Changeset 98ce141 in sasmodels


Ignore:
Timestamp:
Nov 27, 2016 4:25:24 PM (8 years ago)
Author:
butler
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
07300ea
Parents:
797a8e3
Message:

correct normalization problem in stacked_disk fixes #789. Also heavy
cleanup and correction of equations to match code as well as
standardization of the model documentation addressing #646.

Location:
sasmodels/models
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/stacked_disks.c

    r3ac4e1b r98ce141  
    7171    // loop for the structure factor S(q) 
    7272    double qd_cos_alpha = q*d*cos_alpha; 
     73    //d*cos_alpha is the projection of d onto q (in other words the component 
     74    //of d that is parallel to q. 
    7375    double debye_arg = -0.5*square(qd_cos_alpha*sigma_dnn); 
    7476    double sq=0.0; 
     
    7981    sq = 1.0 + 2.0*sq/n_stacking; 
    8082 
    81     return pq * sq; 
     83    return pq * sq * n_stacking; 
     84    // volume normalization should be per disk not per stack but form_volume 
     85    // is per stack so correct here for now.  Could change form_volume but 
     86    // if one ever wants to use P*S we need the ER based on the total volume 
    8287} 
    8388 
  • sasmodels/models/stacked_disks.py

    ref5a314 r98ce141  
    11r""" 
    2 This model provides the form factor, $P(q)$, for stacked discs (tactoids) 
    3 with a core/layer structure where the form factor is normalized by the volume 
    4 of the cylinder. Assuming the next neighbor distance (d-spacing) in a stack 
    5 of parallel discs obeys a Gaussian distribution, a structure factor $S(q)$ 
    6 proposed by Kratky and Porod in 1949 is used in this function. 
    7  
    8 Note that the resolution smearing calculation uses 76 Gauss quadrature points 
    9 to properly smear the model since the function is HIGHLY oscillatory, 
    10 especially around the q-values that correspond to the repeat distance of 
    11 the layers. 
    12  
    13 The 2D scattering intensity is the same as 1D, regardless of the orientation 
    14 of the q vector which is defined as 
    15  
    16 .. math:: q = \sqrt{q_x^2 + q_y^2} 
    17  
    182Definition 
    193---------- 
    204 
     5This model provides the form factor, $P(q)$, for stacked discs (tactoids) 
     6with a core/layer structure which is constructed itself as $P(q) S(Q)$ 
     7multiplying a $P(q)$ for individual core/layer disks by a structure factor 
     8$S(q)$ proposed by Kratky and Porod in 1949\ [#CIT1949]_ assuming the next 
     9neighbor distance (d-spacing) in the stack of parallel discs obeys a Gaussian 
     10distribution. As such the normalization of this "composite" form factor is 
     11relative to the individual disk volume, not the volume of the stack of disks. 
     12This model is appropriate for example for non non exfoliated clay particles such 
     13as Laponite. 
     14 
    2115.. figure:: img/stacked_disks_geometry.png 
    2216 
     17   Geometry of a single core/layer disk 
     18 
    2319The scattered intensity $I(q)$ is calculated as 
    2420 
     
    2622 
    2723    I(q) = N\int_{0}^{\pi /2}\left[ \Delta \rho_t 
    28     \left( V_t f_t(q) - V_c f_c(q)\right) + \Delta \rho_c V_c f_c(q) 
    29     \right]^2 S(q)\sin{\alpha}\ d\alpha + \text{background} 
     24    \left( V_t f_t(q,\alpha) - V_c f_c(q,\alpha)\right) + \Delta 
     25    \rho_c V_c f_c(q,\alpha)\right]^2 S(q,\alpha)\sin{\alpha}\ d\alpha 
     26    + \text{background} 
    3027 
    3128where the contrast 
     
    3532    \Delta \rho_i = \rho_i - \rho_\text{solvent} 
    3633 
    37 and $N$ is the number of discs per unit volume, 
    38 $\alpha$ is the angle between the axis of the disc and $q$, 
    39 and $V_t$ and $V_c$ are the total volume and the core volume of 
    40 a single disc, respectively. 
    41  
    42 .. math:: 
    43  
    44     \left\langle f_{t}^2(q)\right\rangle_{\alpha} = 
    45     \int_{0}^{\pi/2}\left[ 
     34and $N$ is the number of individual (single) discs per unit volume, $\alpha$ is 
     35the angle between the axis of the disc and $q$, and $V_t$ and $V_c$ are the 
     36total volume and the core volume of a single disc, respectively, and 
     37 
     38.. math:: 
     39 
     40    f_t(q,\alpha) = 
    4641    \left(\frac{\sin(q(d+h)\cos{\alpha})}{q(d+h)\cos{\alpha}}\right) 
    4742    \left(\frac{2J_1(qR\sin{\alpha})}{qR\sin{\alpha}} \right) 
    48     \right]^2 \sin{\alpha}\ d\alpha 
    49  
    50     \left\langle f_{c}^2(q)\right\rangle_{\alpha} = 
    51     \int_{0}^{\pi/2}\left[ 
     43 
     44    f_c(q,\alpha) = 
    5245    \left(\frac{\sin(qh)\cos{\alpha})}{qh\cos{\alpha}}\right) 
    5346    \left(\frac{2J_1(qR\sin{\alpha})}{qR\sin{\alpha}}\right) 
    54     \right]^2 \sin{\alpha}\ d\alpha 
    5547 
    5648where $d$ = thickness of the layer (*thick_layer*), 
     
    5951.. math:: 
    6052 
    61     S(q) = 1 + \frac{1}{2}\sum_{k=1}^n(n-k)\cos{(kDq\cos{\alpha})} 
    62     \exp\left[ -k(q\cos{\alpha})^2\sigma_d/2\right] 
     53    S(q,\alpha) = 1 + \frac{1}{2}\sum_{k=1}^n(n-k)\cos{(kDq\cos{\alpha})} 
     54    \exp\left[ -k(q)^2(D\cos{\alpha}~\sigma_d)^2/2\right] 
    6355 
    6456where $n$ is the total number of the disc stacked (*n_stacking*), 
    6557$D = 2(d+h)$ is the next neighbor center-to-center distance (d-spacing), 
    6658and $\sigma_d$ = the Gaussian standard deviation of the d-spacing (*sigma_d*). 
     59Note that $D\cos(\alpha)$ is the component of $D$ parallel to $q$ and the last 
     60term in the equation above is effectively a Debye-Waller factor term.  
    6761 
    6862.. note:: 
    69     Each assembly in the stack is layer/core/layer, so the spacing of the 
     63 
     64    1. Each assembly in the stack is layer/core/layer, so the spacing of the 
    7065    cores is core plus two layers. The 2nd virial coefficient of the cylinder 
    7166    is calculated based on the *radius* and *length* 
     
    7469    is applied. 
    7570 
     71    2. the resolution smearing calculation uses 76 Gaussian quadrature points 
     72    to properly smear the model since the function is HIGHLY oscillatory, 
     73    especially around the q-values that correspond to the repeat distance of 
     74    the layers. 
     75 
    7676To provide easy access to the orientation of the stacked disks, we define 
    7777the axis of the cylinder using two angles $\theta$ and $\varphi$. 
     
    7979.. figure:: img/cylinder_angle_definition.jpg 
    8080 
    81     Examples of the angles against 
    82     the detector plane. 
    83  
    84  
    85 Our model uses the form factor calculations implemented in a c-library provided 
    86 by the NIST Center for Neutron Research (Kline, 2006) 
     81    Examples of the angles against the detector plane. 
     82 
     83 
     84Our model is derived from the form factor calculations implemented in a 
     85c-library provided by the NIST Center for Neutron Research 
     86(Kline, 2006)\ [#CIT_Kline]_ 
    8787 
    8888References 
    8989---------- 
    9090 
    91 A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, 
    92 John Wiley and Sons, New York, 1955 
    93  
    94 O Kratky and G Porod, *J. Colloid Science*, 4, (1949) 35 
    95  
    96 J S Higgins and H C Benoit, *Polymers and Neutron Scattering*, 
    97 Clarendon, Oxford, 1994 
    98  
    99 **Author:** NIST IGOR/DANSE **on:** pre 2010 
    100  
    101 **Last Modified by:** Piotr Rozyczko **on:** February 18, 2016 
    102  
    103 **Last Reviewed by:** Richard Heenan **on:** March 22, 2016 
     91.. [#CIT1949] O Kratky and G Porod, *J. Colloid Science*, 4, (1949) 35 
     92.. [#CIT_Kline] S R Kline, *J Appl. Cryst.*, 39 (2006) 895 
     93.. [#] J S Higgins and H C Benoit, *Polymers and Neutron Scattering*, 
     94   Clarendon, Oxford, 1994 
     95.. [#] A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, 
     96   John Wiley and Sons, New York, 1955 
     97 
     98Authorship and Verification 
     99---------------------------- 
     100 
     101* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
     102* **Last Modified by:** Paul Butler and Paul Kienzle **on:** November 26, 2016 
     103* **Last Reviewed by:** Paul Butler and Paul Kienzle **on:** November 26, 2016 
    104104""" 
    105105 
     
    107107 
    108108name = "stacked_disks" 
    109 title = "" 
     109title = "Form factor for a stacked set of non exfoliated core/shell disks" 
    110110description = """\ 
    111111    One layer of disk consists of a core, a top layer, and a bottom layer. 
Note: See TracChangeset for help on using the changeset viewer.