Changeset ca04add in sasmodels
- Timestamp:
- Sep 13, 2017 7:29:11 AM (7 years ago)
- Branches:
- master, core_shell_microgels, costrafo411, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- dd4f5ed
- Parents:
- 2ba5ba5
- Location:
- sasmodels/models
- Files:
-
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/models/fractal_core_shell.py
r64eecf7 rca04add 22 22 \frac{\sin(qr_c)-qr_c\cos(qr_c)}{(qr_c)^3}+ 23 23 3V_s(\rho_s-\rho_{solv}) 24 \frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}\right]^2 25 24 \frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}\right]^2 \\ 26 25 S(q) &= 1 + \frac{D_f\ \Gamma\!(D_f-1)}{[1+1/(q\xi)^2]^{(D_f-1)/2}} 27 26 \frac{\sin[(D_f-1)\tan^{-1}(q\xi)]}{(qr_s)^{D_f}} -
sasmodels/models/mass_surface_fractal.py
r232bb12 rca04add 22 22 .. math:: 23 23 24 I(q) = scale \times P(q) + background 25 24 I(q) = scale \times P(q) + background \\ 26 25 P(q) = \left\{ \left[ 1+(q^2a)\right]^{D_m/2} \times 27 26 \left[ 1+(q^2b)\right]^{(6-D_s-D_m)/2} 28 \right\}^{-1} 29 30 a = R_{g}^2/(3D_m/2) 31 32 b = r_{g}^2/[-3(D_s+D_m-6)/2] 33 27 \right\}^{-1} \\ 28 a = R_{g}^2/(3D_m/2) \\ 29 b = r_{g}^2/[-3(D_s+D_m-6)/2] \\ 34 30 scale = scale\_factor \times NV^2 (\rho_{particle} - \rho_{solvent})^2 35 31 -
sasmodels/models/mono_gauss_coil.py
r404ebbd rca04add 24 24 25 25 I_0 &= \phi_\text{poly} \cdot V 26 \cdot (\rho_\text{poly} - \rho_\text{solv})^2 27 28 P(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 29 30 Z &= (q R_g)^2 31 26 \cdot (\rho_\text{poly} - \rho_\text{solv})^2 \\ 27 P(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 \\ 28 Z &= (q R_g)^2 \\ 32 29 V &= M / (N_A \delta) 33 30 -
sasmodels/models/onion.py
rbccb40f rca04add 81 81 \left[ B\exp 82 82 \left(A (r - r_{\text{shell}-1}) / \Delta t_\text{shell} \right) + C 83 \right] \frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r 84 83 \right] \frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r \\ 85 84 &= 3BV(r_\text{shell}) e^A h(\alpha_\text{out},\beta_\text{out}) 86 85 - 3BV(r_{\text{shell}-1}) h(\alpha_\text{in},\beta_\text{in}) … … 95 94 \begin{align*} 96 95 B&=\frac{\rho_\text{out} - \rho_\text{in}}{e^A-1} 97 & C &= \frac{\rho_\text{in}e^A - \rho_\text{out}}{e^A-1} \\96 & C &= \frac{\rho_\text{in}e^A - \rho_\text{out}}{e^A-1} \\ 98 97 \alpha_\text{in} &= A\frac{r_{\text{shell}-1}}{\Delta t_\text{shell}} 99 & \alpha_\text{out} &= A\frac{r_\text{shell}}{\Delta t_\text{shell}} \\98 & \alpha_\text{out} &= A\frac{r_\text{shell}}{\Delta t_\text{shell}} \\ 100 99 \beta_\text{in} &= qr_{\text{shell}-1} 101 & \beta_\text{out} &= qr_\text{shell} \\100 & \beta_\text{out} &= qr_\text{shell} \\ 102 101 \end{align*} 103 102 -
sasmodels/models/parallelepiped.py
r30b60d2 rca04add 62 62 \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right] 63 63 S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right] 64 \right\}^2 du 65 66 S(x) &= \frac{\sin x}{x} 67 64 \right\}^2 du \\ 65 S(x) &= \frac{\sin x}{x} \\ 68 66 \mu &= qB 69 67 … … 133 131 .. math:: 134 132 135 \cos\alpha &= \hat A \cdot \hat q, 136 137 \cos\beta &= \hat B \cdot \hat q, 138 133 \cos\alpha &= \hat A \cdot \hat q, \\ 134 \cos\beta &= \hat B \cdot \hat q, \\ 139 135 \cos\gamma &= \hat C \cdot \hat q 140 136 -
sasmodels/models/poly_gauss_coil.py
r404ebbd rca04add 21 21 .. math:: 22 22 23 I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly}-\rho_\text{solv})^2 24 25 P(q) &= 2 [(1 + UZ)^{-1/U} + Z - 1] / [(1 + U) Z^2] 26 27 Z &= [(q R_g)^2] / (1 + 2U) 28 29 U &= (Mw / Mn) - 1 = \text{polydispersity ratio} - 1 30 23 I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly}-\rho_\text{solv})^2 \\ 24 P(q) &= 2 [(1 + UZ)^{-1/U} + Z - 1] / [(1 + U) Z^2] \\ 25 Z &= [(q R_g)^2] / (1 + 2U) \\ 26 U &= (Mw / Mn) - 1 = \text{polydispersity ratio} - 1 \\ 31 27 V &= M / (N_A \delta) 32 28 -
sasmodels/models/polymer_micelle.py
r404ebbd rca04add 26 26 27 27 .. math:: 28 P(q) = N^2\beta^2_s\Phi(qR)^2+N\beta^2_cP_c(q)+2N^2\beta_s\beta_cS_{sc}s_c(q)+N(N-1)\beta_c^2S_{cc}(q) 29 30 \beta_s = v\_core(sld\_core - sld\_solvent) 31 28 P(q) = N^2\beta^2_s\Phi(qR)^2+N\beta^2_cP_c(q)+2N^2\beta_s\beta_cS_{sc}s_c(q)+N(N-1)\beta_c^2S_{cc}(q) \\ 29 \beta_s = v\_core(sld\_core - sld\_solvent) \\ 32 30 \beta_c = v\_corona(sld\_corona - sld\_solvent) 33 31 … … 41 39 .. math:: 42 40 43 P_c(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 44 41 P_c(q) &= 2 [\exp(-Z) + Z - 1] / Z^2 \\ 45 42 Z &= (q R_g)^2 46 43 … … 50 47 .. math:: 51 48 52 S_{sc}(q)=\Phi(qR)\psi(Z)\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} 53 54 S_{cc}(q)=\psi(Z)^2\left[\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} \right ]^2 55 49 S_{sc}(q)=\Phi(qR)\psi(Z)\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} \\ 50 S_{cc}(q)=\psi(Z)^2\left[\frac{sin(q(R+d.R_g))}{q(R+d.R_g)} \right ]^2 \\ 56 51 \psi(Z)=\frac{[1-exp^{-Z}]}{Z} 57 52 -
sasmodels/models/spherical_sld.py
r2ad5d30 rca04add 51 51 3 \rho_\text{core} V(r_\text{core}) 52 52 \Big[ \frac{\sin(qr_\text{core}) - qr_\text{core} \cos(qr_\text{core})} 53 {qr_\text{core}^3} \Big] 54 53 {qr_\text{core}^3} \Big] \\ 55 54 f_{\text{inter}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } 56 \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr 57 55 \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr \\ 58 56 f_{\text{shell}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } 59 57 \rho_{ \text{flat}_i } \frac{\sin(qr)} {qr} r^2 dr = … … 66 64 -3 \rho_{ \text{flat}_i } V(r_{ \text{inter}_i }) 67 65 \Big[ \frac{\sin(qr_{\text{inter}_i}) - qr_{\text{flat}_i} 68 \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big] 69 66 \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big] \\ 70 67 f_\text{solvent} &= 4 \pi \int_{r_N}^{\infty} \rho_\text{solvent} 71 68 \frac{\sin(qr)} {qr} r^2 dr = … … 122 119 4 \pi \sum_{j=1}^{n_\text{steps}} 123 120 \int_{r_j}^{r_{j+1}} \rho_{ \text{inter}_i } (r_j) 124 \frac{\sin(qr)} {qr} r^2 dr 125 126 &\approx 4 \pi \sum_{j=1}^{n_\text{steps}} \Big[ 121 \frac{\sin(qr)} {qr} r^2 dr \\ 122 \approx 4 \pi \sum_{j=1}^{n_\text{steps}} \Big[ 127 123 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 128 124 ( r_{j} ) V (r_j) 129 125 \Big[ \frac {r_j^2 \beta_\text{out}^2 \sin(\beta_\text{out}) 130 126 - (\beta_\text{out}^2-2) \cos(\beta_\text{out}) } 131 {\beta_\text{out}^4 } \Big] 132 133 &{} - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 127 {\beta_\text{out}^4 } \Big] \\ 128 {} - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 134 129 ( r_{j} ) V ( r_{j-1} ) 135 130 \Big[ \frac {r_{j-1}^2 \sin(\beta_\text{in}) 136 131 - (\beta_\text{in}^2-2) \cos(\beta_\text{in}) } 137 {\beta_\text{in}^4 } \Big] 138 139 &{} + 3 \rho_{ \text{inter}_i } ( r_{j+1} ) V ( r_j ) 132 {\beta_\text{in}^4 } \Big] \\ 133 {} + 3 \rho_{ \text{inter}_i } ( r_{j+1} ) V ( r_j ) 140 134 \Big[ \frac {\sin(\beta_\text{out}) - \cos(\beta_\text{out}) } 141 135 {\beta_\text{out}^4 } \Big] … … 152 146 \begin{align*} 153 147 V(a) &= \frac {4\pi}{3}a^3 && \\ 154 a_\text{in} &\sim \frac{r_j}{r_{j+1} -r_j} \text{, } &a_\text{out}155 &\sim \frac{r_{j+1}}{r_{j+1} -r_j} \\156 \beta_\text{in} &= qr_j \text{, } & \beta_\text{out} &= qr_{j+1}148 a_\text{in} \sim \frac{r_j}{r_{j+1} -r_j} \text{, } & a_\text{out} 149 \sim \frac{r_{j+1}}{r_{j+1} -r_j} \\ 150 \beta_\text{in} &= qr_j \text{, } & \beta_\text{out} &= qr_{j+1} 157 151 \end{align*} 158 152
Note: See TracChangeset
for help on using the changeset viewer.