Changeset b3f4831 in sasmodels
- Timestamp:
- Oct 30, 2018 11:07:41 AM (6 years ago)
- Branches:
- ticket_1156
- Children:
- cc8b183
- Parents:
- 5778279 (diff), c6084f1 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Files:
-
- 1 added
- 22 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/magnetism/magnetism.rst
rbefe905 rdf87acf 89 89 90 90 =========== ================================================================ 91 M0:sld$D_M M_0$92 mtheta:sld$\theta_M$93 mphi:sld$\phi_M$94 up :angle $\theta_\mathrm{up}$95 up :frac_i $u_i$ = (spin up)/(spin up + spin down) *before* the sample96 up :frac_f $u_f$ = (spin up)/(spin up + spin down) *after* the sample91 sld_M0 $D_M M_0$ 92 sld_mtheta $\theta_M$ 93 sld_mphi $\phi_M$ 94 up_frac_i $u_i$ = (spin up)/(spin up + spin down) *before* the sample 95 up_frac_f $u_f$ = (spin up)/(spin up + spin down) *after* the sample 96 up_angle $\theta_\mathrm{up}$ 97 97 =========== ================================================================ 98 98 99 99 .. note:: 100 The values of the 'up :frac_i' and 'up:frac_f' must be in the range 0 to 1.100 The values of the 'up_frac_i' and 'up_frac_f' must be in the range 0 to 1. 101 101 102 102 *Document History* -
doc/guide/plugin.rst
rf796469 r57c609b 423 423 calculations, but instead rely on numerical integration to compute the 424 424 appropriately smeared pattern. 425 426 Each .py file also contains a function:: 427 428 def random(): 429 ... 430 431 This function provides a model-specific random parameter set which shows model 432 features in the USANS to SANS range. For example, core-shell sphere sets the 433 outer radius of the sphere logarithmically in `[20, 20,000]`, which sets the Q 434 value for the transition from flat to falling. It then uses a beta distribution 435 to set the percentage of the shape which is shell, giving a preference for very 436 thin or very thick shells (but never 0% or 100%). Using `-sets=10` in sascomp 437 should show a reasonable variety of curves over the default sascomp q range. 438 The parameter set is returned as a dictionary of `{parameter: value, ...}`. 439 Any model parameters not included in the dictionary will default according to 440 the code in the `_randomize_one()` function from sasmodels/compare.py. 425 441 426 442 Python Models … … 685 701 erf, erfc, tgamma, lgamma: **do not use** 686 702 Special functions that should be part of the standard, but are missing 687 or inaccurate on some platforms. Use sas_erf, sas_erfc andsas_gamma688 instead (see below). Note: lgamma(x) has not yet been tested.703 or inaccurate on some platforms. Use sas_erf, sas_erfc, sas_gamma 704 and sas_lgamma instead (see below). 689 705 690 706 Some non-standard constants and functions are also provided: … … 753 769 Gamma function sas_gamma\ $(x) = \Gamma(x)$. 754 770 755 The standard math function, tgamma(x) is unstable for $x < 1$771 The standard math function, tgamma(x), is unstable for $x < 1$ 756 772 on some platforms. 757 773 758 774 :code:`source = ["lib/sas_gamma.c", ...]` 759 775 (`sas_gamma.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gamma.c>`_) 776 777 sas_gammaln(x): 778 log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$. 779 780 The standard math function, lgamma(x), is incorrect for single 781 precision on some platforms. 782 783 :code:`source = ["lib/sas_gammainc.c", ...]` 784 (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_) 785 786 sas_gammainc(a, x), sas_gammaincc(a, x): 787 Incomplete gamma function 788 sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$ 789 and complementary incomplete gamma function 790 sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$ 791 792 :code:`source = ["lib/sas_gammainc.c", ...]` 793 (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_) 760 794 761 795 sas_erf(x), sas_erfc(x): … … 795 829 If $n$ = 0 or 1, it uses sas_J0($x$) or sas_J1($x$), respectively. 796 830 831 Warning: JN(n,x) can be very inaccurate (0.1%) for x not in [0.1, 100]. 832 797 833 The standard math function jn(n, x) is not available on all platforms. 798 834 … … 803 839 Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. 804 840 841 Warning: Si(x) can be very inaccurate (0.1%) for x in [0.1, 100]. 842 805 843 This function uses Taylor series for small and large arguments: 806 844 807 For large arguments ,845 For large arguments use the following Taylor series, 808 846 809 847 .. math:: … … 813 851 - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right) 814 852 815 For small arguments ,853 For small arguments , 816 854 817 855 .. math:: -
explore/precision.py
r2a7e20e rfba9ca0 95 95 neg: [-100,100] 96 96 97 For arbitrary range use "start:stop:steps:scale" where scale is 98 one of log, lin, or linear. 99 97 100 *diff* is "relative", "absolute" or "none" 98 101 … … 102 105 linear = not xrange.startswith("log") 103 106 if xrange == "zoom": 104 lin_min, lin_max, lin_steps = 1000, 1010, 2000107 start, stop, steps = 1000, 1010, 2000 105 108 elif xrange == "neg": 106 lin_min, lin_max, lin_steps = -100.1, 100.1, 2000109 start, stop, steps = -100.1, 100.1, 2000 107 110 elif xrange == "linear": 108 lin_min, lin_max, lin_steps = 1, 1000, 2000109 lin_min, lin_max, lin_steps = 0.001, 2, 2000111 start, stop, steps = 1, 1000, 2000 112 start, stop, steps = 0.001, 2, 2000 110 113 elif xrange == "log": 111 log_min, log_max, log_steps = -3, 5, 400114 start, stop, steps = -3, 5, 400 112 115 elif xrange == "logq": 113 log_min, log_max, log_steps = -4, 1, 400 116 start, stop, steps = -4, 1, 400 117 elif ':' in xrange: 118 parts = xrange.split(':') 119 linear = parts[3] != "log" if len(parts) == 4 else True 120 steps = int(parts[2]) if len(parts) > 2 else 400 121 start = float(parts[0]) 122 stop = float(parts[1]) 123 114 124 else: 115 125 raise ValueError("unknown range "+xrange) … … 121 131 # value to x in the given precision. 122 132 if linear: 123 lin_min = max(lin_min, self.limits[0])124 lin_max = min(lin_max, self.limits[1])125 qrf = np.linspace( lin_min, lin_max, lin_steps, dtype='single')126 #qrf = np.linspace( lin_min, lin_max, lin_steps, dtype='double')133 start = max(start, self.limits[0]) 134 stop = min(stop, self.limits[1]) 135 qrf = np.linspace(start, stop, steps, dtype='single') 136 #qrf = np.linspace(start, stop, steps, dtype='double') 127 137 qr = [mp.mpf(float(v)) for v in qrf] 128 #qr = mp.linspace( lin_min, lin_max, lin_steps)138 #qr = mp.linspace(start, stop, steps) 129 139 else: 130 log_min = np.log10(max(10**log_min, self.limits[0]))131 log_max = np.log10(min(10**log_max, self.limits[1]))132 qrf = np.logspace( log_min, log_max, log_steps, dtype='single')133 #qrf = np.logspace( log_min, log_max, log_steps, dtype='double')140 start = np.log10(max(10**start, self.limits[0])) 141 stop = np.log10(min(10**stop, self.limits[1])) 142 qrf = np.logspace(start, stop, steps, dtype='single') 143 #qrf = np.logspace(start, stop, steps, dtype='double') 134 144 qr = [mp.mpf(float(v)) for v in qrf] 135 #qr = [10**v for v in mp.linspace( log_min, log_max, log_steps)]145 #qr = [10**v for v in mp.linspace(start, stop, steps)] 136 146 137 147 target = self.call_mpmath(qr, bits=500) … … 176 186 """ 177 187 if diff == "relative": 178 err = np.array([ abs((t-a)/t) for t, a in zip(target, actual)], 'd')188 err = np.array([(abs((t-a)/t) if t != 0 else a) for t, a in zip(target, actual)], 'd') 179 189 #err = np.clip(err, 0, 1) 180 190 pylab.loglog(x, err, '-', label=label) … … 197 207 return model_info 198 208 209 # Hack to allow second parameter A in two parameter functions 210 A = 1 211 def parse_extra_pars(): 212 global A 213 214 A_str = str(A) 215 pop = [] 216 for k, v in enumerate(sys.argv[1:]): 217 if v.startswith("A="): 218 A_str = v[2:] 219 pop.append(k+1) 220 if pop: 221 sys.argv = [v for k, v in enumerate(sys.argv) if k not in pop] 222 A = float(A_str) 223 224 parse_extra_pars() 225 199 226 200 227 # =============== FUNCTION DEFINITIONS ================ … … 297 324 ocl_function=make_ocl("return sas_gamma(q);", "sas_gamma", ["lib/sas_gamma.c"]), 298 325 limits=(-3.1, 10), 326 ) 327 add_function( 328 name="gammaln(x)", 329 mp_function=mp.loggamma, 330 np_function=scipy.special.gammaln, 331 ocl_function=make_ocl("return sas_gammaln(q);", "sas_gammaln", ["lib/sas_gammainc.c"]), 332 #ocl_function=make_ocl("return lgamma(q);", "sas_gammaln"), 333 ) 334 add_function( 335 name="gammainc(x)", 336 mp_function=lambda x, a=A: mp.gammainc(a, a=0, b=x)/mp.gamma(a), 337 np_function=lambda x, a=A: scipy.special.gammainc(a, x), 338 ocl_function=make_ocl("return sas_gammainc(%.15g,q);"%A, "sas_gammainc", ["lib/sas_gammainc.c"]), 339 ) 340 add_function( 341 name="gammaincc(x)", 342 mp_function=lambda x, a=A: mp.gammainc(a, a=x, b=mp.inf)/mp.gamma(a), 343 np_function=lambda x, a=A: scipy.special.gammaincc(a, x), 344 ocl_function=make_ocl("return sas_gammaincc(%.15g,q);"%A, "sas_gammaincc", ["lib/sas_gammainc.c"]), 299 345 ) 300 346 add_function( … … 463 509 lanczos_gamma = """\ 464 510 const double coeff[] = { 465 76.18009172947146, 466 24.01409824083091, 511 76.18009172947146, -86.50532032941677, 512 24.01409824083091, -1.231739572450155, 467 513 0.1208650973866179e-2,-0.5395239384953e-5 468 514 }; … … 475 521 """ 476 522 add_function( 477 name="log 523 name="loggamma(x)", 478 524 mp_function=mp.loggamma, 479 525 np_function=scipy.special.gammaln, … … 599 645 600 646 ALL_FUNCTIONS = set(FUNCTIONS.keys()) 601 ALL_FUNCTIONS.discard("loggamma") # OCL version not ready yet647 ALL_FUNCTIONS.discard("loggamma") # use cephes-based gammaln instead 602 648 ALL_FUNCTIONS.discard("3j1/x:taylor") 603 649 ALL_FUNCTIONS.discard("3j1/x:trig") … … 615 661 -r indicates that the relative error should be plotted (default), 616 662 -x<range> indicates the steps in x, where <range> is one of the following 617 log indicates log stepping in [10^-3, 10^5] (default) 618 logq indicates log stepping in [10^-4, 10^1] 619 linear indicates linear stepping in [1, 1000] 620 zoom indicates linear stepping in [1000, 1010] 621 neg indicates linear stepping in [-100.1, 100.1] 622 and name is "all" or one of: 663 log indicates log stepping in [10^-3, 10^5] (default) 664 logq indicates log stepping in [10^-4, 10^1] 665 linear indicates linear stepping in [1, 1000] 666 zoom indicates linear stepping in [1000, 1010] 667 neg indicates linear stepping in [-100.1, 100.1] 668 start:stop:n[:stepping] indicates an n-step plot in [start, stop] 669 or [10^start, 10^stop] if stepping is "log" (default n=400) 670 Some functions (notably gammainc/gammaincc) have an additional parameter A 671 which can be set from the command line as A=value. Default is A=1. 672 673 Name is one of: 623 674 """+names) 624 675 sys.exit(1) -
sasmodels/__init__.py
re65c3ba ra1ec908 14 14 defining new models. 15 15 """ 16 __version__ = "0.9 7"16 __version__ = "0.98" 17 17 18 18 def data_files(): -
sasmodels/compare.py
rbd7630d r610ef23 368 368 369 369 # Limit magnetic SLDs to a smaller range, from zero to iron=5/A^2 370 if par.name. startswith('M0:'):370 if par.name.endswith('_M0'): 371 371 return np.random.uniform(0, 5) 372 372 … … 538 538 magnetic_pars = [] 539 539 for p in parameters.user_parameters(pars, is2d): 540 if any(p.id. startswith(x) for x in ('M0:', 'mtheta:', 'mphi:')):540 if any(p.id.endswith(x) for x in ('_M0', '_mtheta', '_mphi')): 541 541 continue 542 542 if p.id.startswith('up:'): … … 550 550 pdtype=pars.get(p.id+"_pd_type", 'gaussian'), 551 551 relative_pd=p.relative_pd, 552 M0=pars.get( 'M0:'+p.id, 0.),553 mphi=pars.get( 'mphi:'+p.id, 0.),554 mtheta=pars.get( 'mtheta:'+p.id, 0.),552 M0=pars.get(p.id+'_M0', 0.), 553 mphi=pars.get(p.id+'_mphi', 0.), 554 mtheta=pars.get(p.id+'_mtheta', 0.), 555 555 ) 556 556 lines.append(_format_par(p.name, **fields)) … … 618 618 if suppress: 619 619 for p in pars: 620 if p. startswith("M0:"):620 if p.endswith("_M0"): 621 621 pars[p] = 0 622 622 else: … … 624 624 first_mag = None 625 625 for p in pars: 626 if p. startswith("M0:"):626 if p.endswith("_M0"): 627 627 any_mag |= (pars[p] != 0) 628 628 if first_mag is None: -
sasmodels/convert.py
r78f8308 rb3f4831 167 167 if version < (4, 2, 0): 168 168 oldpars = _hand_convert_4_1_to_4_2(name, oldpars) 169 oldpars = _rename_magnetic_pars(oldpars) 169 170 return oldpars 170 171 … … 174 175 oldpars['lattice_distortion'] = oldpars.pop('d_factor') 175 176 return oldpars 177 178 def _rename_magnetic_pars(pars): 179 """ 180 Change from M0:par to par_M0, etc. 181 """ 182 keys = list(pars.items()) 183 for k in keys: 184 if k.startswith('M0:'): 185 pars[k[3:]+'_M0'] = pars.pop(k) 186 elif k.startswith('mtheta:'): 187 pars[k[7:]+'_mtheta'] = pars.pop(k) 188 elif k.startswith('mphi:'): 189 pars[k[5:]+'_mphi'] = pars.pop(k) 190 elif k.startswith('up:'): 191 pars['up_'+k[3:]] = pars.pop(k) 192 return pars 176 193 177 194 def _hand_convert_3_1_2_to_4_1(name, oldpars): -
sasmodels/custom/__init__.py
r0f48f1e rd321747 12 12 import sys 13 13 import os 14 from os.path import basename, splitext 14 from os.path import basename, splitext, join as joinpath, exists, dirname 15 15 16 16 try: … … 18 18 from importlib.util import spec_from_file_location, module_from_spec # type: ignore 19 19 def load_module_from_path(fullname, path): 20 # type: (str, str) -> "module" 20 21 """load module from *path* as *fullname*""" 21 22 spec = spec_from_file_location(fullname, os.path.expanduser(path)) … … 27 28 import imp 28 29 def load_module_from_path(fullname, path): 30 # type: (str, str) -> "module" 29 31 """load module from *path* as *fullname*""" 30 32 # Clear out old definitions, if any … … 37 39 return module 38 40 41 _MODULE_CACHE = {} # type: Dict[str, Tuple("module", int)] 42 _MODULE_DEPENDS = {} # type: Dict[str, List[str]] 43 _MODULE_DEPENDS_STACK = [] # type: List[str] 39 44 def load_custom_kernel_module(path): 45 # type: str -> "module" 40 46 """load SAS kernel from *path* as *sasmodels.custom.modelname*""" 41 47 # Pull off the last .ext if it exists; there may be others 42 48 name = basename(splitext(path)[0]) 43 # Placing the model in the 'sasmodels.custom' name space. 44 kernel_module = load_module_from_path('sasmodels.custom.'+name, 45 os.path.expanduser(path)) 46 return kernel_module 49 path = os.path.expanduser(path) 50 51 # Reload module if necessary. 52 if need_reload(path): 53 # Assume the module file is the only dependency 54 _MODULE_DEPENDS[path] = set([path]) 55 56 # Load the module while pushing it onto the dependency stack. If 57 # this triggers any submodules, then they will add their dependencies 58 # to this module as the "working_on" parent. Pop the stack when the 59 # module is loaded. 60 _MODULE_DEPENDS_STACK.append(path) 61 module = load_module_from_path('sasmodels.custom.'+name, path) 62 _MODULE_DEPENDS_STACK.pop() 63 64 # Include external C code in the dependencies. We are looking 65 # for module.source and assuming that it is a list of C source files 66 # relative to the module itself. Any files that do not exist, 67 # such as those in the standard libraries, will be ignored. 68 # TODO: look in builtin module path for standard c sources 69 # TODO: share code with generate.model_sources 70 c_sources = getattr(module, 'source', None) 71 if isinstance(c_sources, (list, tuple)): 72 _MODULE_DEPENDS[path].update(_find_sources(path, c_sources)) 73 74 # Cache the module, and tag it with the newest timestamp 75 timestamp = max(os.path.getmtime(f) for f in _MODULE_DEPENDS[path]) 76 _MODULE_CACHE[path] = module, timestamp 77 78 #print("loading", os.path.basename(path), _MODULE_CACHE[path][1], 79 # [os.path.basename(p) for p in _MODULE_DEPENDS[path]]) 80 81 # Add path and all its dependence to the parent module, if there is one. 82 if _MODULE_DEPENDS_STACK: 83 working_on = _MODULE_DEPENDS_STACK[-1] 84 _MODULE_DEPENDS[working_on].update(_MODULE_DEPENDS[path]) 85 86 return _MODULE_CACHE[path][0] 87 88 def need_reload(path): 89 # type: str -> bool 90 """ 91 Return True if any path dependencies have a timestamp newer than the time 92 when the path was most recently loaded. 93 """ 94 # TODO: fails if a dependency has a modification time in the future 95 # If the newest dependency has a time stamp in the future, then this 96 # will be recorded as the cached time. When a second dependency 97 # is updated to the current time stamp, it will still be considered 98 # older than the current build and the reload will not be triggered. 99 # Could instead treat all future times as 0 here and in the code above 100 # which records the newest timestamp. This will force a reload when 101 # the future time is reached, but other than that should perform 102 # correctly. Probably not worth the extra code... 103 _, cache_time = _MODULE_CACHE.get(path, (None, -1)) 104 depends = _MODULE_DEPENDS.get(path, [path]) 105 #print("reload", any(cache_time < os.path.getmtime(p) for p in depends)) 106 #for f in depends: print(">>> ", f, os.path.getmtime(f)) 107 return any(cache_time < os.path.getmtime(p) for p in depends) 108 109 def _find_sources(path, source_list): 110 # type: (str, List[str]) -> List[str] 111 """ 112 Return a list of the sources relative to base file; ignore any that 113 are not found. 114 """ 115 root = dirname(path) 116 found = [] 117 for source_name in source_list: 118 source_path = joinpath(root, source_name) 119 if exists(source_path): 120 found.append(source_path) 121 return found -
sasmodels/kernelpy.py
r108e70e r12eec1e 37 37 self.info = model_info 38 38 self.dtype = np.dtype('d') 39 logger.info(" loadpython model " + self.info.name)39 logger.info("make python model " + self.info.name) 40 40 41 41 def make_kernel(self, q_vectors): -
sasmodels/model_test.py
r012cd34 r12eec1e 47 47 import sys 48 48 import unittest 49 import traceback 49 50 50 51 try: … … 74 75 # pylint: enable=unused-import 75 76 76 77 77 def make_suite(loaders, models): 78 78 # type: (List[str], List[str]) -> unittest.TestSuite … … 86 86 *models* is the list of models to test, or *["all"]* to test all models. 87 87 """ 88 ModelTestCase = _hide_model_case_from_nose()89 88 suite = unittest.TestSuite() 90 89 … … 95 94 skip = [] 96 95 for model_name in models: 97 if model_name in skip: 98 continue 99 model_info = load_model_info(model_name) 100 101 #print('------') 102 #print('found tests in', model_name) 103 #print('------') 104 105 # if ispy then use the dll loader to call pykernel 106 # don't try to call cl kernel since it will not be 107 # available in some environmentes. 108 is_py = callable(model_info.Iq) 109 110 # Some OpenCL drivers seem to be flaky, and are not producing the 111 # expected result. Since we don't have known test values yet for 112 # all of our models, we are instead going to compare the results 113 # for the 'smoke test' (that is, evaluation at q=0.1 for the default 114 # parameters just to see that the model runs to completion) between 115 # the OpenCL and the DLL. To do this, we define a 'stash' which is 116 # shared between OpenCL and DLL tests. This is just a list. If the 117 # list is empty (which it will be when DLL runs, if the DLL runs 118 # first), then the results are appended to the list. If the list 119 # is not empty (which it will be when OpenCL runs second), the results 120 # are compared to the results stored in the first element of the list. 121 # This is a horrible stateful hack which only makes sense because the 122 # test suite is thrown away after being run once. 123 stash = [] 124 125 if is_py: # kernel implemented in python 126 test_name = "%s-python"%model_name 127 test_method_name = "test_%s_python" % model_info.id 96 if model_name not in skip: 97 model_info = load_model_info(model_name) 98 _add_model_to_suite(loaders, suite, model_info) 99 100 return suite 101 102 def _add_model_to_suite(loaders, suite, model_info): 103 ModelTestCase = _hide_model_case_from_nose() 104 105 #print('------') 106 #print('found tests in', model_name) 107 #print('------') 108 109 # if ispy then use the dll loader to call pykernel 110 # don't try to call cl kernel since it will not be 111 # available in some environmentes. 112 is_py = callable(model_info.Iq) 113 114 # Some OpenCL drivers seem to be flaky, and are not producing the 115 # expected result. Since we don't have known test values yet for 116 # all of our models, we are instead going to compare the results 117 # for the 'smoke test' (that is, evaluation at q=0.1 for the default 118 # parameters just to see that the model runs to completion) between 119 # the OpenCL and the DLL. To do this, we define a 'stash' which is 120 # shared between OpenCL and DLL tests. This is just a list. If the 121 # list is empty (which it will be when DLL runs, if the DLL runs 122 # first), then the results are appended to the list. If the list 123 # is not empty (which it will be when OpenCL runs second), the results 124 # are compared to the results stored in the first element of the list. 125 # This is a horrible stateful hack which only makes sense because the 126 # test suite is thrown away after being run once. 127 stash = [] 128 129 if is_py: # kernel implemented in python 130 test_name = "%s-python"%model_info.name 131 test_method_name = "test_%s_python" % model_info.id 132 test = ModelTestCase(test_name, model_info, 133 test_method_name, 134 platform="dll", # so that 135 dtype="double", 136 stash=stash) 137 suite.addTest(test) 138 else: # kernel implemented in C 139 140 # test using dll if desired 141 if 'dll' in loaders or not use_opencl(): 142 test_name = "%s-dll"%model_info.name 143 test_method_name = "test_%s_dll" % model_info.id 128 144 test = ModelTestCase(test_name, model_info, 129 test_method_name,130 platform="dll", # so that131 dtype="double",132 stash=stash)145 test_method_name, 146 platform="dll", 147 dtype="double", 148 stash=stash) 133 149 suite.addTest(test) 134 else: # kernel implemented in C 135 136 # test using dll if desired 137 if 'dll' in loaders or not use_opencl(): 138 test_name = "%s-dll"%model_name 139 test_method_name = "test_%s_dll" % model_info.id 140 test = ModelTestCase(test_name, model_info, 141 test_method_name, 142 platform="dll", 143 dtype="double", 144 stash=stash) 145 suite.addTest(test) 146 147 # test using opencl if desired and available 148 if 'opencl' in loaders and use_opencl(): 149 test_name = "%s-opencl"%model_name 150 test_method_name = "test_%s_opencl" % model_info.id 151 # Using dtype=None so that the models that are only 152 # correct for double precision are not tested using 153 # single precision. The choice is determined by the 154 # presence of *single=False* in the model file. 155 test = ModelTestCase(test_name, model_info, 156 test_method_name, 157 platform="ocl", dtype=None, 158 stash=stash) 159 #print("defining", test_name) 160 suite.addTest(test) 161 162 return suite 150 151 # test using opencl if desired and available 152 if 'opencl' in loaders and use_opencl(): 153 test_name = "%s-opencl"%model_info.name 154 test_method_name = "test_%s_opencl" % model_info.id 155 # Using dtype=None so that the models that are only 156 # correct for double precision are not tested using 157 # single precision. The choice is determined by the 158 # presence of *single=False* in the model file. 159 test = ModelTestCase(test_name, model_info, 160 test_method_name, 161 platform="ocl", dtype=None, 162 stash=stash) 163 #print("defining", test_name) 164 suite.addTest(test) 165 163 166 164 167 def _hide_model_case_from_nose(): … … 348 351 return abs(target-actual)/shift < 1.5*10**-digits 349 352 350 def run_one(model): 351 # type: (str) -> str 352 """ 353 Run the tests for a single model, printing the results to stdout. 354 355 *model* can by a python file, which is handy for checking user defined 356 plugin models. 353 # CRUFT: old interface; should be deprecated and removed 354 def run_one(model_name): 355 # msg = "use check_model(model_info) rather than run_one(model_name)" 356 # warnings.warn(msg, category=DeprecationWarning, stacklevel=2) 357 try: 358 model_info = load_model_info(model_name) 359 except Exception: 360 output = traceback.format_exc() 361 return output 362 363 success, output = check_model(model_info) 364 return output 365 366 def check_model(model_info): 367 # type: (ModelInfo) -> str 368 """ 369 Run the tests for a single model, capturing the output. 370 371 Returns success status and the output string. 357 372 """ 358 373 # Note that running main() directly did not work from within the … … 369 384 # Build a test suite containing just the model 370 385 loaders = ['opencl'] if use_opencl() else ['dll'] 371 models = [model] 372 try: 373 suite = make_suite(loaders, models) 374 except Exception: 375 import traceback 376 stream.writeln(traceback.format_exc()) 377 return 386 suite = unittest.TestSuite() 387 _add_model_to_suite(loaders, suite, model_info) 378 388 379 389 # Warn if there are no user defined tests. … … 390 400 for test in suite: 391 401 if not test.info.tests: 392 stream.writeln("Note: %s has no user defined tests."%model )402 stream.writeln("Note: %s has no user defined tests."%model_info.name) 393 403 break 394 404 else: … … 406 416 output = stream.getvalue() 407 417 stream.close() 408 return output418 return result.wasSuccessful(), output 409 419 410 420 -
sasmodels/modelinfo.py
r7b9e4dd rbd547d0 466 466 self.is_asymmetric = any(p.name == 'psi' for p in self.kernel_parameters) 467 467 self.magnetism_index = [k for k, p in enumerate(self.call_parameters) 468 if p.id. startswith('M0:')]468 if p.id.endswith('_M0')] 469 469 470 470 self.pd_1d = set(p.name for p in self.call_parameters … … 586 586 if self.nmagnetic > 0: 587 587 full_list.extend([ 588 Parameter('up :frac_i', '', 0., [0., 1.],588 Parameter('up_frac_i', '', 0., [0., 1.], 589 589 'magnetic', 'fraction of spin up incident'), 590 Parameter('up :frac_f', '', 0., [0., 1.],590 Parameter('up_frac_f', '', 0., [0., 1.], 591 591 'magnetic', 'fraction of spin up final'), 592 Parameter('up :angle', 'degrees', 0., [0., 360.],592 Parameter('up_angle', 'degrees', 0., [0., 360.], 593 593 'magnetic', 'spin up angle'), 594 594 ]) … … 596 596 for p in slds: 597 597 full_list.extend([ 598 Parameter( 'M0:'+p.id, '1e-6/Ang^2', 0., [-np.inf, np.inf],598 Parameter(p.id+'_M0', '1e-6/Ang^2', 0., [-np.inf, np.inf], 599 599 'magnetic', 'magnetic amplitude for '+p.description), 600 Parameter( 'mtheta:'+p.id, 'degrees', 0., [-90., 90.],600 Parameter(p.id+'_mtheta', 'degrees', 0., [-90., 90.], 601 601 'magnetic', 'magnetic latitude for '+p.description), 602 Parameter( 'mphi:'+p.id, 'degrees', 0., [-180., 180.],602 Parameter(p.id+'_mphi', 'degrees', 0., [-180., 180.], 603 603 'magnetic', 'magnetic longitude for '+p.description), 604 604 ]) … … 640 640 641 641 Parameters marked as sld will automatically have a set of associated 642 magnetic parameters ( m0:p, mtheta:p, mphi:p), as well as polarization643 information (up :theta, up:frac_i, up:frac_f).642 magnetic parameters (p_M0, p_mtheta, p_mphi), as well as polarization 643 information (up_theta, up_frac_i, up_frac_f). 644 644 """ 645 645 # control parameters go first … … 668 668 result.append(expanded_pars[name]) 669 669 if is2d: 670 for tag in ' M0:', 'mtheta:', 'mphi:':671 if tag+namein expanded_pars:672 result.append(expanded_pars[ tag+name])670 for tag in '_M0', '_mtheta', '_mphi': 671 if name+tag in expanded_pars: 672 result.append(expanded_pars[name+tag]) 673 673 674 674 # Gather the user parameters in order … … 703 703 append_group(p.id) 704 704 705 if is2d and 'up :angle' in expanded_pars:705 if is2d and 'up_angle' in expanded_pars: 706 706 result.extend([ 707 expanded_pars['up :frac_i'],708 expanded_pars['up :frac_f'],709 expanded_pars['up :angle'],707 expanded_pars['up_frac_i'], 708 expanded_pars['up_frac_f'], 709 expanded_pars['up_angle'], 710 710 ]) 711 711 … … 793 793 info.structure_factor = getattr(kernel_module, 'structure_factor', False) 794 794 info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y']) 795 # Note: custom.load_custom_kernel_module assumes the C sources are defined 796 # by this attribute. 795 797 info.source = getattr(kernel_module, 'source', []) 796 798 info.c_code = getattr(kernel_module, 'c_code', None) … … 1014 1016 for k in range(control+1, p.length+1) 1015 1017 if p.length > 1) 1018 for p in self.parameters.kernel_parameters: 1019 if p.length > 1 and p.type == "sld": 1020 for k in range(control+1, p.length+1): 1021 base = p.id+str(k) 1022 hidden.update((base+"_M0", base+"_mtheta", base+"_mphi")) 1016 1023 return hidden -
sasmodels/models/bcc_paracrystal.py
re7e9231 rb3f4831 1 1 r""" 2 .. warning:: This model and this model description are under review following 3 concerns raised by SasView users. If you need to use this model, 4 please email help@sasview.org for the latest situation. *The 5 SasView Developers. September 2018.* 6 2 7 Definition 3 8 ---------- … … 13 18 14 19 I(q) = \frac{\text{scale}}{V_p} V_\text{lattice} P(q) Z(q) 15 16 20 17 21 where *scale* is the volume fraction of spheres, $V_p$ is the volume of the … … 97 101 98 102 Authorship and Verification 99 --------------------------- -103 --------------------------- 100 104 101 105 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 -
sasmodels/models/be_polyelectrolyte.py
ref07e95 rca77fc1 1 1 r""" 2 .. note:: Please read the Validation section below. 3 2 4 Definition 3 5 ---------- … … 11 13 12 14 I(q) = K\frac{q^2+k^2}{4\pi L_b\alpha ^2} 13 \frac{1}{1+r_{0}^ 2(q^2+k^2)(q^2-12hC_a/b^2)} + background15 \frac{1}{1+r_{0}^4(q^2+k^2)(q^2-12hC_a/b^2)} + background 14 16 15 17 k^2 = 4\pi L_b(2C_s + \alpha C_a) 16 18 17 r_{0}^2 = \frac{ 1}{\alpha \sqrt{C_a} \left( b/\sqrt{48\pi L_b}\right)}19 r_{0}^2 = \frac{b}{\alpha \sqrt{C_a 48\pi L_b}} 18 20 19 21 where 20 22 21 23 $K$ is the contrast factor for the polymer which is defined differently than in 22 other models and is given in barns where $1 barn = 10^{-24}cm^2$. $K$ is24 other models and is given in barns where 1 $barn = 10^{-24}$ $cm^2$. $K$ is 23 25 defined as: 24 26 … … 29 31 a = b_p - (v_p/v_s) b_s 30 32 31 where $b_p$ and $b_s$ are sum of the scattering lengths of the atoms 32 constituting the monomer of the polymer and the sum of the scattering lengths 33 of the atoms constituting the solvent molecules respectively, and $v_p$ and 34 $v_s$ are the partial molar volume of the polymer and the solvent respectively 35 36 $L_b$ is the Bjerrum length(|Ang|) - **Note:** This parameter needs to be 37 kept constant for a given solvent and temperature! 38 39 $h$ is the virial parameter (|Ang^3|/mol) - **Note:** See [#Borue]_ for the 40 correct interpretation of this parameter. It incorporates second and third 41 virial coefficients and can be Negative. 42 43 $b$ is the monomer length(|Ang|), $C_s$ is the concentration of monovalent 44 salt(mol/L), $\alpha$ is the ionization degree (ionization degree : ratio of 45 charged monomers to total number of monomers), $C_a$ is the polymer molar 46 concentration(mol/L), and $background$ is the incoherent background. 33 where: 34 35 - $b_p$ and $b_s$ are **sum of the scattering lengths of the atoms** 36 constituting the polymer monomer and the solvent molecules, respectively. 37 38 - $v_p$ and $v_s$ are the partial molar volume of the polymer and the 39 solvent, respectively. 40 41 - $L_b$ is the Bjerrum length (|Ang|) - **Note:** This parameter needs to be 42 kept constant for a given solvent and temperature! 43 44 - $h$ is the virial parameter (|Ang^3|) - **Note:** See [#Borue]_ for the 45 correct interpretation of this parameter. It incorporates second and third 46 virial coefficients and can be *negative*. 47 48 - $b$ is the monomer length (|Ang|). 49 50 - $C_s$ is the concentration of monovalent salt(1/|Ang^3| - internally converted from mol/L). 51 52 - $\alpha$ is the degree of ionization (the ratio of charged monomers to the total 53 number of monomers) 54 55 - $C_a$ is the polymer molar concentration (1/|Ang^3| - internally converted from mol/L) 56 57 - $background$ is the incoherent background. 47 58 48 59 For 2D data the scattering intensity is calculated in the same way as 1D, … … 52 63 53 64 q = \sqrt{q_x^2 + q_y^2} 65 66 Validation 67 ---------- 68 69 As of the last revision, this code is believed to be correct. However it 70 needs further validation and should be used with caution at this time. The 71 history of this code goes back to a 1998 implementation. It was recently noted 72 that in that implementation, while both the polymer concentration and salt 73 concentration were converted from experimental units of mol/L to more 74 dimensionally useful units of 1/|Ang^3|, only the converted version of the 75 polymer concentration was actually being used in the calculation while the 76 unconverted salt concentration (still in apparent units of mol/L) was being 77 used. This was carried through to Sasmodels as used for SasView 4.1 (though 78 the line of code converting the salt concentration to the new units was removed 79 somewhere along the line). Simple dimensional analysis of the calculation shows 80 that the converted salt concentration should be used, which the original code 81 suggests was the intention, so this has now been corrected (for SasView 4.2). 82 Once better validation has been performed this note will be removed. 54 83 55 84 References … … 66 95 67 96 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 68 * **Last Modified by:** Paul Kienzle **Date:** July 24, 201669 * **Last Reviewed by:** Paul Butler and Richard Heenan **Date:** October 07, 201697 * **Last Modified by:** Paul Butler **Date:** September 25, 2018 98 * **Last Reviewed by:** Paul Butler **Date:** September 25, 2018 70 99 """ 71 100 … … 92 121 ["contrast_factor", "barns", 10.0, [-inf, inf], "", "Contrast factor of the polymer"], 93 122 ["bjerrum_length", "Ang", 7.1, [0, inf], "", "Bjerrum length"], 94 ["virial_param", "Ang^3 /mol", 12.0, [-inf, inf], "", "Virial parameter"],123 ["virial_param", "Ang^3", 12.0, [-inf, inf], "", "Virial parameter"], 95 124 ["monomer_length", "Ang", 10.0, [0, inf], "", "Monomer length"], 96 125 ["salt_concentration", "mol/L", 0.0, [-inf, inf], "", "Concentration of monovalent salt"], … … 102 131 103 132 def Iq(q, 104 contrast_factor =10.0,105 bjerrum_length =7.1,106 virial_param =12.0,107 monomer_length =10.0,108 salt_concentration =0.0,109 ionization_degree =0.05,110 polymer_concentration =0.7):133 contrast_factor, 134 bjerrum_length, 135 virial_param, 136 monomer_length, 137 salt_concentration, 138 ionization_degree, 139 polymer_concentration): 111 140 """ 112 :param q: Input q-value 113 :param contrast_factor: Contrast factor of the polymer 114 :param bjerrum_length: Bjerrum length 115 :param virial_param: Virial parameter 116 :param monomer_length: Monomer length 117 :param salt_concentration: Concentration of monovalent salt 118 :param ionization_degree: Degree of ionization 119 :param polymer_concentration: Polymer molar concentration 120 :return: 1-D intensity 141 :params: see parameter table 142 :return: 1-D form factor for polyelectrolytes in low salt 143 144 parameter names, units, default values, and behavior (volume, sld etc) are 145 defined in the parameter table. The concentrations are converted from 146 experimental mol/L to dimensionaly useful 1/A3 in first two lines 121 147 """ 122 148 123 concentration = polymer_concentration * 6.022136e-4 124 125 k_square = 4.0 * pi * bjerrum_length * (2*salt_concentration + 126 ionization_degree * concentration) 127 128 r0_square = 1.0/ionization_degree/sqrt(concentration) * \ 149 concentration_pol = polymer_concentration * 6.022136e-4 150 concentration_salt = salt_concentration * 6.022136e-4 151 152 k_square = 4.0 * pi * bjerrum_length * (2*concentration_salt + 153 ionization_degree * concentration_pol) 154 155 r0_square = 1.0/ionization_degree/sqrt(concentration_pol) * \ 129 156 (monomer_length/sqrt((48.0*pi*bjerrum_length))) 130 157 … … 133 160 134 161 term2 = 1.0 + r0_square**2 * (q**2 + k_square) * \ 135 (q**2 - (12.0 * virial_param * concentration /(monomer_length**2)))162 (q**2 - (12.0 * virial_param * concentration_pol/(monomer_length**2))) 136 163 137 164 return term1/term2 … … 174 201 175 202 # Accuracy tests based on content in test/utest_other_models.py 203 # Note that these should some day be validated beyond this self validation 204 # (circular reasoning). -- i.e. the "good value," at least for those with 205 # non zero salt concentrations, were obtained by running the current 206 # model in SasView and copying the appropriate result here. 207 # PDB -- Sep 26, 2018 176 208 [{'contrast_factor': 10.0, 177 209 'bjerrum_length': 7.1, … … 184 216 }, 0.001, 0.0948379], 185 217 186 # Additional tests with larger range of parameters187 218 [{'contrast_factor': 10.0, 188 219 'bjerrum_length': 100.0, 189 220 'virial_param': 3.0, 190 'monomer_length': 1.0,191 'salt_concentration': 10.0,192 'ionization_degree': 2.0,193 'polymer_concentration': 10.0,221 'monomer_length': 5.0, 222 'salt_concentration': 1.0, 223 'ionization_degree': 0.1, 224 'polymer_concentration': 1.0, 194 225 'background': 0.0, 195 }, 0.1, -3.75693800588],226 }, 0.1, 0.253469484], 196 227 197 228 [{'contrast_factor': 10.0, 198 229 'bjerrum_length': 100.0, 199 230 'virial_param': 3.0, 200 'monomer_length': 1.0,201 'salt_concentration': 10.0,202 'ionization_degree': 2.0,203 'polymer_concentration': 10.0,204 'background': 100.0205 }, 5.0, 100.029142149],231 'monomer_length': 5.0, 232 'salt_concentration': 1.0, 233 'ionization_degree': 0.1, 234 'polymer_concentration': 1.0, 235 'background': 1.0, 236 }, 0.05, 1.738358122], 206 237 207 238 [{'contrast_factor': 100.0, 208 239 'bjerrum_length': 10.0, 209 'virial_param': 180.0,210 'monomer_length': 1.0,240 'virial_param': 12.0, 241 'monomer_length': 10.0, 211 242 'salt_concentration': 0.1, 212 243 'ionization_degree': 0.5, 213 244 'polymer_concentration': 0.1, 214 'background': 0.0,215 }, 200., 1.80664667511e-06],245 'background': 0.01, 246 }, 0.5, 0.012881893], 216 247 ] -
sasmodels/models/fcc_paracrystal.py
re7e9231 rb3f4831 3 3 #note - calculation requires double precision 4 4 r""" 5 .. warning:: This model and this model description are under review following 6 concerns raised by SasView users. If you need to use this model, 7 please email help@sasview.org for the latest situation. *The 8 SasView Developers. September 2018.* 9 5 10 Definition 6 11 ---------- … … 10 15 negligible, and the size of the paracrystal is infinitely large. 11 16 Paracrystalline distortion is assumed to be isotropic and characterized by 12 a Gaussian distribution. 17 a Gaussian distribution. 13 18 14 19 The scattering intensity $I(q)$ is calculated as -
sasmodels/models/sc_paracrystal.py
r0b906ea rb3f4831 1 1 r""" 2 .. warning:: This model and this model description are under review following 3 concerns raised by SasView users. If you need to use this model, 4 please email help@sasview.org for the latest situation. *The 5 SasView Developers. September 2018.* 6 2 7 Definition 3 8 ---------- … … 9 14 by a Gaussian distribution. 10 15 11 he scattering intensity $I(q)$ is calculated as16 The scattering intensity $I(q)$ is calculated as 12 17 13 18 .. math:: … … 21 26 22 27 Equation (16) of the 1987 reference\ [#CIT1987]_ is used to calculate $Z(q)$, 23 using equations (13)-(15) from the 1987 paper\ [#CIT1987]_ for Z1, Z2, and Z3. 28 using equations (13)-(15) from the 1987 paper\ [#CIT1987]_ for $Z1$, $Z2$, and 29 $Z3$. 24 30 25 31 The lattice correction (the occupied volume of the lattice) for a simple cubic -
sasmodels/models/spinodal.py
r475ff58 r93fe8a1 12 12 where $x=q/q_0$, $q_0$ is the peak position, $I_{max}$ is the intensity 13 13 at $q_0$ (parameterised as the $scale$ parameter), and $B$ is a flat 14 background. The spinodal wavelength is given by $2\pi/q_0$. 14 background. The spinodal wavelength, $\Lambda$, is given by $2\pi/q_0$. 15 16 The definition of $I_{max}$ in the literature varies. Hashimoto *et al* (1991) 17 define it as 18 19 .. math:: 20 I_{max} = \Lambda^3\Delta\rho^2 21 22 whereas Meier & Strobl (1987) give 23 24 .. math:: 25 I_{max} = V_z\Delta\rho^2 26 27 where $V_z$ is the volume per monomer unit. 15 28 16 29 The exponent $\gamma$ is equal to $d+1$ for off-critical concentration … … 28 41 29 42 H. Furukawa. Dynamics-scaling theory for phase-separating unmixing mixtures: 30 Growth rates of droplets and scaling properties of autocorrelation functions. 31 Physica A 123,497 (1984). 43 Growth rates of droplets and scaling properties of autocorrelation functions. 44 Physica A 123, 497 (1984). 45 46 H. Meier & G. Strobl. Small-Angle X-ray Scattering Study of Spinodal 47 Decomposition in Polystyrene/Poly(styrene-co-bromostyrene) Blends. 48 Macromolecules 20, 649-654 (1987). 49 50 T. Hashimoto, M. Takenaka & H. Jinnai. Scattering Studies of Self-Assembling 51 Processes of Polymer Blends in Spinodal Decomposition. 52 J. Appl. Cryst. 24, 457-466 (1991). 32 53 33 54 Revision History … … 35 56 36 57 * **Author:** Dirk Honecker **Date:** Oct 7, 2016 37 * **Revised:** Steve King **Date:** Sep 7, 201858 * **Revised:** Steve King **Date:** Oct 25, 2018 38 59 """ 39 60 -
sasmodels/sasview_model.py
rd533590 rce1eed5 62 62 #: set of defined models (standard and custom) 63 63 MODELS = {} # type: Dict[str, SasviewModelType] 64 # TODO: remove unused MODEL_BY_PATH cache once sasview no longer references it 64 65 #: custom model {path: model} mapping so we can check timestamps 65 66 MODEL_BY_PATH = {} # type: Dict[str, SasviewModelType] 67 #: Track modules that we have loaded so we can determine whether the model 68 #: has changed since we last reloaded. 69 _CACHED_MODULE = {} # type: Dict[str, "module"] 66 70 67 71 def find_model(modelname): … … 106 110 Load a custom model given the model path. 107 111 """ 108 model = MODEL_BY_PATH.get(path, None)109 if model is not None and model.timestamp == getmtime(path):110 #logger.info("Model already loaded %s", path)111 return model112 113 112 #logger.info("Loading model %s", path) 113 114 # Load the kernel module. This may already be cached by the loader, so 115 # only requires checking the timestamps of the dependents. 114 116 kernel_module = custom.load_custom_kernel_module(path) 115 if hasattr(kernel_module, 'Model'): 116 model = kernel_module.Model 117 118 # Check if the module has changed since we last looked. 119 reloaded = kernel_module != _CACHED_MODULE.get(path, None) 120 _CACHED_MODULE[path] = kernel_module 121 122 # Turn the module into a model. We need to do this in even if the 123 # model has already been loaded so that we can determine the model 124 # name and retrieve it from the MODELS cache. 125 model = getattr(kernel_module, 'Model', None) 126 if model is not None: 117 127 # Old style models do not set the name in the class attributes, so 118 128 # set it here; this name will be overridden when the object is created … … 127 137 model_info = modelinfo.make_model_info(kernel_module) 128 138 model = make_model_from_info(model_info) 129 model.timestamp = getmtime(path)130 139 131 140 # If a model name already exists and we are loading a different model, … … 143 152 _previous_name, model.name, model.filename) 144 153 145 MODELS[model.name] = model 146 MODEL_BY_PATH[path] = model 147 return model 154 # Only update the model if the module has changed 155 if reloaded or model.name not in MODELS: 156 MODELS[model.name] = model 157 158 return MODELS[model.name] 148 159 149 160 … … 372 383 hidden.add('background') 373 384 self._model_info.parameters.defaults['background'] = 0. 385 386 # Update the parameter lists to exclude any hidden parameters 387 self.magnetic_params = tuple(pname for pname in self.magnetic_params 388 if pname not in hidden) 389 self.orientation_params = tuple(pname for pname in self.orientation_params 390 if pname not in hidden) 374 391 375 392 self._persistency_dict = {} … … 786 803 return value, [value], [1.0] 787 804 805 @classmethod 806 def runTests(cls): 807 """ 808 Run any tests built into the model and captures the test output. 809 810 Returns success flag and output 811 """ 812 from .model_test import check_model 813 return check_model(cls._model_info) 814 788 815 def test_cylinder(): 789 816 # type: () -> float … … 873 900 Model = _make_standard_model('sphere') 874 901 model = Model() 875 model.setParam(' M0:sld', 8)902 model.setParam('sld_M0', 8) 876 903 q = np.linspace(-0.35, 0.35, 500) 877 904 qx, qy = np.meshgrid(q, q) -
sasmodels/special.py
rdf69efa rfba9ca0 113 113 The standard math function, tgamma(x) is unstable for $x < 1$ 114 114 on some platforms. 115 116 sas_gammaln(x): 117 log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$. 118 119 The standard math function, lgamma(x), is incorrect for single 120 precision on some platforms. 121 122 sas_gammainc(a, x), sas_gammaincc(a, x): 123 Incomplete gamma function 124 sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$ 125 and complementary incomplete gamma function 126 sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$ 115 127 116 128 sas_erf(x), sas_erfc(x): … … 207 219 from numpy import pi, nan, inf 208 220 from scipy.special import gamma as sas_gamma 221 from scipy.special import gammaln as sas_gammaln 222 from scipy.special import gammainc as sas_gammainc 223 from scipy.special import gammaincc as sas_gammaincc 209 224 from scipy.special import erf as sas_erf 210 225 from scipy.special import erfc as sas_erfc -
setup.py
r1f991d6 r783e76f 29 29 return version[1:-1] 30 30 raise RuntimeError("Could not read version from %s/__init__.py"%package) 31 32 install_requires = ['numpy', 'scipy'] 33 34 if sys.platform=='win32' or sys.platform=='cygwin': 35 install_requires.append('tinycc') 31 36 32 37 setup( … … 61 66 'sasmodels': ['*.c', '*.cl'], 62 67 }, 63 install_requires=[ 64 ], 68 install_requires=install_requires, 65 69 extras_require={ 70 'full': ['docutils', 'bumps', 'matplotlib'], 71 'server': ['bumps'], 66 72 'OpenCL': ["pyopencl"], 67 'Bumps': ["bumps"],68 'TinyCC': ["tinycc"],69 73 }, 70 74 build_requires=['setuptools'], -
explore/realspace.py
r362a66f r5778279 9 9 import numpy as np 10 10 from numpy import pi, radians, sin, cos, sqrt 11 from numpy.random import poisson, uniform, randn, rand 11 from numpy.random import poisson, uniform, randn, rand, randint 12 12 from numpy.polynomial.legendre import leggauss 13 13 from scipy.integrate import simps … … 78 78 79 79 80 I3 = np.matrix([[1., 0, 0], [0, 1, 0], [0, 0, 1]]) 81 80 82 class Shape: 81 rotation = np.matrix([[1., 0, 0], [0, 1, 0], [0, 0, 1]])83 rotation = I3 82 84 center = np.array([0., 0., 0.])[:, None] 83 85 r_max = None 86 lattice_size = np.array((1, 1, 1)) 87 lattice_spacing = np.array((1., 1., 1.)) 88 lattice_distortion = 0.0 89 lattice_rotation = 0.0 90 lattice_type = "" 84 91 85 92 def volume(self): … … 96 103 97 104 def rotate(self, theta, phi, psi): 98 self.rotation = rotation(theta, phi, psi) * self.rotation 105 if theta != 0. or phi != 0. or psi != 0.: 106 self.rotation = rotation(theta, phi, psi) * self.rotation 99 107 return self 100 108 … … 103 111 return self 104 112 113 def lattice(self, size=(1, 1, 1), spacing=(2, 2, 2), type="sc", 114 distortion=0.0, rotation=0.0): 115 self.lattice_size = np.asarray(size, 'i') 116 self.lattice_spacing = np.asarray(spacing, 'd') 117 self.lattice_type = type 118 self.lattice_distortion = distortion 119 self.lattice_rotation = rotation 120 105 121 def _adjust(self, points): 106 points = np.asarray(self.rotation * np.matrix(points.T)) + self.center 122 if self.rotation is I3: 123 points = points.T + self.center 124 else: 125 points = np.asarray(self.rotation * np.matrix(points.T)) + self.center 126 if self.lattice_type: 127 points = self._apply_lattice(points) 107 128 return points.T 108 129 109 def r_bins(self, q, over_sampling=1, r_step=0.): 110 r_max = min(2 * pi / q[0], self.r_max) 130 def r_bins(self, q, over_sampling=10, r_step=0.): 131 if self.lattice_type: 132 r_max = np.sqrt(np.sum(self.lattice_size*self.lattice_spacing*self.dims)**2)/2 133 else: 134 r_max = self.r_max 135 #r_max = min(2 * pi / q[0], r_max) 111 136 if r_step == 0.: 112 137 r_step = 2 * pi / q[-1] / over_sampling 113 138 #r_step = 0.01 114 139 return np.arange(r_step, r_max, r_step) 140 141 def _apply_lattice(self, points): 142 """Spread points to different lattice positions""" 143 size = self.lattice_size 144 spacing = self.lattice_spacing 145 shuffle = self.lattice_distortion 146 rotate = self.lattice_rotation 147 lattice = self.lattice_type 148 149 if rotate != 0: 150 # To vectorize the rotations we will need to unwrap the matrix multiply 151 raise NotImplementedError("don't handle rotations yet") 152 153 # Determine the number of lattice points in the lattice 154 shapes_per_cell = 2 if lattice == "bcc" else 4 if lattice == "fcc" else 1 155 number_of_lattice_points = np.prod(size) * shapes_per_cell 156 157 # For each point in the original shape, figure out which lattice point 158 # to translate it to. This is both cell index (i*ny*nz + j*nz + k) as 159 # well as the point in the cell (corner, body center or face center). 160 nsamples = points.shape[1] 161 lattice_point = randint(number_of_lattice_points, size=nsamples) 162 163 # Translate the cell index into the i,j,k coordinates of the senter 164 cell_index = lattice_point // shapes_per_cell 165 center = np.vstack((cell_index//(size[1]*size[2]), 166 (cell_index%(size[1]*size[2]))//size[2], 167 cell_index%size[2])) 168 center = np.asarray(center, dtype='d') 169 if lattice == "bcc": 170 center[:, lattice_point % shapes_per_cell == 1] += [[0.5], [0.5], [0.5]] 171 elif lattice == "fcc": 172 center[:, lattice_point % shapes_per_cell == 1] += [[0.0], [0.5], [0.5]] 173 center[:, lattice_point % shapes_per_cell == 2] += [[0.5], [0.0], [0.5]] 174 center[:, lattice_point % shapes_per_cell == 3] += [[0.5], [0.5], [0.0]] 175 176 # Each lattice point has its own displacement from the ideal position. 177 # Not checking that shapes do not overlap if displacement is too large. 178 offset = shuffle*(randn(3, number_of_lattice_points) if shuffle < 0.3 179 else rand(3, number_of_lattice_points)) 180 center += offset[:, cell_index] 181 182 # Each lattice point has its own rotation. Rotate the point prior to 183 # applying any displacement. 184 # rotation = rotate*(randn(size=(shapes, 3)) if shuffle < 30 else rand(size=(nsamples, 3))) 185 # for k in shapes: points[k] = rotation[k]*points[k] 186 points += center*(np.array([spacing])*np.array(self.dims)).T 187 return points 115 188 116 189 class Composite(Shape): … … 669 742 Iq = 100 * np.ones_like(qx) 670 743 data = Data2D(x=qx, y=qy, z=Iq, dx=None, dy=None, dz=np.sqrt(Iq)) 671 data.x_bins = qx[0, :]672 data.y_bins = qy[:, 0]744 data.x_bins = qx[0, :] 745 data.y_bins = qy[:, 0] 673 746 data.filename = "fake data" 674 747 … … 695 768 return shape, fn, fn_xy 696 769 697 def build_sphere(radius=125, rho=2): 770 DEFAULT_SPHERE_RADIUS = 125 771 DEFAULT_SPHERE_CONTRAST = 2 772 def build_sphere(radius=DEFAULT_SPHERE_RADIUS, rho=DEFAULT_SPHERE_CONTRAST): 698 773 shape = TriaxialEllipsoid(radius, radius, radius, rho) 699 774 fn = lambda q: sphere_Iq(q, radius)*rho**2 … … 751 826 return shape, fn, fn_xy 752 827 753 def build_ cubic_lattice(shape, nx=1, ny=1, nz=1, dx=2, dy=2, dz=2,754 shuffle=0, rotate=0):828 def build_sc_lattice(shape, nx=1, ny=1, nz=1, dx=2, dy=2, dz=2, 829 shuffle=0, rotate=0): 755 830 a, b, c = shape.dims 756 shapes= [copy(shape)831 corners= [copy(shape) 757 832 .shift((ix+(randn() if shuffle < 0.3 else rand())*shuffle)*dx*a, 758 833 (iy+(randn() if shuffle < 0.3 else rand())*shuffle)*dy*b, … … 762 837 for iy in range(ny) 763 838 for iz in range(nz)] 764 lattice = Composite( shapes)839 lattice = Composite(corners) 765 840 return lattice 766 841 842 def build_bcc_lattice(shape, nx=1, ny=1, nz=1, dx=2, dy=2, dz=2, 843 shuffle=0, rotate=0): 844 a, b, c = shape.dims 845 corners = [copy(shape) 846 .shift((ix+(randn() if shuffle < 0.3 else rand())*shuffle)*dx*a, 847 (iy+(randn() if shuffle < 0.3 else rand())*shuffle)*dy*b, 848 (iz+(randn() if shuffle < 0.3 else rand())*shuffle)*dz*c) 849 .rotate(*((randn(3) if rotate < 30 else rand(3))*rotate)) 850 for ix in range(nx) 851 for iy in range(ny) 852 for iz in range(nz)] 853 centers = [copy(shape) 854 .shift((ix+0.5+(randn() if shuffle < 0.3 else rand())*shuffle)*dx*a, 855 (iy+0.5+(randn() if shuffle < 0.3 else rand())*shuffle)*dy*b, 856 (iz+0.5+(randn() if shuffle < 0.3 else rand())*shuffle)*dz*c) 857 .rotate(*((randn(3) if rotate < 30 else rand(3))*rotate)) 858 for ix in range(nx) 859 for iy in range(ny) 860 for iz in range(nz)] 861 lattice = Composite(corners + centers) 862 return lattice 863 864 def build_fcc_lattice(shape, nx=1, ny=1, nz=1, dx=2, dy=2, dz=2, 865 shuffle=0, rotate=0): 866 a, b, c = shape.dims 867 corners = [copy(shape) 868 .shift((ix+(randn() if shuffle < 0.3 else rand())*shuffle)*dx*a, 869 (iy+(randn() if shuffle < 0.3 else rand())*shuffle)*dy*b, 870 (iz+(randn() if shuffle < 0.3 else rand())*shuffle)*dz*c) 871 .rotate(*((randn(3) if rotate < 30 else rand(3))*rotate)) 872 for ix in range(nx) 873 for iy in range(ny) 874 for iz in range(nz)] 875 faces_a = [copy(shape) 876 .shift((ix+0.0+(randn() if shuffle < 0.3 else rand())*shuffle)*dx*a, 877 (iy+0.5+(randn() if shuffle < 0.3 else rand())*shuffle)*dy*b, 878 (iz+0.5+(randn() if shuffle < 0.3 else rand())*shuffle)*dz*c) 879 .rotate(*((randn(3) if rotate < 30 else rand(3))*rotate)) 880 for ix in range(nx) 881 for iy in range(ny) 882 for iz in range(nz)] 883 faces_b = [copy(shape) 884 .shift((ix+0.5+(randn() if shuffle < 0.3 else rand())*shuffle)*dx*a, 885 (iy+0.0+(randn() if shuffle < 0.3 else rand())*shuffle)*dy*b, 886 (iz+0.5+(randn() if shuffle < 0.3 else rand())*shuffle)*dz*c) 887 .rotate(*((randn(3) if rotate < 30 else rand(3))*rotate)) 888 for ix in range(nx) 889 for iy in range(ny) 890 for iz in range(nz)] 891 faces_c = [copy(shape) 892 .shift((ix+0.5+(randn() if shuffle < 0.3 else rand())*shuffle)*dx*a, 893 (iy+0.5+(randn() if shuffle < 0.3 else rand())*shuffle)*dy*b, 894 (iz+0.0+(randn() if shuffle < 0.3 else rand())*shuffle)*dz*c) 895 .rotate(*((randn(3) if rotate < 30 else rand(3))*rotate)) 896 for ix in range(nx) 897 for iy in range(ny) 898 for iz in range(nz)] 899 lattice = Composite(corners + faces_a + faces_b + faces_c) 900 return lattice 767 901 768 902 SHAPE_FUNCTIONS = OrderedDict([ … … 775 909 ]) 776 910 SHAPES = list(SHAPE_FUNCTIONS.keys()) 911 LATTICE_FUNCTIONS = OrderedDict([ 912 ("sc", build_sc_lattice), 913 ("bcc", build_bcc_lattice), 914 ("fcc", build_fcc_lattice), 915 ]) 916 LATTICE_TYPES = list(LATTICE_FUNCTIONS.keys()) 777 917 778 918 def check_shape(title, shape, fn=None, show_points=False, … … 783 923 r = shape.r_bins(q, r_step=r_step) 784 924 sampling_density = samples / shape.volume 925 print("sampling points") 785 926 rho, points = shape.sample(sampling_density) 927 print("calculating Pr") 786 928 t0 = time.time() 787 929 Pr = calc_Pr(r, rho-rho_solvent, points) … … 792 934 import pylab 793 935 if show_points: 794 936 plot_points(rho, points); pylab.figure() 795 937 plot_calc(r, Pr, q, Iq, theory=theory, title=title) 796 938 pylab.gcf().canvas.set_window_title(title) … … 806 948 Qx, Qy = np.meshgrid(qx, qy) 807 949 sampling_density = samples / shape.volume 950 print("sampling points") 808 951 t0 = time.time() 809 952 rho, points = shape.sample(sampling_density) … … 844 987 help='lattice size') 845 988 parser.add_argument('-z', '--spacing', type=str, default='2,2,2', 846 help='lattice spacing') 989 help='lattice spacing (relative to shape)') 990 parser.add_argument('-t', '--type', choices=LATTICE_TYPES, 991 default=LATTICE_TYPES[0], 992 help='lattice type') 847 993 parser.add_argument('-r', '--rotate', type=float, default=0., 848 994 help="rotation relative to lattice, gaussian < 30 degrees, uniform otherwise") … … 858 1004 nx, ny, nz = [int(v) for v in opts.lattice.split(',')] 859 1005 dx, dy, dz = [float(v) for v in opts.spacing.split(',')] 860 shuffle, rotate= opts.shuffle, opts.rotate1006 distortion, rotation = opts.shuffle, opts.rotate 861 1007 shape, fn, fn_xy = SHAPE_FUNCTIONS[opts.shape](**pars) 862 if nx > 1 or ny > 1 or nz > 1: 863 shape = build_cubic_lattice(shape, nx, ny, nz, dx, dy, dz, shuffle, rotate) 1008 view = tuple(float(v) for v in opts.view.split(',')) 1009 # If comparing a sphere in a cubic lattice, compare against the 1010 # corresponding paracrystalline model. 1011 if opts.shape == "sphere" and dx == dy == dz and nx*ny*nz > 1: 1012 radius = pars.get('radius', DEFAULT_SPHERE_RADIUS) 1013 model_name = opts.type + "_paracrystal" 1014 model_pars = { 1015 "scale": 1., 1016 "background": 0., 1017 "lattice_spacing": 2*radius*dx, 1018 "lattice_distortion": distortion, 1019 "radius": radius, 1020 "sld": pars.get('rho', DEFAULT_SPHERE_CONTRAST), 1021 "sld_solvent": 0., 1022 "theta": view[0], 1023 "phi": view[1], 1024 "psi": view[2], 1025 } 1026 fn, fn_xy = wrap_sasmodel(model_name, **model_pars) 1027 if nx*ny*nz > 1: 1028 if rotation != 0: 1029 print("building %s lattice"%opts.type) 1030 build_lattice = LATTICE_FUNCTIONS[opts.type] 1031 shape = build_lattice(shape, nx, ny, nz, dx, dy, dz, 1032 distortion, rotation) 1033 else: 1034 shape.lattice(size=(nx, ny, nz), spacing=(dx, dy, dz), 1035 type=opts.type, 1036 rotation=rotation, distortion=distortion) 1037 864 1038 title = "%s(%s)" % (opts.shape, " ".join(opts.pars)) 865 1039 if opts.dim == 1: … … 867 1041 mesh=opts.mesh, qmax=opts.qmax, samples=opts.samples) 868 1042 else: 869 view = tuple(float(v) for v in opts.view.split(','))870 1043 check_shape_2d(title, shape, fn_xy, view=view, show_points=opts.plot, 871 1044 mesh=opts.mesh, qmax=opts.qmax, samples=opts.samples) -
sasmodels/models/bcc_paracrystal.c
r108e70e r642046e 1 1 static double 2 bcc_Zq(double qa, double qb, double qc, double dnn, double d_factor)2 bcc_Zq(double qa, double qb, double qc, double lattice_spacing, double lattice_distortion) 3 3 { 4 4 // Equations from Matsuoka 26-27-28, multiplied by |q| … … 17 17 // => exp(a)^2 - 2 cos(d ak) exp(a) + 1) 18 18 // => (exp(a) - 2 cos(d ak)) * exp(a) + 1 19 const double arg = -0.5*square( dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3);19 const double arg = -0.5*square(lattice_spacing*lattice_distortion)*(a1*a1 + a2*a2 + a3*a3); 20 20 const double exp_arg = exp(arg); 21 21 const double Zq = -cube(expm1(2.0*arg)) 22 / ( ((exp_arg - 2.0*cos( dnn*a1))*exp_arg + 1.0)23 * ((exp_arg - 2.0*cos( dnn*a2))*exp_arg + 1.0)24 * ((exp_arg - 2.0*cos( dnn*a3))*exp_arg + 1.0));22 / ( ((exp_arg - 2.0*cos(lattice_spacing*a1))*exp_arg + 1.0) 23 * ((exp_arg - 2.0*cos(lattice_spacing*a2))*exp_arg + 1.0) 24 * ((exp_arg - 2.0*cos(lattice_spacing*a3))*exp_arg + 1.0)); 25 25 26 26 #elif 0 … … 36 36 // = tanh(-a) / [1 - cos(d a_k)/cosh(-a)] 37 37 // 38 const double arg = 0.5*square( dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3);38 const double arg = 0.5*square(lattice_spacing*lattice_distortion)*(a1*a1 + a2*a2 + a3*a3); 39 39 const double sinh_qd = sinh(arg); 40 40 const double cosh_qd = cosh(arg); 41 const double Zq = sinh_qd/(cosh_qd - cos( dnn*a1))42 * sinh_qd/(cosh_qd - cos( dnn*a2))43 * sinh_qd/(cosh_qd - cos( dnn*a3));41 const double Zq = sinh_qd/(cosh_qd - cos(lattice_spacing*a1)) 42 * sinh_qd/(cosh_qd - cos(lattice_spacing*a2)) 43 * sinh_qd/(cosh_qd - cos(lattice_spacing*a3)); 44 44 #else 45 const double arg = 0.5*square( dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3);45 const double arg = 0.5*square(lattice_spacing*lattice_distortion)*(a1*a1 + a2*a2 + a3*a3); 46 46 const double tanh_qd = tanh(arg); 47 47 const double cosh_qd = cosh(arg); 48 const double Zq = tanh_qd/(1.0 - cos( dnn*a1)/cosh_qd)49 * tanh_qd/(1.0 - cos( dnn*a2)/cosh_qd)50 * tanh_qd/(1.0 - cos( dnn*a3)/cosh_qd);48 const double Zq = tanh_qd/(1.0 - cos(lattice_spacing*a1)/cosh_qd) 49 * tanh_qd/(1.0 - cos(lattice_spacing*a2)/cosh_qd) 50 * tanh_qd/(1.0 - cos(lattice_spacing*a3)/cosh_qd); 51 51 #endif 52 52 … … 57 57 // occupied volume fraction calculated from lattice symmetry and sphere radius 58 58 static double 59 bcc_volume_fraction(double radius, double dnn)59 bcc_volume_fraction(double radius, double lattice_spacing) 60 60 { 61 return 2.0*sphere_volume( sqrt(0.75)*radius/dnn);61 return 2.0*sphere_volume(radius/lattice_spacing); 62 62 } 63 63 … … 69 69 70 70 71 static double Iq(double q, double dnn,72 double d_factor, double radius,71 static double Iq(double q, double lattice_spacing, 72 double lattice_distortion, double radius, 73 73 double sld, double solvent_sld) 74 74 { … … 94 94 const double qa = qab*cos_phi; 95 95 const double qb = qab*sin_phi; 96 const double form = bcc_Zq(qa, qb, qc, dnn, d_factor);96 const double form = bcc_Zq(qa, qb, qc, lattice_spacing, lattice_distortion); 97 97 inner_sum += GAUSS_W[j] * form; 98 98 } … … 103 103 const double Zq = outer_sum/(4.0*M_PI); 104 104 const double Pq = sphere_form(q, radius, sld, solvent_sld); 105 return bcc_volume_fraction(radius, dnn) * Pq * Zq;105 return bcc_volume_fraction(radius, lattice_spacing) * Pq * Zq; 106 106 } 107 107 108 108 109 109 static double Iqabc(double qa, double qb, double qc, 110 double dnn, double d_factor, double radius,110 double lattice_spacing, double lattice_distortion, double radius, 111 111 double sld, double solvent_sld) 112 112 { 113 113 const double q = sqrt(qa*qa + qb*qb + qc*qc); 114 const double Zq = bcc_Zq(qa, qb, qc, dnn, d_factor);114 const double Zq = bcc_Zq(qa, qb, qc, lattice_spacing, lattice_distortion); 115 115 const double Pq = sphere_form(q, radius, sld, solvent_sld); 116 return bcc_volume_fraction(radius, dnn) * Pq * Zq;116 return bcc_volume_fraction(radius, lattice_spacing) * Pq * Zq; 117 117 } -
sasmodels/models/fcc_paracrystal.c
r108e70e r642046e 1 1 static double 2 fcc_Zq(double qa, double qb, double qc, double dnn, double d_factor)2 fcc_Zq(double qa, double qb, double qc, double lattice_spacing, double lattice_distortion) 3 3 { 4 4 // Equations from Matsuoka 17-18-19, multiplied by |q| … … 16 16 // => exp(a)^2 - 2 cos(d ak) exp(a) + 1) 17 17 // => (exp(a) - 2 cos(d ak)) * exp(a) + 1 18 const double arg = -0.5*square( dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3);18 const double arg = -0.5*square(lattice_spacing*lattice_distortion)*(a1*a1 + a2*a2 + a3*a3); 19 19 const double exp_arg = exp(arg); 20 20 const double Zq = -cube(expm1(2.0*arg)) 21 / ( ((exp_arg - 2.0*cos( dnn*a1))*exp_arg + 1.0)22 * ((exp_arg - 2.0*cos( dnn*a2))*exp_arg + 1.0)23 * ((exp_arg - 2.0*cos( dnn*a3))*exp_arg + 1.0));21 / ( ((exp_arg - 2.0*cos(lattice_spacing*a1))*exp_arg + 1.0) 22 * ((exp_arg - 2.0*cos(lattice_spacing*a2))*exp_arg + 1.0) 23 * ((exp_arg - 2.0*cos(lattice_spacing*a3))*exp_arg + 1.0)); 24 24 25 25 return Zq; … … 29 29 // occupied volume fraction calculated from lattice symmetry and sphere radius 30 30 static double 31 fcc_volume_fraction(double radius, double dnn)31 fcc_volume_fraction(double radius, double lattice_spacing) 32 32 { 33 return 4.0*sphere_volume( M_SQRT1_2*radius/dnn);33 return 4.0*sphere_volume(radius/lattice_spacing); 34 34 } 35 35 … … 41 41 42 42 43 static double Iq(double q, double dnn,44 double d_factor, double radius,43 static double Iq(double q, double lattice_spacing, 44 double lattice_distortion, double radius, 45 45 double sld, double solvent_sld) 46 46 { … … 66 66 const double qa = qab*cos_phi; 67 67 const double qb = qab*sin_phi; 68 const double form = fcc_Zq(qa, qb, qc, dnn, d_factor);68 const double form = fcc_Zq(qa, qb, qc, lattice_spacing, lattice_distortion); 69 69 inner_sum += GAUSS_W[j] * form; 70 70 } … … 76 76 const double Pq = sphere_form(q, radius, sld, solvent_sld); 77 77 78 return fcc_volume_fraction(radius, dnn) * Pq * Zq;78 return fcc_volume_fraction(radius, lattice_spacing) * Pq * Zq; 79 79 } 80 80 81 81 82 82 static double Iqabc(double qa, double qb, double qc, 83 double dnn, double d_factor, double radius,83 double lattice_spacing, double lattice_distortion, double radius, 84 84 double sld, double solvent_sld) 85 85 { 86 86 const double q = sqrt(qa*qa + qb*qb + qc*qc); 87 87 const double Pq = sphere_form(q, radius, sld, solvent_sld); 88 const double Zq = fcc_Zq(qa, qb, qc, dnn, d_factor);89 return fcc_volume_fraction(radius, dnn) * Pq * Zq;88 const double Zq = fcc_Zq(qa, qb, qc, lattice_spacing, lattice_distortion); 89 return fcc_volume_fraction(radius, lattice_spacing) * Pq * Zq; 90 90 } -
sasmodels/models/sc_paracrystal.c
r108e70e r6530963 1 1 static double 2 sc_Zq(double qa, double qb, double qc, double dnn, double d_factor)2 sc_Zq(double qa, double qb, double qc, double lattice_spacing, double lattice_distortion) 3 3 { 4 4 // Equations from Matsuoka 9-10-11, multiplied by |q| … … 16 16 // => exp(a)^2 - 2 cos(d ak) exp(a) + 1) 17 17 // => (exp(a) - 2 cos(d ak)) * exp(a) + 1 18 const double arg = -0.5*square( dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3);18 const double arg = -0.5*square(lattice_spacing*lattice_distortion)*(a1*a1 + a2*a2 + a3*a3); 19 19 const double exp_arg = exp(arg); 20 20 const double Zq = -cube(expm1(2.0*arg)) 21 / ( ((exp_arg - 2.0*cos( dnn*a1))*exp_arg + 1.0)22 * ((exp_arg - 2.0*cos( dnn*a2))*exp_arg + 1.0)23 * ((exp_arg - 2.0*cos( dnn*a3))*exp_arg + 1.0));21 / ( ((exp_arg - 2.0*cos(lattice_spacing*a1))*exp_arg + 1.0) 22 * ((exp_arg - 2.0*cos(lattice_spacing*a2))*exp_arg + 1.0) 23 * ((exp_arg - 2.0*cos(lattice_spacing*a3))*exp_arg + 1.0)); 24 24 25 25 return Zq; … … 28 28 // occupied volume fraction calculated from lattice symmetry and sphere radius 29 29 static double 30 sc_volume_fraction(double radius, double dnn)30 sc_volume_fraction(double radius, double lattice_spacing) 31 31 { 32 return sphere_volume(radius/ dnn);32 return sphere_volume(radius/lattice_spacing); 33 33 } 34 34 … … 41 41 42 42 static double 43 Iq(double q, double dnn,44 double d_factor, double radius,43 Iq(double q, double lattice_spacing, 44 double lattice_distortion, double radius, 45 45 double sld, double solvent_sld) 46 46 { … … 67 67 const double qa = qab*cos_phi; 68 68 const double qb = qab*sin_phi; 69 const double form = sc_Zq(qa, qb, qc, dnn, d_factor);69 const double form = sc_Zq(qa, qb, qc, lattice_spacing, lattice_distortion); 70 70 inner_sum += GAUSS_W[j] * form; 71 71 } … … 77 77 const double Pq = sphere_form(q, radius, sld, solvent_sld); 78 78 79 return sc_volume_fraction(radius, dnn) * Pq * Zq;79 return sc_volume_fraction(radius, lattice_spacing) * Pq * Zq; 80 80 } 81 81 … … 83 83 static double 84 84 Iqabc(double qa, double qb, double qc, 85 double dnn, double d_factor, double radius,85 double lattice_spacing, double lattice_distortion, double radius, 86 86 double sld, double solvent_sld) 87 87 { 88 88 const double q = sqrt(qa*qa + qb*qb + qc*qc); 89 89 const double Pq = sphere_form(q, radius, sld, solvent_sld); 90 const double Zq = sc_Zq(qa, qb, qc, dnn, d_factor);91 return sc_volume_fraction(radius, dnn) * Pq * Zq;90 const double Zq = sc_Zq(qa, qb, qc, lattice_spacing, lattice_distortion); 91 return sc_volume_fraction(radius, lattice_spacing) * Pq * Zq; 92 92 }
Note: See TracChangeset
for help on using the changeset viewer.