Ignore:
Timestamp:
Mar 26, 2017 11:33:16 PM (8 years ago)
Author:
andyfaff
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
ed2276f
Parents:
9146ed9
Message:

MAINT: import numpy as np

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sascalc/dataloader/data_info.py

    r2ffe241 r9a5097c  
    2323#from sas.guitools.plottables import Data1D as plottable_1D 
    2424from sas.sascalc.data_util.uncertainty import Uncertainty 
    25 import numpy 
     25import numpy as np 
    2626import math 
    2727 
     
    5151 
    5252    def __init__(self, x, y, dx=None, dy=None, dxl=None, dxw=None, lam=None, dlam=None): 
    53         self.x = numpy.asarray(x) 
    54         self.y = numpy.asarray(y) 
     53        self.x = np.asarray(x) 
     54        self.y = np.asarray(y) 
    5555        if dx is not None: 
    56             self.dx = numpy.asarray(dx) 
     56            self.dx = np.asarray(dx) 
    5757        if dy is not None: 
    58             self.dy = numpy.asarray(dy) 
     58            self.dy = np.asarray(dy) 
    5959        if dxl is not None: 
    60             self.dxl = numpy.asarray(dxl) 
     60            self.dxl = np.asarray(dxl) 
    6161        if dxw is not None: 
    62             self.dxw = numpy.asarray(dxw) 
     62            self.dxw = np.asarray(dxw) 
    6363        if lam is not None: 
    64             self.lam = numpy.asarray(lam) 
     64            self.lam = np.asarray(lam) 
    6565        if dlam is not None: 
    66             self.dlam = numpy.asarray(dlam) 
     66            self.dlam = np.asarray(dlam) 
    6767 
    6868    def xaxis(self, label, unit): 
     
    109109                 qy_data=None, q_data=None, mask=None, 
    110110                 dqx_data=None, dqy_data=None): 
    111         self.data = numpy.asarray(data) 
    112         self.qx_data = numpy.asarray(qx_data) 
    113         self.qy_data = numpy.asarray(qy_data) 
    114         self.q_data = numpy.asarray(q_data) 
    115         self.mask = numpy.asarray(mask) 
    116         self.err_data = numpy.asarray(err_data) 
     111        self.data = np.asarray(data) 
     112        self.qx_data = np.asarray(qx_data) 
     113        self.qy_data = np.asarray(qy_data) 
     114        self.q_data = np.asarray(q_data) 
     115        self.mask = np.asarray(mask) 
     116        self.err_data = np.asarray(err_data) 
    117117        if dqx_data is not None: 
    118             self.dqx_data = numpy.asarray(dqx_data) 
     118            self.dqx_data = np.asarray(dqx_data) 
    119119        if dqy_data is not None: 
    120             self.dqy_data = numpy.asarray(dqy_data) 
     120            self.dqy_data = np.asarray(dqy_data) 
    121121 
    122122    def xaxis(self, label, unit): 
     
    734734        """ 
    735735        def _check(v): 
    736             if (v.__class__ == list or v.__class__ == numpy.ndarray) \ 
     736            if (v.__class__ == list or v.__class__ == np.ndarray) \ 
    737737                and len(v) > 0 and min(v) > 0: 
    738738                return True 
     
    752752 
    753753        if clone is None or not issubclass(clone.__class__, Data1D): 
    754             x = numpy.zeros(length) 
    755             dx = numpy.zeros(length) 
    756             y = numpy.zeros(length) 
    757             dy = numpy.zeros(length) 
    758             lam = numpy.zeros(length) 
    759             dlam = numpy.zeros(length) 
     754            x = np.zeros(length) 
     755            dx = np.zeros(length) 
     756            y = np.zeros(length) 
     757            dy = np.zeros(length) 
     758            lam = np.zeros(length) 
     759            dlam = np.zeros(length) 
    760760            clone = Data1D(x, y, lam=lam, dx=dx, dy=dy, dlam=dlam) 
    761761 
     
    806806            dy_other = other.dy 
    807807            if other.dy == None or (len(other.dy) != len(other.y)): 
    808                 dy_other = numpy.zeros(len(other.y)) 
     808                dy_other = np.zeros(len(other.y)) 
    809809 
    810810        # Check that we have errors, otherwise create zero vector 
    811811        dy = self.dy 
    812812        if self.dy == None or (len(self.dy) != len(self.y)): 
    813             dy = numpy.zeros(len(self.y)) 
     813            dy = np.zeros(len(self.y)) 
    814814 
    815815        return dy, dy_other 
     
    824824            result.dxw = None 
    825825        else: 
    826             result.dxw = numpy.zeros(len(self.x)) 
     826            result.dxw = np.zeros(len(self.x)) 
    827827        if self.dxl == None: 
    828828            result.dxl = None 
    829829        else: 
    830             result.dxl = numpy.zeros(len(self.x)) 
     830            result.dxl = np.zeros(len(self.x)) 
    831831 
    832832        for i in range(len(self.x)): 
     
    886886            result.dy = None 
    887887        else: 
    888             result.dy = numpy.zeros(len(self.x) + len(other.x)) 
     888            result.dy = np.zeros(len(self.x) + len(other.x)) 
    889889        if self.dx == None or other.dx is None: 
    890890            result.dx = None 
    891891        else: 
    892             result.dx = numpy.zeros(len(self.x) + len(other.x)) 
     892            result.dx = np.zeros(len(self.x) + len(other.x)) 
    893893        if self.dxw == None or other.dxw is None: 
    894894            result.dxw = None 
    895895        else: 
    896             result.dxw = numpy.zeros(len(self.x) + len(other.x)) 
     896            result.dxw = np.zeros(len(self.x) + len(other.x)) 
    897897        if self.dxl == None or other.dxl is None: 
    898898            result.dxl = None 
    899899        else: 
    900             result.dxl = numpy.zeros(len(self.x) + len(other.x)) 
    901  
    902         result.x = numpy.append(self.x, other.x) 
     900            result.dxl = np.zeros(len(self.x) + len(other.x)) 
     901 
     902        result.x = np.append(self.x, other.x) 
    903903        #argsorting 
    904         ind = numpy.argsort(result.x) 
     904        ind = np.argsort(result.x) 
    905905        result.x = result.x[ind] 
    906         result.y = numpy.append(self.y, other.y) 
     906        result.y = np.append(self.y, other.y) 
    907907        result.y = result.y[ind] 
    908908        if result.dy != None: 
    909             result.dy = numpy.append(self.dy, other.dy) 
     909            result.dy = np.append(self.dy, other.dy) 
    910910            result.dy = result.dy[ind] 
    911911        if result.dx is not None: 
    912             result.dx = numpy.append(self.dx, other.dx) 
     912            result.dx = np.append(self.dx, other.dx) 
    913913            result.dx = result.dx[ind] 
    914914        if result.dxw is not None: 
    915             result.dxw = numpy.append(self.dxw, other.dxw) 
     915            result.dxw = np.append(self.dxw, other.dxw) 
    916916            result.dxw = result.dxw[ind] 
    917917        if result.dxl is not None: 
    918             result.dxl = numpy.append(self.dxl, other.dxl) 
     918            result.dxl = np.append(self.dxl, other.dxl) 
    919919            result.dxl = result.dxl[ind] 
    920920        return result 
     
    970970 
    971971        if clone is None or not issubclass(clone.__class__, Data2D): 
    972             data = numpy.zeros(length) 
    973             err_data = numpy.zeros(length) 
    974             qx_data = numpy.zeros(length) 
    975             qy_data = numpy.zeros(length) 
    976             q_data = numpy.zeros(length) 
    977             mask = numpy.zeros(length) 
     972            data = np.zeros(length) 
     973            err_data = np.zeros(length) 
     974            qx_data = np.zeros(length) 
     975            qy_data = np.zeros(length) 
     976            q_data = np.zeros(length) 
     977            mask = np.zeros(length) 
    978978            dqx_data = None 
    979979            dqy_data = None 
     
    10311031            if other.err_data == None or \ 
    10321032                (len(other.err_data) != len(other.data)): 
    1033                 err_other = numpy.zeros(len(other.data)) 
     1033                err_other = np.zeros(len(other.data)) 
    10341034 
    10351035        # Check that we have errors, otherwise create zero vector 
     
    10371037        if self.err_data == None or \ 
    10381038            (len(self.err_data) != len(self.data)): 
    1039             err = numpy.zeros(len(other.data)) 
     1039            err = np.zeros(len(other.data)) 
    10401040        return err, err_other 
    10411041 
     
    10491049        # First, check the data compatibility 
    10501050        dy, dy_other = self._validity_check(other) 
    1051         result = self.clone_without_data(numpy.size(self.data)) 
     1051        result = self.clone_without_data(np.size(self.data)) 
    10521052        if self.dqx_data == None or self.dqy_data == None: 
    10531053            result.dqx_data = None 
    10541054            result.dqy_data = None 
    10551055        else: 
    1056             result.dqx_data = numpy.zeros(len(self.data)) 
    1057             result.dqy_data = numpy.zeros(len(self.data)) 
    1058         for i in range(numpy.size(self.data)): 
     1056            result.dqx_data = np.zeros(len(self.data)) 
     1057            result.dqy_data = np.zeros(len(self.data)) 
     1058        for i in range(np.size(self.data)): 
    10591059            result.data[i] = self.data[i] 
    10601060            if self.err_data is not None and \ 
    1061                 numpy.size(self.data) == numpy.size(self.err_data): 
     1061                            np.size(self.data) == np.size(self.err_data): 
    10621062                result.err_data[i] = self.err_data[i] 
    10631063            if self.dqx_data is not None: 
     
    11181118        # First, check the data compatibility 
    11191119        self._validity_check_union(other) 
    1120         result = self.clone_without_data(numpy.size(self.data) + \ 
    1121                                          numpy.size(other.data)) 
     1120        result = self.clone_without_data(np.size(self.data) + \ 
     1121                                         np.size(other.data)) 
    11221122        result.xmin = self.xmin 
    11231123        result.xmax = self.xmax 
     
    11291129            result.dqy_data = None 
    11301130        else: 
    1131             result.dqx_data = numpy.zeros(len(self.data) + \ 
    1132                                          numpy.size(other.data)) 
    1133             result.dqy_data = numpy.zeros(len(self.data) + \ 
    1134                                          numpy.size(other.data)) 
    1135  
    1136         result.data = numpy.append(self.data, other.data) 
    1137         result.qx_data = numpy.append(self.qx_data, other.qx_data) 
    1138         result.qy_data = numpy.append(self.qy_data, other.qy_data) 
    1139         result.q_data = numpy.append(self.q_data, other.q_data) 
    1140         result.mask = numpy.append(self.mask, other.mask) 
     1131            result.dqx_data = np.zeros(len(self.data) + \ 
     1132                                       np.size(other.data)) 
     1133            result.dqy_data = np.zeros(len(self.data) + \ 
     1134                                       np.size(other.data)) 
     1135 
     1136        result.data = np.append(self.data, other.data) 
     1137        result.qx_data = np.append(self.qx_data, other.qx_data) 
     1138        result.qy_data = np.append(self.qy_data, other.qy_data) 
     1139        result.q_data = np.append(self.q_data, other.q_data) 
     1140        result.mask = np.append(self.mask, other.mask) 
    11411141        if result.err_data is not None: 
    1142             result.err_data = numpy.append(self.err_data, other.err_data) 
     1142            result.err_data = np.append(self.err_data, other.err_data) 
    11431143        if self.dqx_data is not None: 
    1144             result.dqx_data = numpy.append(self.dqx_data, other.dqx_data) 
     1144            result.dqx_data = np.append(self.dqx_data, other.dqx_data) 
    11451145        if self.dqy_data is not None: 
    1146             result.dqy_data = numpy.append(self.dqy_data, other.dqy_data) 
     1146            result.dqy_data = np.append(self.dqy_data, other.dqy_data) 
    11471147 
    11481148        return result 
Note: See TracChangeset for help on using the changeset viewer.