is the relative standard deviation of the Gaussian layer distance distribution $\sigma_D / \left$. layer distance distribution $\sigma_D / \langle D \rangle$. Z_N(q) = \frac{1 - w^2}{1 + w^2 - 2w \cos(q \left)} Z_N(q) = \frac{1 - w^2}{1 + w^2 - 2w \cos(q \langle D \rangle)} + x_N S_N + (1 - x_N) S_{N+1} .. math:: S_N(q) = \frac{a_N}{N}[1 + w^2 - 2 w \cos(q \left)]^2 S_N(q) = \frac{a_N}{N}[1 + w^2 - 2 w \cos(q \langle D \rangle)]^2 and .. math:: \begin{array}{rcl} a_N &=& 4w^2 - 2(w^3 + w) \cos(q \left) - 4w^{N+2}\cos(Nq \left) \\ &&{} + 2 w^{N+3}\cos[(N-1)q \left] + 2w^{N+1}\cos[(N+1)q \left] \end{array} a_N &= 4w^2 - 2(w^3 + w) \cos(q \langle D \rangle) \\ &\quad - 4w^{N+2}\cos(Nq \langle D \rangle) + 2 w^{N+3}\cos[(N-1)q \langle D \rangle] + 2w^{N+1}\cos[(N+1)q \langle D \rangle] for the layer spacing distribution $w = \exp(-\sigma_D^2 q^2/2)$.
• ## sasmodels/models/stickyhardsphere.py

 reb69cce .. math:: %\begin{align*} % isn't working with pdflatex \begin{array}{rl} \tau     &= \frac{1}{12\epsilon} \exp(u_o / kT) \\ \epsilon &= \Delta / (\sigma + \Delta) \\ \end{array} \epsilon &= \Delta / (\sigma + \Delta) where the interaction potential is
Note: See TracChangeset for help on using the changeset viewer.