Ignore:
Timestamp:
Mar 22, 2011 3:33:59 PM (14 years ago)
Author:
Jae Cho <jhjcho@…>
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
05319e2
Parents:
384647dc
Message:

changed broken symbols

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sansmodels/src/media/smear_computation.html

    r6e8b436 r8956bdb  
    321321 
    322322<p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>In Eq 
    323 (9), x<sub>0</sub> = qcos</span><span style='font-family:Symbol'>q</span><span 
     323(9), x<sub>0</sub> = qcos</span><span style='font-family:Symbol'>(theta)</span><span 
    324324style='font-family:"Times New Roman","serif"'> and y<sub>0</sub>=qsin</span><span 
    325 style='font-family:Symbol'>q</span><span style='font-family:"Times New Roman","serif"'> 
     325style='font-family:Symbol'>(theta)</span><span style='font-family:"Times New Roman","serif"'> 
    326326, and the primed axes are in the coordinate rotated by an angle </span><span 
    327 style='font-family:Symbol'>q</span><span style='font-family:"Times New Roman","serif"'> 
     327style='font-family:Symbol'>theta</span><span style='font-family:"Times New Roman","serif"'> 
    328328around z-axis (below) so that x’<sub>0</sub> =  x<sub>0</sub>cos</span><span 
    329 style='font-family:Symbol'>q + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> 
    330 sin</span><span style='font-family:Symbol'>q  </span><span style='font-family: 
     329style='font-family:Symbol'>(theta) + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> 
     330sin</span><span style='font-family:Symbol'>(theta)  </span><span style='font-family: 
    331331"Times New Roman","serif"'>and y’<sub>0</sub> =  -x<sub>0</sub>sin</span><span 
    332 style='font-family:Symbol'>q + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> 
    333 cos</span><span style='font-family:Symbol'>q .</span><span style='font-family: 
     332style='font-family:Symbol'>(theta) + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> 
     333cos</span><span style='font-family:Symbol'>(theta) .</span><span style='font-family: 
    334334"Times New Roman","serif"'> Note that the rotation angle is zero for x-y 
    335335symmetric elliptical Gaussian distribution</span><span style='font-family:Symbol'>. 
     
    345345<p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Now we 
    346346consider a numerical integration where each bins in </span><span 
    347 style='font-family:Symbol'>Q</span><span style='font-family:"Times New Roman","serif"'> 
     347style='font-family:Symbol'>THETA</span><span style='font-family:"Times New Roman","serif"'> 
    348348and R are <b>evenly </b>(this is to simplify the equation below) distributed by 
    349 </span><span style='font-family:Symbol'>DQ </span><span style='font-family: 
    350 "Times New Roman","serif"'>and </span><span style='font-family:Symbol'>D</span><span 
     349</span><span style='font-family:Symbol'>Delta_THETA </span><span style='font-family: 
     350"Times New Roman","serif"'>and </span><span style='font-family:Symbol'>Delta</span><span 
    351351style='font-family:"Times New Roman","serif"'>R, respectively, and it is 
    352352assumed that I(x’, y’) is constant within the bins which in turn becomes</span></p> 
     
    361361have found the weighting factor on each bin points, it is convenient to 
    362362transform x’-y’ back to x-y coordinate (rotating it by -</span><span 
    363 style='font-family:Symbol'>q</span><span style='font-family:"Times New Roman","serif"'> 
     363style='font-family:Symbol'>(theta)</span><span style='font-family:"Times New Roman","serif"'> 
    364364around z axis).  Then, for the polar symmetric smear,</span></p> 
    365365 
Note: See TracChangeset for help on using the changeset viewer.