Changeset c515b1b in sasmodels


Ignore:
Timestamp:
Mar 17, 2016 1:10:53 PM (9 years ago)
Author:
wojciech
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
cbd37a7
Parents:
094e320 (diff), c970053 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' of https://github.com/SasView/sasmodels

Files:
1 added
4 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/poly_gauss_coil.py

    r246517d r09b84ed  
    5050""" 
    5151 
    52 from numpy import inf, sqrt, power 
     52from numpy import inf, sqrt, exp, power 
    5353 
    5454name =  "poly_gauss_coil" 
     
    6969def Iq(q, i_zero, radius_gyration, polydispersity): 
    7070    # pylint: disable = missing-docstring 
    71     # need to trap the case of the polydispersity being 1 (ie, monodispersity) 
    7271    u = polydispersity - 1.0 
    73     if polydispersity == 1: 
    74        minusoneonu = -1.0 / u 
    75     else: 
    76        minusoneonu = -1.0 / u 
    7772    z = ((q * radius_gyration) * (q * radius_gyration)) / (1.0 + 2.0 * u) 
    7873    if (q == 0).any(): 
    79        inten = i_zero 
     74        inten = i_zero 
    8075    else: 
    81        inten = i_zero * 2.0 * (power((1.0 + u * z),minusoneonu) + z - 1.0 ) / ((1.0 + u) * (z * z)) 
     76    # need to trap the case of the polydispersity being 1 (ie, monodispersity!) 
     77        if polydispersity == 1: 
     78            inten = i_zero * 2.0 * (exp(-z) + z - 1.0 ) / (z * z) 
     79        else: 
     80            minusoneonu = -1.0 / u 
     81            inten = i_zero * 2.0 * (power((1.0 + u * z),minusoneonu) + z - 1.0 ) / ((1.0 + u) * (z * z)) 
    8282    return inten 
    83 Iq.vectorized =  True  # Iq accepts an array of q values 
     83#Iq.vectorized =  True  # Iq accepts an array of q values 
    8484 
    8585def Iqxy(qx, qy, *args): 
     
    100100               background = 'background') 
    101101 
     102# these unit test values taken from SasView 3.1.2 
    102103tests =  [ 
    103     [{'scale': 70.0, 'radius_gyration': 75.0, 'polydispersity': 2.0, 'background': 0.0}, 
     104    [{'scale': 1.0, 'i_zero': 70.0, 'radius_gyration': 75.0, 'polydispersity': 2.0, 'background': 0.0}, 
    104105     [0.0106939, 0.469418], [57.6405, 0.169016]], 
    105106    ] 
  • sasmodels/models/lib/j0_cephes.c

    rbfef528 r094e320  
    4444 */ 
    4545 
    46 /*                                                      y0.c 
    47  * 
    48  *      Bessel function of the second kind, order zero 
    49  * 
    50  * 
    51  * 
    52  * SYNOPSIS: 
    53  * 
    54  * double x, y, y0(); 
    55  * 
    56  * y = y0( x ); 
    57  * 
    58  * 
    59  * 
    60  * DESCRIPTION: 
    61  * 
    62  * Returns Bessel function of the second kind, of order 
    63  * zero, of the argument. 
    64  * 
    65  * The domain is divided into the intervals [0, 5] and 
    66  * (5, infinity). In the first interval a rational approximation 
    67  * R(x) is employed to compute 
    68  *   y0(x)  = R(x)  +   2 * log(x) * j0(x) / PI. 
    69  * Thus a call to j0() is required. 
    70  * 
    71  * In the second interval, the Hankel asymptotic expansion 
    72  * is employed with two rational functions of degree 6/6 
    73  * and 7/7. 
    74  * 
    75  * 
    76  * 
    77  * ACCURACY: 
    78  * 
    79  *  Absolute error, when y0(x) < 1; else relative error: 
    80  * 
    81  * arithmetic   domain     # trials      peak         rms 
    82  *    DEC       0, 30        9400       7.0e-17     7.9e-18 
    83  *    IEEE      0, 30       30000       1.3e-15     1.6e-16 
    84  * 
    85  */ 
    86  
    8746 
    8847/* 
     
    9554 
    9655double j0( double ); 
    97  
    9856double j0(double x) { 
    9957 
     
    291249 
    292250    q = 1.0/x; 
    293     w = sqrtf(q); 
     251    w = sqrt(q); 
    294252 
    295253    p = w * polevl( q, MO, 7); 
    296254    w = q*q; 
    297255    xn = q * polevl( w, PH, 7) - PIO4F; 
    298     p = p * cosf(xn + xx); 
     256    p = p * cos(xn + xx); 
    299257    return(p); 
    300258#endif 
  • sasmodels/models/lib/j1_cephes.c

    rbfef528 re2af2a9  
    3232 *    IEEE      0, 30       30000       2.6e-16     1.1e-16 
    3333 * 
    34  * 
    35  */ 
    36 /*                                                      y1.c 
    37  * 
    38  *      Bessel function of second kind of order one 
    39  * 
    40  * 
    41  * 
    42  * SYNOPSIS: 
    43  * 
    44  * double x, y, y1(); 
    45  * 
    46  * y = y1( x ); 
    47  * 
    48  * 
    49  * 
    50  * DESCRIPTION: 
    51  * 
    52  * Returns Bessel function of the second kind of order one 
    53  * of the argument. 
    54  * 
    55  * The domain is divided into the intervals [0, 8] and 
    56  * (8, infinity). In the first interval a 25 term Chebyshev 
    57  * expansion is used, and a call to j1() is required. 
    58  * In the second, the asymptotic trigonometric representation 
    59  * is employed using two rational functions of degree 5/5. 
    60  * 
    61  * 
    62  * 
    63  * ACCURACY: 
    64  * 
    65  *                      Absolute error: 
    66  * arithmetic   domain      # trials      peak         rms 
    67  *    DEC       0, 30       10000       8.6e-17     1.3e-17 
    68  *    IEEE      0, 30       30000       1.0e-15     1.3e-16 
    69  * 
    70  * (error criterion relative when |y1| > 1). 
    7134 * 
    7235 */ 
  • sasmodels/models/lib/polevl.c

    r3936ad3 re2af2a9  
    5050Direct inquiries to 30 Frost Street, Cambridge, MA 02140 
    5151*/ 
     52 
    5253double polevl( double x, double coef[8], int N ); 
    5354double p1evl( double x, double coef[8], int N ); 
Note: See TracChangeset for help on using the changeset viewer.