Changeset bcb5594 in sasmodels
- Timestamp:
- Oct 31, 2017 3:54:21 PM (7 years ago)
- Branches:
- master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- d73a5ac
- Parents:
- 904cd9c
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
explore/jitter.py
r5b5ea20 rbcb5594 8 8 import sys, os 9 9 sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) 10 11 import argparse 10 12 11 13 import mpl_toolkits.mplot3d # Adds projection='3d' option to subplot … … 89 91 cloud = [v for v in cloud if v[2] == 0] 90 92 draw_shape(ax, size, view, [0, 0, 0], steps=100, alpha=0.8) 91 scale = 1/sqrt(3) if dist == 'rectangle' else 193 scale = {'gaussian':1, 'rectangle':1/sqrt(3), 'uniform':1/3}[dist] 92 94 for point in cloud: 93 95 delta = [scale*dtheta*point[0], scale*dphi*point[1], scale*dpsi*point[2]] … … 159 161 ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w') 160 162 161 def draw_mesh(ax, view, jitter, radius=1.2, n=11, dist='gaussian'): 163 PROJECTIONS = [ 164 'equirectangular', 'azimuthal_equidistance', 'sinusoidal', 165 ] 166 def draw_mesh(ax, view, jitter, radius=1.2, n=11, dist='gaussian', 167 projection='equirectangular'): 162 168 """ 163 169 Draw the dispersion mesh showing the theta-phi orientations at which 164 170 the model will be evaluated. 171 172 jitter projections 173 <https://en.wikipedia.org/wiki/List_of_map_projections> 174 175 equirectangular (standard latitude-longitude mesh) 176 <https://en.wikipedia.org/wiki/Equirectangular_projection> 177 Allows free movement in phi (around the equator), but theta is 178 limited to +/- 90, and points are cos-weighted. Jitter in phi is 179 uniform in weight along a line of latitude. With small theta and 180 phi ranging over +/- 180 this forms a wobbling disk. With small 181 phi and theta ranging over +/- 90 this forms a wedge like a slice 182 of an orange. 183 azimuthal_equidistance (Postel) 184 <https://en.wikipedia.org/wiki/Azimuthal_equidistant_projection> 185 Preserves distance from center, and so is an excellent map for 186 representing a bivariate gaussian on the surface. Theta and phi 187 operate identically, cutting wegdes from the antipode of the viewing 188 angle. This unfortunately does not allow free movement in either 189 theta or phi since the orthogonal wobble decreases to 0 as the body 190 rotates through 180 degrees. 191 sinusoidal (Sanson-Flamsteed, Mercator equal-area) 192 <https://en.wikipedia.org/wiki/Sinusoidal_projection> 193 Preserves arc length with latitude, giving bad behaviour at 194 theta near +/- 90. Theta and phi operate somewhat differently, 195 so a system with a-b-c dtheta-dphi-dpsi will not give the same 196 value as one with b-a-c dphi-dtheta-dpsi, as would be the case 197 for azimuthal equidistance. Free movement using theta or phi 198 uniform over +/- 180 will work, but not as well as equirectangular 199 phi, with theta being slightly worse. Computationally it is much 200 cheaper for wide theta-phi meshes since it excludes points which 201 lie outside the sinusoid near theta +/- 90 rather than packing 202 them close together as in equirectangle. 203 Guyour (hemisphere-in-a-square) **not implemented** 204 <https://en.wikipedia.org/wiki/Guyou_hemisphere-in-a-square_projection> 205 Promising. With tiling should allow rotation in phi or theta 206 through +/- 180, preserving almost disk-like behaviour in either 207 direction (phi rotation will not be as uniform as it is in 208 equirectangular; not sure about theta). Unfortunately, distortion 209 is not restricted to the corners of the theta-phi mesh, so this will 210 not be as good as the azimuthal equidistance project for gaussian 211 distributions. 212 azimuthal_equal_area **incomplete** 213 <https://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection> 214 Preserves the relative density of the surface patches. Not that 215 useful and not completely implemented 216 Gauss-Kreuger **not implemented** 217 <https://en.wikipedia.org/wiki/Transverse_Mercator_projection#Ellipsoidal_transverse_Mercator> 218 Should allow free movement in theta, but phi is distorted. 165 219 """ 166 220 theta, phi, psi = view 167 221 dtheta, dphi, dpsi = jitter 168 222 223 t = np.linspace(-1, 1, n) 224 weights = np.ones_like(t) 169 225 if dist == 'gaussian': 170 t = np.linspace(-3, 3, n)226 t *= 3 171 227 weights = exp(-0.5*t**2) 172 228 elif dist == 'rectangle': 173 229 # Note: uses sasmodels ridiculous definition of rectangle width 174 t = np.linspace(-1, 1, n)*sqrt(3) 175 weights = np.ones_like(t) 230 t *= sqrt(3) 231 elif dist == 'uniform': 232 pass 176 233 else: 177 raise ValueError("expected dist to be 'gaussian' or 'rectangle'") 178 179 #PROJECTION = 'stretched_phi' 180 PROJECTION = 'azimuthal_equidistance' 181 #PROJECTION = 'azimuthal_equal_area' 182 if PROJECTION == 'stretced_phi': 234 raise ValueError("expected dist to be gaussian, rectangle or uniform") 235 236 if projection == 'equirectangular': 183 237 def rotate(theta_i, phi_j): 184 if theta_i != 90:185 phi_j /= cos(radians(theta_i))186 238 return Rx(phi_j)*Ry(theta_i) 187 239 def weight(theta_i, phi_j, wi, wj): 188 if theta_i != 90: 189 phi_j /= cos(radians(theta_i)) 190 return wi*wj if abs(phi_j) < 180 else 0 191 elif PROJECTION == 'azimuthal_equidistance': 192 # https://en.wikipedia.org/wiki/Azimuthal_equidistant_projection 240 return wi*wj*cos(radians(theta_i)) 241 elif projection == 'azimuthal_equidistance': 193 242 def rotate(theta_i, phi_j): 194 243 latitude = sqrt(theta_i**2 + phi_j**2) … … 228 277 w = sin(radians(latitude))/latitude if latitude != 0 else 1 229 278 return w*wi*wj if latitude < 180 else 0 230 elif PROJECTION == 'azimuthal_equal_area': 231 # https://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection 279 elif projection == 'sinusoidal': 280 def rotate(theta_i, phi_j): 281 latitude = theta_i 282 scale = cos(radians(latitude)) 283 longitude = phi_j/scale if abs(phi_j) < abs(scale)*180 else 0 284 #print("(%+7.2f, %+7.2f) => (%+7.2f, %+7.2f)"%(theta_i, phi_j, latitude, longitude)) 285 return Rx(longitude)*Ry(latitude) 286 def weight(theta_i, phi_j, wi, wj): 287 latitude = theta_i 288 scale = cos(radians(latitude)) 289 w = 1 if abs(phi_j) < abs(scale)*180 else 0 290 return w*wi*wj 291 elif projection == 'azimuthal_equal_area': 232 292 def rotate(theta_i, phi_j): 233 293 R = min(1, sqrt(theta_i**2 + phi_j**2)/180) … … 240 300 w = sin(radians(latitude))/latitude if latitude != 0 else 1 241 301 return w*wi*wj if latitude < 180 else 0 242 elif SCALED_PHI == 10: # random thrashing243 def rotate(theta_i, phi_j):244 theta_i, phi_j = 2*theta_i/abs(cos(radians(phi_j))), 2*phi_j/cos(radians(theta_i))245 return Rx(phi_j)*Ry(theta_i)246 def weight(theta_i, phi_j, wi, wj):247 theta_i, phi_j = 2*theta_i/abs(cos(radians(phi_j))), 2*phi_j/cos(radians(theta_i))248 return wi*wj if abs(phi_j) < 180 else 0249 302 else: 250 def rotate(theta_i, phi_j): 251 return Rx(phi_j)*Ry(theta_i) 252 def weight(theta_i, phi_j, wi, wj): 253 return wi*wj*cos(radians(theta_i)) 303 raise ValueError("unknown projection %r"%projection) 254 304 255 305 # mesh in theta, phi formed by rotating z … … 398 448 weight distributions. 399 449 """ 400 ## Sasmodels use sqrt(3)*width for the rectangle range; scale to the 401 ## proper width for comparison. Commented out since now using the 402 ## sasmodels definition of width for rectangle. 403 #scale = 1/sqrt(3) if dist == 'rectangle' else 1 404 scale = 1 450 if dist == 'uniform': # uniform is not yet in this branch 451 dist, scale = 'rectangle', 1/sqrt(3) 452 else: 453 scale = 1 405 454 406 455 # add the orientation parameters to the model parameters … … 520 569 return calculator, (a, b, c) 521 570 522 def main(model_name='parallelepiped', size=(10, 40, 100)): 571 SHAPES = [ 572 'parallelepiped', 'triaxial_ellipsoid', 'bcc_paracrystal', 573 'cylinder', 'ellipsoid', 574 'sphere', 575 ] 576 577 DISTRIBUTIONS = [ 578 'gaussian', 'rectangle', 'uniform', 579 ] 580 DIST_LIMITS = { 581 'gaussian': 30, 582 'rectangle': 90/sqrt(3), 583 'uniform': 90, 584 } 585 586 def run(model_name='parallelepiped', size=(10, 40, 100), 587 dist='gaussian', mesh=30, 588 projection='equirectangular'): 523 589 """ 524 590 Show an interactive orientation and jitter demo. … … 532 598 ## If left commented, the colour range is fixed for all views 533 599 calculator.limits = None 534 535 ## use gaussian distribution unless testing integration536 dist = 'rectangle'537 #dist = 'gaussian'538 600 539 601 ## initial view … … 572 634 # in sasmodels is sqrt(3) times the given width. Divide by sqrt(3) to keep 573 635 # the maximum width to 90. 574 dlimit = 30 if dist == 'gaussian' else 90/sqrt(3)636 dlimit = DIST_LIMITS[dist] 575 637 sdtheta = Slider(axdtheta, 'dTheta', 0, 2*dlimit, valinit=dtheta) 576 638 sdphi = Slider(axdphi, 'dPhi', 0, 2*dlimit, valinit=dphi) … … 583 645 # set small jitter as 0 if multiple pd dims 584 646 dims = sum(v > 0 for v in jitter) 585 limit = [0, 0, 2, 5][dims]647 limit = [0, 0, 0.5, 5][dims] 586 648 jitter = [0 if v < limit else v for v in jitter] 587 649 ax.cla() … … 589 651 draw_jitter(ax, view, jitter, dist=dist, size=size) 590 652 #draw_jitter(ax, view, (0,0,0)) 591 draw_mesh(ax, view, jitter, dist=dist, n= 30)653 draw_mesh(ax, view, jitter, dist=dist, n=mesh, projection=projection) 592 654 draw_scattering(calculator, ax, view, jitter, dist=dist) 593 655 plt.gcf().canvas.draw() … … 607 669 plt.show() 608 670 671 def main(): 672 parser = argparse.ArgumentParser( 673 description="Display jitter", 674 formatter_class=argparse.ArgumentDefaultsHelpFormatter, 675 ) 676 parser.add_argument('-p', '--projection', choices=PROJECTIONS, default=PROJECTIONS[0], help='coordinate projection') 677 parser.add_argument('-s', '--size', type=str, default='10,40,100', help='a,b,c lengths') 678 parser.add_argument('-d', '--distribution', choices=DISTRIBUTIONS, default=DISTRIBUTIONS[0], help='jitter distribution') 679 parser.add_argument('-m', '--mesh', type=int, default=30, help='#points in theta-phi mesh') 680 parser.add_argument('shape', choices=SHAPES, nargs='?', default=SHAPES[0], help='oriented shape') 681 opts = parser.parse_args() 682 size = tuple(int(v) for v in opts.size.split(',')) 683 run(opts.shape, size=size, 684 mesh=opts.mesh, dist=opts.distribution, 685 projection=opts.projection) 686 609 687 if __name__ == "__main__": 610 model_name = sys.argv[1] if len(sys.argv) > 1 else 'parallelepiped' 611 size = tuple(int(v) for v in sys.argv[2].split(',')) if len(sys.argv) > 2 else (10, 40, 100) 612 main(model_name, size) 688 main()
Note: See TracChangeset
for help on using the changeset viewer.