- Timestamp:
- Apr 10, 2014 6:05:28 PM (11 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- 90f49a8
- Parents:
- 6fe5100
- Location:
- src/sans/fit
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sans/fit/AbstractFitEngine.py
r6fe5100 r95d58d3 58 58 Fit was aborted. 59 59 """ 60 61 # TODO: not sure how these are used, but they are needed for running the fit 62 def update_fit(self, last=False): pass 63 def set_result(self, result=None): self.result = result 60 64 61 65 class Model: … … 217 221 """ 218 222 return self.qmin, self.qmax 219 223 224 def size(self): 225 """ 226 Number of measurement points in data set after masking, etc. 227 """ 228 return len(self.x) 229 220 230 def residuals(self, fn): 221 231 """ … … 259 269 def __init__(self, sans_data2d, data=None, err_data=None): 260 270 Data2D.__init__(self, data=data, err_data=err_data) 261 """ 262 Data can be initital with a data (sans plottable) 263 or with vectors. 264 """ 271 # Data can be initialized with a sans plottable or with vectors. 265 272 self.res_err_image = [] 266 self.num_points = data.size273 self.num_points = 0 # will be set by set_data 267 274 self.idx = [] 268 275 self.qmin = None … … 306 313 self.idx = (self.idx) & (self.mask) 307 314 self.idx = (self.idx) & (numpy.isfinite(self.data)) 315 self.num_points = numpy.sum(self.idx) 308 316 309 317 def set_smearer(self, smearer): … … 339 347 """ 340 348 return self.qmin, self.qmax 341 349 350 def size(self): 351 """ 352 Number of measurement points in data set after masking, etc. 353 """ 354 return numpy.sum(self.idx) 355 342 356 def residuals(self, fn): 343 357 """ … … 410 424 raise ValueError, "AbstractFitEngine: Need to set model to fit" 411 425 412 new_model = model413 426 if not issubclass(model.__class__, Model): 414 new_model = Model(model, data) 415 427 model = Model(model, data) 428 429 sasmodel = model.model 416 430 if len(constraints) > 0: 417 431 for constraint in constraints: 418 432 name, value = constraint 419 433 try: 420 new_model.parameterset[str(name)].set(str(value))434 model.parameterset[str(name)].set(str(value)) 421 435 except: 422 436 msg = "Fit Engine: Error occurs when setting the constraint" … … 427 441 temp = [] 428 442 for item in pars: 429 if item in new_model.model.getParamList():443 if item in sasmodel.getParamList(): 430 444 temp.append(item) 431 445 self.param_list.append(item) … … 433 447 434 448 msg = "wrong parameter %s used " % str(item) 435 msg += "to set model %s. Choose " % str( new_model.model.name)449 msg += "to set model %s. Choose " % str(sasmodel.name) 436 450 msg += "parameter name within %s" % \ 437 str( new_model.model.getParamList())451 str(sasmodel.getParamList()) 438 452 raise ValueError, msg 439 453 440 454 #A fitArrange is already created but contains data_list only at id 441 455 if self.fit_arrange_dict.has_key(id): 442 self.fit_arrange_dict[id].set_model( new_model)456 self.fit_arrange_dict[id].set_model(model) 443 457 self.fit_arrange_dict[id].pars = pars 444 458 else: 445 459 #no fitArrange object has been create with this id 446 460 fitproblem = FitArrange() 447 fitproblem.set_model( new_model)461 fitproblem.set_model(model) 448 462 fitproblem.pars = pars 449 463 self.fit_arrange_dict[id] = fitproblem 450 464 vals = [] 451 465 for name in pars: 452 vals.append( new_model.model.getParam(name))466 vals.append(sasmodel.getParam(name)) 453 467 self.fit_arrange_dict[id].vals = vals 454 468 else: … … 634 648 return "No results" 635 649 636 pars = enumerate(self.model.model.getParamList()) 650 sasmodel = self.model.model 651 pars = enumerate(sasmodel.getParamList()) 637 652 msg1 = "[Iteration #: %s ]" % self.iterations 638 653 msg3 = "=== goodness of fit: %s ===" % (str(self.fitness)) 639 msg2 = ["P%-3d %s......|.....%s" % (i, v, s elf.model.model.getParam(v))654 msg2 = ["P%-3d %s......|.....%s" % (i, v, sasmodel.getParam(v)) 640 655 for i,v in pars if v in self.param_list] 641 656 msg = [msg1, msg3] + msg2 … … 645 660 """ 646 661 """ 647 print s elf662 print str(self) -
src/sans/fit/BumpsFitting.py
r6fe5100 r95d58d3 3 3 """ 4 4 import sys 5 import copy6 5 7 6 import numpy … … 13 12 from sans.fit.AbstractFitEngine import FResult 14 13 15 class Sa nsAssembly(object):14 class SasProblem(object): 16 15 """ 17 Sans Assembly class a class wrapper to be call in optimizer.leastsq method16 Wrap the SAS model in a form that can be understood by bumps. 18 17 """ 19 def __init__(self, param list, model=None, data=None, fitresult=None,18 def __init__(self, param_list, model=None, data=None, fitresult=None, 20 19 handler=None, curr_thread=None, msg_q=None): 21 20 """ … … 25 24 self.model = model 26 25 self.data = data 27 self.param list = paramlist26 self.param_list = param_list 28 27 self.msg_q = msg_q 29 28 self.curr_thread = curr_thread … … 37 36 @property 38 37 def dof(self): 39 return self.data.num_points - len(self.param list)38 return self.data.num_points - len(self.param_list) 40 39 41 40 def summarize(self): 42 return "summarize" 43 44 def nllf(self, pvec=None): 45 residuals = self.residuals(pvec) 41 """ 42 Return a stylized list of parameter names and values with range bars 43 suitable for printing. 44 """ 45 output = [] 46 bounds = self.bounds() 47 for i,p in enumerate(self.getp()): 48 name = self.param_list[i] 49 low,high = bounds[:,i] 50 range = ",".join((("[%g"%low if numpy.isfinite(low) else "(-inf"), 51 ("%g]"%high if numpy.isfinite(high) else "inf)"))) 52 if not numpy.isfinite(p): 53 bar = "*invalid* " 54 else: 55 bar = ['.']*10 56 if numpy.isfinite(high-low): 57 position = int(9.999999999 * float(p-low)/float(high-low)) 58 if position < 0: bar[0] = '<' 59 elif position > 9: bar[9] = '>' 60 else: bar[position] = '|' 61 bar = "".join(bar) 62 output.append("%40s %s %10g in %s"%(name,bar,p,range)) 63 return "\n".join(output) 64 65 def nllf(self, p=None): 66 residuals = self.residuals(p) 46 67 return 0.5*numpy.sum(residuals**2) 47 68 48 def setp(self, params): 49 self.model.set_params(self.paramlist, params) 69 def setp(self, p): 70 for k,v in zip(self.param_list, p): 71 self.model.setParam(k,v) 72 #self.model.set_params(self.param_list, params) 50 73 51 74 def getp(self): 52 return numpy.asarray(self.model.get_params(self.paramlist)) 75 return numpy.array([self.model.getParam(k) for k in self.param_list]) 76 #return numpy.asarray(self.model.get_params(self.param_list)) 53 77 54 78 def bounds(self): 55 return numpy.array([self._getrange(p) for p in self.param list]).T79 return numpy.array([self._getrange(p) for p in self.param_list]).T 56 80 57 81 def labels(self): 58 return self.param list82 return self.param_list 59 83 60 84 def _getrange(self, p): … … 63 87 return the range of parameter 64 88 """ 65 lo, hi = self.model. model.details[p][1:3]89 lo, hi = self.model.details[p][1:3] 66 90 if lo is None: lo = -numpy.inf 67 91 if hi is None: hi = numpy.inf … … 69 93 70 94 def randomize(self, n): 71 p vec= self.getp()95 p = self.getp() 72 96 # since randn is symmetric and random, doesn't matter 73 97 # point value is negative. 74 98 # TODO: throw in bounds checking! 75 return numpy.random.randn(n, len(self.param list))*pvec + pvec99 return numpy.random.randn(n, len(self.param_list))*p + p 76 100 77 101 def chisq(self): … … 84 108 85 109 """ 86 total = 0 87 for item in self.res: 88 total += item * item 89 if len(self.res) == 0: 90 return None 91 return total / len(self.res) 110 return numpy.sum(self.res**2)/self.dof 92 111 93 112 def residuals(self, params=None): … … 99 118 #import thread 100 119 #print "params", params 101 self.res, self.theory = self.data.residuals(self.model.eval) 102 120 self.res, self.theory = self.data.residuals(self.model.evalDistribution) 121 122 # TODO: this belongs in monitor not residuals calculation 103 123 if self.fitresult is not None: 104 self.fitresult.set_model(model=self.model)124 #self.fitresult.set_model(model=self.model) 105 125 self.fitresult.residuals = self.res+0 106 126 self.fitresult.iterations += 1 … … 109 129 #fitness = self.chisq(params=params) 110 130 fitness = self.chisq() 111 self.fitresult.p vec= params131 self.fitresult.p = params 112 132 self.fitresult.set_fitness(fitness=fitness) 113 133 if self.msg_q is not None: … … 131 151 __call__ = residuals 132 152 133 def check_param_range(self):153 def _DEAD_check_param_range(self): 134 154 """ 135 155 Check the lower and upper bound of the parameter value … … 142 162 is_outofbound = False 143 163 # loop through the fit parameters 144 model = self.model .model145 for p in self.param list:164 model = self.model 165 for p in self.param_list: 146 166 value = model.getParam(p) 147 167 low,high = model.details[p][1:3] … … 196 216 raise RuntimeError, msg 197 217 elif len(fitproblem) == 0 : 198 raise RuntimeError, "No Assembly scheduled for Scipyfitting."218 raise RuntimeError, "No problem scheduled for fitting." 199 219 model = fitproblem[0].get_model() 200 220 if reset_flag: … … 203 223 ind = fitproblem[0].pars.index(name) 204 224 model.setParam(name, fitproblem[0].vals[ind]) 205 listdata = []206 225 listdata = fitproblem[0].get_data() 207 226 # Concatenate dList set (contains one or more data)before fitting … … 209 228 210 229 self.curr_thread = curr_thread 211 ftol = ftol212 230 213 231 result = FResult(model=model, data=data, param_list=self.param_list) … … 217 235 if handler is not None: 218 236 handler.set_result(result=result) 219 functor = SansAssembly(paramlist=self.param_list,220 model=model,221 222 223 224 225 237 problem = SasProblem(param_list=self.param_list, 238 model=model.model, 239 data=data, 240 handler=handler, 241 fitresult=result, 242 curr_thread=curr_thread, 243 msg_q=msg_q) 226 244 try: 227 run_bumps(functor, result) 245 #run_bumps(problem, result, ftol) 246 run_scipy(problem, result, ftol) 228 247 except: 229 248 if hasattr(sys, 'last_type') and sys.last_type == KeyboardInterrupt: … … 245 264 return [result] 246 265 247 def run_bumps(problem, result ):266 def run_bumps(problem, result, ftol): 248 267 fitopts = fitters.FIT_OPTIONS[fitters.FIT_DEFAULT] 249 fitdriver = fitters.FitDriver(fitopts.fitclass, problem=problem, 250 abort_test=lambda: False, **fitopts.options) 268 fitclass = fitopts.fitclass 269 options = fitopts.options.copy() 270 options['ftol'] = ftol 271 fitdriver = fitters.FitDriver(fitclass, problem=problem, 272 abort_test=lambda: False, **options) 251 273 mapper = SerialMapper 252 274 fitdriver.mapper = mapper.start_mapper(problem, None) … … 256 278 import traceback; traceback.print_exc() 257 279 raise 258 mapper.stop_mapper(fitdriver.mapper) 259 fitdriver.show() 260 #fitdriver.plot() 261 result.fitness = fbest * 2. / len(result.pars) 262 result.stderr = numpy.ones(len(result.pars)) 263 result.pvec = best 280 finally: 281 mapper.stop_mapper(fitdriver.mapper) 282 #print "best,fbest",best,fbest,problem.dof 283 result.fitness = 2*fbest/problem.dof 284 #print "fitness",result.fitness 285 result.stderr = fitdriver.stderr() 286 result.pvec = best 287 # TODO: track success better 264 288 result.success = True 265 289 result.theory = problem.theory 266 290 267 def run_scipy(model, result ):291 def run_scipy(model, result, ftol): 268 292 # This import must be here; otherwise it will be confused when more 269 293 # than one thread exist. 270 294 from scipy import optimize 271 295 272 out, cov_x, _, mesg, success = optimize.leastsq( functor,273 model.get _params(self.param_list),296 out, cov_x, _, mesg, success = optimize.leastsq(model.residuals, 297 model.getp(), 274 298 ftol=ftol, 275 299 full_output=1) … … 278 302 else: 279 303 stderr = [] 280 result.fitness = functor.chisqr()304 result.fitness = model.chisq() 281 305 result.stderr = stderr 282 306 result.pvec = out 283 307 result.success = success 284 result.theory = functor.theory285 308 result.theory = model.theory 309 -
src/sans/fit/ParkFitting.py
r6fe5100 r95d58d3 93 93 94 94 95 class Model(park.Model):95 class ParkModel(park.Model): 96 96 """ 97 97 PARK wrapper for SANS models. … … 391 391 return fitpars 392 392 393 def all_results(self, result):393 def extend_results_with_calculated_parameters(self, result): 394 394 """ 395 395 Extend result from the fit with the calculated parameters. … … 439 439 # dividing residuals by N in order to be consistent with Scipy 440 440 m.chisq = numpy.sum(m.residuals**2/N) 441 resid.append(m.weight*m.residuals /math.sqrt(N))441 resid.append(m.weight*m.residuals) 442 442 self.residuals = numpy.hstack(resid) 443 443 N = len(self.residuals) 444 444 self.degrees_of_freedom = N-k if N>k else 1 445 445 self.chisq = numpy.sum(self.residuals**2) 446 return self.chisq 446 return self.chisq/self.degrees_of_freedom 447 447 448 448 class ParkFit(FitEngine): … … 505 505 return 506 506 for item in fitproblems: 507 parkmodel = item.get_model() 507 model = item.get_model() 508 parkmodel = ParkModel(model.model, model.data) 508 509 if reset_flag: 509 510 # reset the initial value; useful for batch … … 554 555 localfit = SansFitSimplex() 555 556 localfit.ftol = ftol 556 557 localfit.xtol = 1e-6 558 557 559 # See `park.fitresult.FitHandler` for details. 558 560 fitter = SansFitMC(localfit=localfit, start_points=1) … … 563 565 try: 564 566 result = fit.fit(self.problem, fitter=fitter, handler=handler) 565 self.problem. all_results(result)567 self.problem.extend_results_with_calculated_parameters(result) 566 568 567 569 except LinAlgError: … … 592 594 name += '.' + name_split[2].strip() 593 595 small_result.param_list.append(name) 596 # normalize chisq by degrees of freedom 597 small_result.fitness /= len(small_result.residuals)-len(small_result.pvec) 594 598 result_list.append(small_result) 595 599 if q != None: -
src/sans/fit/ScipyFitting.py
r6fe5100 r95d58d3 49 49 if len(self.true_res) == 0: 50 50 return None 51 return total / len(self.true_res)51 return total / (len(self.true_res) - len(self.paramlist)) 52 52 53 53 def __call__(self, params): … … 205 205 _check_param_range(model.model, self.param_list) 206 206 207 result = FResult(model=model , data=data, param_list=self.param_list)207 result = FResult(model=model.model, data=data, param_list=self.param_list) 208 208 result.pars = fitproblem[0].pars 209 209 result.fitter_id = self.fitter_id
Note: See TracChangeset
for help on using the changeset viewer.