- Timestamp:
- Sep 25, 2018 9:41:04 AM (6 years ago)
- Branches:
- master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- ce1eed5
- Parents:
- 12eec1e (diff), 2015f02 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Location:
- doc
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/pd/polydispersity.rst
rd712a0f rd089a00 8 8 .. _polydispersityhelp: 9 9 10 Polydispersity Distributions 11 ---------------------------- 12 13 With some models in sasmodels we can calculate the average intensity for a 14 population of particles that exhibit size and/or orientational 15 polydispersity. The resultant intensity is normalized by the average 16 particle volume such that 10 Polydispersity & Orientational Distributions 11 -------------------------------------------- 12 13 For some models we can calculate the average intensity for a population of 14 particles that possess size and/or orientational (ie, angular) distributions. 15 In SasView we call the former *polydispersity* but use the parameter *PD* to 16 parameterise both. In other words, the meaning of *PD* in a model depends on 17 the actual parameter it is being applied too. 18 19 The resultant intensity is then normalized by the average particle volume such 20 that 17 21 18 22 .. math:: … … 21 25 22 26 where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an 23 average over the sizedistribution $f(x; \bar x, \sigma)$, giving27 average over the distribution $f(x; \bar x, \sigma)$, giving 24 28 25 29 .. math:: … … 30 34 Each distribution is characterized by a center value $\bar x$ or 31 35 $x_\text{med}$, a width parameter $\sigma$ (note this is *not necessarily* 32 the standard deviation, so read the description carefully), the number of 33 sigmas $N_\sigma$ to include from the tails of the distribution, and the 34 number of points used to compute the average. The center of the distribution 35 is set by the value of the model parameter. The meaning of a polydispersity 36 parameter *PD* (not to be confused with a molecular weight distributions 37 in polymer science) in a model depends on the type of parameter it is being 38 applied too. 36 the standard deviation, so read the description of the distribution carefully), 37 the number of sigmas $N_\sigma$ to include from the tails of the distribution, 38 and the number of points used to compute the average. The center of the 39 distribution is set by the value of the model parameter. 39 40 40 41 The distribution width applied to *volume* (ie, shape-describing) parameters 41 42 is relative to the center value such that $\sigma = \mathrm{PD} \cdot \bar x$. 42 However, the distribution width applied to *orientation* (ie, angle-describing)43 parameters is just$\sigma = \mathrm{PD}$.43 However, the distribution width applied to *orientation* parameters is just 44 $\sigma = \mathrm{PD}$. 44 45 45 46 $N_\sigma$ determines how far into the tails to evaluate the distribution, … … 51 52 52 53 Users should note that the averaging computation is very intensive. Applying 53 polydispersion to multiple parameters at the same time or increasing the 54 number of points in the distribution will require patience! However, the 55 calculations are generally more robust with more data points or more angles. 54 polydispersion and/or orientational distributions to multiple parameters at 55 the same time, or increasing the number of points in the distribution, will 56 require patience! However, the calculations are generally more robust with 57 more data points or more angles. 56 58 57 59 The following distribution functions are provided: … … 69 71 Additional distributions are under consideration. 70 72 73 **Beware: when the Polydispersity & Orientational Distribution panel in SasView is** 74 **first opened, the default distribution for all parameters is the Gaussian Distribution.** 75 **This may not be suitable. See Suggested Applications below.** 76 71 77 .. note:: In 2009 IUPAC decided to introduce the new term 'dispersity' to replace 72 78 the term 'polydispersity' (see `Pure Appl. Chem., (2009), 81(2), 73 79 351-353 <http://media.iupac.org/publications/pac/2009/pdf/8102x0351.pdf>`_ 74 in order to make the terminology describing distributions of properties 75 unambiguous. Throughout the SasView documentation we continue to use the 76 term polydispersity because one of the consequences of the IUPAC change is 77 that orientational polydispersity would not meet their new criteria (which 78 requires dispersity to be dimensionless). 80 in order to make the terminology describing distributions of chemical 81 properties unambiguous. However, these terms are unrelated to the 82 proportional size distributions and orientational distributions used in 83 SasView models. 79 84 80 85 Suggested Applications 81 86 ^^^^^^^^^^^^^^^^^^^^^^ 82 87 83 If applying polydispersion to parameters describing particle sizes, use88 If applying polydispersion to parameters describing particle sizes, consider using 84 89 the Lognormal or Schulz distributions. 85 90 86 91 If applying polydispersion to parameters describing interfacial thicknesses 87 or angular orientations, usethe Gaussian or Boltzmann distributions.92 or angular orientations, consider using the Gaussian or Boltzmann distributions. 88 93 89 94 If applying polydispersion to parameters describing angles, use the Uniform … … 332 337 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 333 338 334 Many commercial Dynamic Light Scattering (DLS) instruments produce a size 335 polydispersity parameter, sometimes even given the symbol $p$\ ! This 336 parameter is defined as the relative standard deviation coefficient of 337 variation of the size distribution and is NOT the same as the polydispersity 338 parameters in the Lognormal and Schulz distributions above (though they all 339 related) except when the DLS polydispersity parameter is <0.13. 340 341 .. math:: 342 343 p_{DLS} = \sqrt(\nu / \bar x^2) 344 345 where $\nu$ is the variance of the distribution and $\bar x$ is the mean 346 value of $x$. 339 Several measures of polydispersity abound in Dynamic Light Scattering (DLS) and 340 it should not be assumed that any of the following can be simply equated with 341 the polydispersity *PD* parameter used in SasView. 342 343 The dimensionless **Polydispersity Index (PI)** is a measure of the width of the 344 distribution of autocorrelation function decay rates (*not* the distribution of 345 particle sizes itself, though the two are inversely related) and is defined by 346 ISO 22412:2017 as 347 348 .. math:: 349 350 PI = \mu_{2} / \bar \Gamma^2 351 352 where $\mu_\text{2}$ is the second cumulant, and $\bar \Gamma^2$ is the 353 intensity-weighted average value, of the distribution of decay rates. 354 355 *If the distribution of decay rates is Gaussian* then 356 357 .. math:: 358 359 PI = \sigma^2 / 2\bar \Gamma^2 360 361 where $\sigma$ is the standard deviation, allowing a **Relative Polydispersity (RP)** 362 to be defined as 363 364 .. math:: 365 366 RP = \sigma / \bar \Gamma = \sqrt{2 \cdot PI} 367 368 PI values smaller than 0.05 indicate a highly monodisperse system. Values 369 greater than 0.7 indicate significant polydispersity. 370 371 The **size polydispersity P-parameter** is defined as the relative standard 372 deviation coefficient of variation 373 374 .. math:: 375 376 P = \sqrt\nu / \bar R 377 378 where $\nu$ is the variance of the distribution and $\bar R$ is the mean 379 value of $R$. Here, the product $P \bar R$ is *equal* to the standard 380 deviation of the Lognormal distribution. 381 382 P values smaller than 0.13 indicate a monodisperse system. 347 383 348 384 For more information see: 349 S King, C Washington & R Heenan, *Phys Chem Chem Phys*, (2005), 7, 143 385 386 `ISO 22412:2017, International Standards Organisation (2017) <https://www.iso.org/standard/65410.html>`_. 387 388 `Polydispersity: What does it mean for DLS and Chromatography <http://www.materials-talks.com/blog/2014/10/23/polydispersity-what-does-it-mean-for-dls-and-chromatography/>`_. 389 390 `Dynamic Light Scattering: Common Terms Defined, Whitepaper WP111214. Malvern Instruments (2011) <http://www.biophysics.bioc.cam.ac.uk/wp-content/uploads/2011/02/DLS_Terms_defined_Malvern.pdf>`_. 391 392 S King, C Washington & R Heenan, *Phys Chem Chem Phys*, (2005), 7, 143. 393 394 T Allen, in *Particle Size Measurement*, 4th Edition, Chapman & Hall, London (1990). 350 395 351 396 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ … … 357 402 | 2018-03-20 Steve King 358 403 | 2018-04-04 Steve King 404 | 2018-08-09 Steve King -
doc/guide/plugin.rst
rf796469 r2015f02 423 423 calculations, but instead rely on numerical integration to compute the 424 424 appropriately smeared pattern. 425 426 Each .py file also contains a function:: 427 428 def random(): 429 ... 430 431 This function provides a model-specific random parameter set which shows model 432 features in the USANS to SANS range. For example, core-shell sphere sets the 433 outer radius of the sphere logarithmically in `[20, 20,000]`, which sets the Q 434 value for the transition from flat to falling. It then uses a beta distribution 435 to set the percentage of the shape which is shell, giving a preference for very 436 thin or very thick shells (but never 0% or 100%). Using `-sets=10` in sascomp 437 should show a reasonable variety of curves over the default sascomp q range. 438 The parameter set is returned as a dictionary of `{parameter: value, ...}`. 439 Any model parameters not included in the dictionary will default according to 440 the code in the `_randomize_one()` function from sasmodels/compare.py. 425 441 426 442 Python Models -
doc/guide/scripting.rst
r4aa5dce rbd7630d 10 10 The key functions are :func:`sasmodels.core.load_model` for loading the 11 11 model definition and compiling the kernel and 12 :func:`sasmodels.data.load_data` for calling sasview to load the data. Need 13 the data because that defines the resolution function and the q values to 14 evaluate. If there is no data, then use :func:`sasmodels.data.empty_data1D` 15 or :func:`sasmodels.data.empty_data2D` to create some data with a given $q$. 16 17 Using sasmodels through bumps 18 ============================= 19 20 With the data and the model, you can wrap it in a *bumps* model with 12 :func:`sasmodels.data.load_data` for calling sasview to load the data. 13 14 Preparing data 15 ============== 16 17 Usually you will load data via the sasview loader, with the 18 :func:`sasmodels.data.load_data` function. For example:: 19 20 from sasmodels.data import load_data 21 data = load_data("sasmodels/example/093191_201.dat") 22 23 You may want to apply a data mask, such a beam stop, and trim high $q$:: 24 25 from sasmodels.data import set_beam_stop 26 set_beam_stop(data, qmin, qmax) 27 28 The :func:`sasmodels.data.set_beam_stop` method simply sets the *mask* 29 attribute for the data. 30 31 The data defines the resolution function and the q values to evaluate, so 32 even if you simulating experiments prior to making measurements, you still 33 need a data object for reference. Use :func:`sasmodels.data.empty_data1D` 34 or :func:`sasmodels.data.empty_data2D` to create a container with a 35 given $q$ and $\Delta q/q$. For example:: 36 37 import numpy as np 38 from sasmodels.data import empty_data1D 39 40 # 120 points logarithmically spaced from 0.005 to 0.2, with dq/q = 5% 41 q = np.logspace(np.log10(5e-3), np.log10(2e-1), 120) 42 data = empty_data1D(q, resolution=0.05) 43 44 To use a more realistic model of resolution, or to load data from a file 45 format not understood by SasView, you can use :class:`sasmodels.data.Data1D` 46 or :class:`sasmodels.data.Data2D` directly. The 1D data uses 47 *x*, *y*, *dx* and *dy* for $x = q$ and $y = I(q)$, and 2D data uses 48 *x*, *y*, *z*, *dx*, *dy*, *dz* for $x, y = qx, qy$ and $z = I(qx, qy)$. 49 [Note: internally, the Data2D object uses SasView conventions, 50 *qx_data*, *qy_data*, *data*, *dqx_data*, *dqy_data*, and *err_data*.] 51 52 For USANS data, use 1D data, but set *dxl* and *dxw* attributes to 53 indicate slit resolution:: 54 55 data.dxl = 0.117 56 57 See :func:`sasmodels.resolution.slit_resolution` for details. 58 59 SESANS data is more complicated; if your SESANS format is not supported by 60 SasView you need to define a number of attributes beyond *x*, *y*. For 61 example:: 62 63 SElength = np.linspace(0, 2400, 61) # [A] 64 data = np.ones_like(SElength) 65 err_data = np.ones_like(SElength)*0.03 66 67 class Source: 68 wavelength = 6 # [A] 69 wavelength_unit = "A" 70 class Sample: 71 zacceptance = 0.1 # [A^-1] 72 thickness = 0.2 # [cm] 73 74 class SESANSData1D: 75 #q_zmax = 0.23 # [A^-1] 76 lam = 0.2 # [nm] 77 x = SElength 78 y = data 79 dy = err_data 80 sample = Sample() 81 data = SESANSData1D() 82 83 x, y = ... # create or load sesans 84 data = smd.Data 85 86 The *data* module defines various data plotters as well. 87 88 Using sasmodels directly 89 ======================== 90 91 Once you have a computational kernel and a data object, you can evaluate 92 the model for various parameters using 93 :class:`sasmodels.direct_model.DirectModel`. The resulting object *f* 94 will be callable as *f(par=value, ...)*, returning the $I(q)$ for the $q$ 95 values in the data. For example:: 96 97 import numpy as np 98 from sasmodels.data import empty_data1D 99 from sasmodels.core import load_model 100 from sasmodels.direct_model import DirectModel 101 102 # 120 points logarithmically spaced from 0.005 to 0.2, with dq/q = 5% 103 q = np.logspace(np.log10(5e-3), np.log10(2e-1), 120) 104 data = empty_data1D(q, resolution=0.05) 105 kernel = load_model("ellipsoid) 106 f = DirectModel(data, kernel) 107 Iq = f(radius_polar=100) 108 109 Polydispersity information is set with special parameter names: 110 111 * *par_pd* for polydispersity width, $\Delta p/p$, 112 * *par_pd_n* for the number of points in the distribution, 113 * *par_pd_type* for the distribution type (as a string), and 114 * *par_pd_nsigmas* for the limits of the distribution. 115 116 Using sasmodels through the bumps optimizer 117 =========================================== 118 119 Like DirectModel, you can wrap data and a kernel in a *bumps* model with 21 120 class:`sasmodels.bumps_model.Model` and create an 22 class:`sasmodels.bump _model.Experiment` that you can fit with the *bumps*121 class:`sasmodels.bumps_model.Experiment` that you can fit with the *bumps* 23 122 interface. Here is an example from the *example* directory such as 24 123 *example/model.py*:: … … 75 174 SasViewCom bumps.cli example/model.py --preview 76 175 77 Using sasmodels directly 78 ======================== 79 80 Bumps has a notion of parameter boxes in which you can set and retrieve 81 values. Instead of using bumps, you can create a directly callable function 82 with :class:`sasmodels.direct_model.DirectModel`. The resulting object *f* 83 will be callable as *f(par=value, ...)*, returning the $I(q)$ for the $q$ 84 values in the data. Polydisperse parameters use the same naming conventions 85 as in the bumps model, with e.g., radius_pd being the polydispersity associated 86 with radius. 176 Calling the computation kernel 177 ============================== 87 178 88 179 Getting a simple function that you can call on a set of q values and return -
doc/rst_prolog
r30b60d2 r2c12061 9 9 .. |Ang^-3| replace:: |Ang|\ :sup:`-3` 10 10 .. |Ang^-4| replace:: |Ang|\ :sup:`-4` 11 .. |nm^-1| replace:: nm\ :sup:`-1` 11 12 .. |cm^-1| replace:: cm\ :sup:`-1` 12 13 .. |cm^2| replace:: cm\ :sup:`2`
Note: See TracChangeset
for help on using the changeset viewer.