Changeset 9f59333 in sasview for src/sas/sascalc/data_util/qsmearing.py
- Timestamp:
- Apr 10, 2017 9:45:27 AM (8 years ago)
- Branches:
- costrafo411
- Children:
- 7b15990
- Parents:
- ba91f71 (diff), d26f025 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sascalc/data_util/qsmearing.py
rba91f71 r9f59333 9 9 #copyright 2008, University of Tennessee 10 10 ###################################################################### 11 import numpy12 11 import math 13 12 import logging … … 43 42 # This checks for 2D data (does not throw exception because fail is common) 44 43 if data.__class__.__name__ not in ['Data1D', 'Theory1D']: 45 if data ==None:44 if data is None: 46 45 return None 47 elif data.dqx_data == None or data.dqy_data ==None:46 elif data.dqx_data is None or data.dqy_data is None: 48 47 return None 49 48 return PySmear2D(data) … … 60 59 if data.dx is not None and data.isSesans: 61 60 #if data.dx[0] > 0.0: 62 if n umpy.size(data.dx[data.dx <= 0]) == 0:61 if np.size(data.dx[data.dx <= 0]) == 0: 63 62 _found_sesans = True 64 63 # if data.dx[0] <= 0.0: 65 if n umpy.size(data.dx[data.dx <= 0]) > 0:64 if np.size(data.dx[data.dx <= 0]) > 0: 66 65 raise ValueError('one or more of your dx values are negative, please check the data file!') 67 66 … … 126 125 self.resolution = resolution 127 126 if offset is None: 128 offset = n umpy.searchsorted(self.resolution.q_calc, self.resolution.q[0])127 offset = np.searchsorted(self.resolution.q_calc, self.resolution.q[0]) 129 128 self.offset = offset 130 129 … … 140 139 """ 141 140 q_calc = self.resolution.q_calc 142 if isinstance(q_calc, tuple): 143 # We are 2D -> 1D! 144 iq_calc = self.model.evalDistribution(q_calc) 145 else: 146 if last_bin is None: last_bin = len(iq_in) 147 start, end = first_bin + self.offset, last_bin + self.offset 148 iq_calc = numpy.empty_like(q_calc) 149 if start > 0: 150 iq_calc[:start] = self.model.evalDistribution(q_calc[:start]) 151 if end+1 < len(q_calc): 152 iq_calc[end+1:] = self.model.evalDistribution(q_calc[end+1:]) 153 iq_calc[start:end+1] = iq_in[first_bin:last_bin+1] 141 iq_calc = np.empty_like(q_calc) 142 if start > 0: 143 iq_calc[:start] = self.model.evalDistribution(q_calc[:start]) 144 if end+1 < len(q_calc): 145 iq_calc[end+1:] = self.model.evalDistribution(q_calc[end+1:]) 146 iq_calc[start:end+1] = iq_in[first_bin:last_bin+1] 154 147 smeared = self.resolution.apply(iq_calc) 155 148 return smeared … … 166 159 """ 167 160 q = self.resolution.q 168 first = n umpy.searchsorted(q, q_min)169 last = n umpy.searchsorted(q, q_max)161 first = np.searchsorted(q, q_min) 162 last = np.searchsorted(q, q_max) 170 163 return first, min(last,len(q)-1) 171 164 … … 256 249 val = self.model.evalDistribution(q_calc) 257 250 return val 258
Note: See TracChangeset
for help on using the changeset viewer.