Changes in / [3f9db6e:7f79cba] in sasmodels
- Files:
-
- 3 added
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/plugin.rst
r3048ec6 r0a9fcab 543 543 M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: 544 544 $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ 545 exp, log, pow(x,y), expm1, sqrt:546 Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ sqrt{x}$.547 The function expm1(x) is accurate across all $x$, including $x$548 very close to zero.545 exp, log, pow(x,y), expm1, log1p, sqrt, cbrt: 546 Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$, 547 $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x) 548 are accurate across all $x$, including $x$ very close to zero. 549 549 sin, cos, tan, asin, acos, atan: 550 550 Trigonometry functions and inverses, operating on radians. … … 557 557 atan(y/x) would return a value in quadrant I. Similarly for 558 558 quadrants II and IV when $x$ and $y$ have opposite sign. 559 f min(x,y), fmax(x,y), trunc, rint:559 fabs(x), fmin(x,y), fmax(x,y), trunc, rint: 560 560 Floating point functions. rint(x) returns the nearest integer. 561 561 NAN: 562 562 NaN, Not a Number, $0/0$. Use isnan(x) to test for NaN. Note that 563 563 you cannot use :code:`x == NAN` to test for NaN values since that 564 will always return false. NAN does not equal NAN! 564 will always return false. NAN does not equal NAN! The alternative, 565 :code:`x != x` may fail if the compiler optimizes the test away. 565 566 INFINITY: 566 567 $\infty, 1/0$. Use isinf(x) to test for infinity, or isfinite(x) … … 734 735 Similar arrays are available in :code:`gauss20.c` for 20-point 735 736 quadrature and in :code:`gauss150.c` for 150-point quadrature. 737 The macros :code:`GAUSS_N`, :code:`GAUSS_Z` and :code:`GAUSS_W` are 738 defined so that you can change the order of the integration by 739 selecting an different source without touching the C code. 736 740 737 741 :code:`source = ["lib/gauss76.c", ...]` -
sasmodels/generate.py
r2d81cfe rdb03406 709 709 _add_source(source, code, path) 710 710 711 if model_info.c_code: 712 source.append(model_info.c_code) 713 711 714 # Make parameters for q, qx, qy so that we can use them in declarations 712 715 q, qx, qy = [Parameter(name=v) for v in ('q', 'qx', 'qy')] -
sasmodels/modelinfo.py
r2d81cfe rdb03406 12 12 from os.path import abspath, basename, splitext 13 13 import inspect 14 import logging 14 15 15 16 import numpy as np # type: ignore 17 18 from . import autoc 16 19 17 20 # Optional typing … … 32 35 TestCondition = Tuple[ParameterSetUser, TestInput, TestValue] 33 36 # pylint: enable=unused-import 37 38 logger = logging.getLogger(__name__) 34 39 35 40 # If MAX_PD changes, need to change the loop macros in kernel_iq.c … … 789 794 info.structure_factor = getattr(kernel_module, 'structure_factor', False) 790 795 info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y']) 796 info.c_code = getattr(kernel_module, 'c_code', None) 791 797 info.source = getattr(kernel_module, 'source', []) 792 798 # TODO: check the structure of the tests … … 812 818 813 819 _find_source_lines(info, kernel_module) 820 try: 821 autoc.convert(info, kernel_module) 822 except Exception as exc: 823 raise 824 logger.warn(str(exc)) 814 825 815 826 return info … … 935 946 #: See :attr:`ER` for details on the parameters. 936 947 VR = None # type: Optional[Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]]] 948 #: Arbitrary C code containing supporting functions, etc., to be inserted 949 #: after everything in source. This can include Iq and Iqxy functions with 950 #: the full function signature, including all parameters. 951 c_code = None 937 952 #: Returns the form volume for python-based models. Form volume is needed 938 953 #: for volume normalization in the polydispersity integral. If no -
sasmodels/special.py
re65c3ba r2db9fe4 3 3 ................. 4 4 5 The C code follows the C99 standard, with the usual math functions, 6 as defined in 7 `OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_. 8 This includes the following: 5 This following standard C99 math functions are available: 9 6 10 7 M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: 11 8 $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ 12 9 13 exp, log, pow(x,y), expm1, sqrt:14 Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ sqrt{x}$.15 The function expm1(x) is accurate across all $x$, including $x$16 very close to zero.10 exp, log, pow(x,y), expm1, log1p, sqrt, cbrt: 11 Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$, 12 $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x) 13 are accurate across all $x$, including $x$ very close to zero. 17 14 18 15 sin, cos, tan, asin, acos, atan: … … 29 26 quadrants II and IV when $x$ and $y$ have opposite sign. 30 27 31 f min(x,y), fmax(x,y), trunc, rint:28 fabs(x), fmin(x,y), fmax(x,y), trunc, rint: 32 29 Floating point functions. rint(x) returns the nearest integer. 33 30 … … 35 32 NaN, Not a Number, $0/0$. Use isnan(x) to test for NaN. Note that 36 33 you cannot use :code:`x == NAN` to test for NaN values since that 37 will always return false. NAN does not equal NAN! 34 will always return false. NAN does not equal NAN! The alternative, 35 :code:`x != x` may fail if the compiler optimizes the test away. 38 36 39 37 INFINITY: … … 89 87 for forcing a constant to stay double precision. 90 88 91 The following special functions and scattering calculations are defined in 92 `sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_. 89 The following special functions and scattering calculations are defined. 93 90 These functions have been tuned to be fast and numerically stable down 94 91 to $q=0$ even in single precision. In some cases they work around bugs … … 184 181 185 182 186 Gauss76Z[i], Gauss76Wt[i]:183 gauss76.n, gauss76.z[i], gauss76.w[i]: 187 184 Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively, 188 185 computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$. 189 190 Similar arrays are available in :code:`gauss20.c` for 20-point 191 quadrature and in :code:`gauss150.c` for 150-point quadrature. 192 186 When translating the model to C, include 'lib/gauss76.c' in the source 187 and use :code:`GAUSS_N`, :code:`GAUSS_Z`, and :code:`GAUSS_W`. 188 189 Similar arrays are available in :code:`gauss20` for 20-point quadrature 190 and :code:`gauss150.c` for 150-point quadrature. By using 191 :code:`import gauss76 as gauss` it is easy to change the number of 192 points in the integration. 193 193 """ 194 194 # pylint: disable=unused-import … … 200 200 201 201 # C99 standard math library functions 202 from numpy import exp, log, power as pow, expm1, sqrt202 from numpy import exp, log, power as pow, expm1, log1p, sqrt, cbrt 203 203 from numpy import sin, cos, tan, arcsin as asin, arccos as acos, arctan as atan 204 204 from numpy import sinh, cosh, tanh, arcsinh as asinh, arccosh as acosh, arctanh as atanh 205 205 from numpy import arctan2 as atan2 206 from numpy import fmin, fmax, trunc, rint 207 from numpy import NAN, inf as INFINITY 208 206 from numpy import fabs, fmin, fmax, trunc, rint 207 from numpy import pi, nan, inf 209 208 from scipy.special import gamma as sas_gamma 210 209 from scipy.special import erf as sas_erf … … 218 217 # C99 standard math constants 219 218 M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E = np.pi, np.pi/2, np.pi/4, np.sqrt(0.5), np.e 219 NAN = nan 220 INFINITY = inf 220 221 221 222 # non-standard constants … … 226 227 """return sin(x), cos(x)""" 227 228 return sin(x), cos(x) 229 sincos = SINCOS 228 230 229 231 def square(x): … … 294 296 295 297 # Gaussians 296 297 Gauss20Wt = np.array([ 298 .0176140071391521, 299 .0406014298003869, 300 .0626720483341091, 301 .0832767415767047, 302 .10193011981724, 303 .118194531961518, 304 .131688638449177, 305 .142096109318382, 306 .149172986472604, 307 .152753387130726, 308 .152753387130726, 309 .149172986472604, 310 .142096109318382, 311 .131688638449177, 312 .118194531961518, 313 .10193011981724, 314 .0832767415767047, 315 .0626720483341091, 316 .0406014298003869, 317 .0176140071391521 318 ]) 319 320 Gauss20Z = np.array([ 321 -.993128599185095, 322 -.963971927277914, 323 -.912234428251326, 324 -.839116971822219, 325 -.746331906460151, 326 -.636053680726515, 327 -.510867001950827, 328 -.37370608871542, 329 -.227785851141645, 330 -.076526521133497, 331 .0765265211334973, 332 .227785851141645, 333 .37370608871542, 334 .510867001950827, 335 .636053680726515, 336 .746331906460151, 337 .839116971822219, 338 .912234428251326, 339 .963971927277914, 340 .993128599185095 341 ]) 342 343 Gauss76Wt = np.array([ 344 .00126779163408536, #0 345 .00294910295364247, 346 .00462793522803742, 347 .00629918049732845, 348 .00795984747723973, 349 .00960710541471375, 350 .0112381685696677, 351 .0128502838475101, 352 .0144407317482767, 353 .0160068299122486, 354 .0175459372914742, #10 355 .0190554584671906, 356 .020532847967908, 357 .0219756145344162, 358 .0233813253070112, 359 .0247476099206597, 360 .026072164497986, 361 .0273527555318275, 362 .028587223650054, 363 .029773487255905, 364 .0309095460374916, #20 365 .0319934843404216, 366 .0330234743977917, 367 .0339977794120564, 368 .0349147564835508, 369 .0357728593807139, 370 .0365706411473296, 371 .0373067565423816, 372 .0379799643084053, 373 .0385891292645067, 374 .0391332242205184, #30 375 .0396113317090621, 376 .0400226455325968, 377 .040366472122844, 378 .0406422317102947, 379 .0408494593018285, 380 .040987805464794, 381 .0410570369162294, 382 .0410570369162294, 383 .040987805464794, 384 .0408494593018285, #40 385 .0406422317102947, 386 .040366472122844, 387 .0400226455325968, 388 .0396113317090621, 389 .0391332242205184, 390 .0385891292645067, 391 .0379799643084053, 392 .0373067565423816, 393 .0365706411473296, 394 .0357728593807139, #50 395 .0349147564835508, 396 .0339977794120564, 397 .0330234743977917, 398 .0319934843404216, 399 .0309095460374916, 400 .029773487255905, 401 .028587223650054, 402 .0273527555318275, 403 .026072164497986, 404 .0247476099206597, #60 405 .0233813253070112, 406 .0219756145344162, 407 .020532847967908, 408 .0190554584671906, 409 .0175459372914742, 410 .0160068299122486, 411 .0144407317482767, 412 .0128502838475101, 413 .0112381685696677, 414 .00960710541471375, #70 415 .00795984747723973, 416 .00629918049732845, 417 .00462793522803742, 418 .00294910295364247, 419 .00126779163408536 #75 (indexed from 0) 420 ]) 421 422 Gauss76Z = np.array([ 423 -.999505948362153, #0 424 -.997397786355355, 425 -.993608772723527, 426 -.988144453359837, 427 -.981013938975656, 428 -.972229228520377, 429 -.961805126758768, 430 -.949759207710896, 431 -.936111781934811, 432 -.92088586125215, 433 -.904107119545567, #10 434 -.885803849292083, 435 -.866006913771982, 436 -.844749694983342, 437 -.822068037328975, 438 -.7980001871612, 439 -.77258672828181, 440 -.74587051350361, 441 -.717896592387704, 442 -.688712135277641, 443 -.658366353758143, #20 444 -.626910417672267, 445 -.594397368836793, 446 -.560882031601237, 447 -.526420920401243, 448 -.491072144462194, 449 -.454895309813726, 450 -.417951418780327, 451 -.380302767117504, 452 -.342012838966962, 453 -.303146199807908, #30 454 -.263768387584994, 455 -.223945802196474, 456 -.183745593528914, 457 -.143235548227268, 458 -.102483975391227, 459 -.0615595913906112, 460 -.0205314039939986, 461 .0205314039939986, 462 .0615595913906112, 463 .102483975391227, #40 464 .143235548227268, 465 .183745593528914, 466 .223945802196474, 467 .263768387584994, 468 .303146199807908, 469 .342012838966962, 470 .380302767117504, 471 .417951418780327, 472 .454895309813726, 473 .491072144462194, #50 474 .526420920401243, 475 .560882031601237, 476 .594397368836793, 477 .626910417672267, 478 .658366353758143, 479 .688712135277641, 480 .717896592387704, 481 .74587051350361, 482 .77258672828181, 483 .7980001871612, #60 484 .822068037328975, 485 .844749694983342, 486 .866006913771982, 487 .885803849292083, 488 .904107119545567, 489 .92088586125215, 490 .936111781934811, 491 .949759207710896, 492 .961805126758768, 493 .972229228520377, #70 494 .981013938975656, 495 .988144453359837, 496 .993608772723527, 497 .997397786355355, 498 .999505948362153 #75 499 ]) 500 501 Gauss150Z = np.array([ 502 -0.9998723404457334, 503 -0.9993274305065947, 504 -0.9983473449340834, 505 -0.9969322929775997, 506 -0.9950828645255290, 507 -0.9927998590434373, 508 -0.9900842691660192, 509 -0.9869372772712794, 510 -0.9833602541697529, 511 -0.9793547582425894, 512 -0.9749225346595943, 513 -0.9700655145738374, 514 -0.9647858142586956, 515 -0.9590857341746905, 516 -0.9529677579610971, 517 -0.9464345513503147, 518 -0.9394889610042837, 519 -0.9321340132728527, 520 -0.9243729128743136, 521 -0.9162090414984952, 522 -0.9076459563329236, 523 -0.8986873885126239, 524 -0.8893372414942055, 525 -0.8795995893549102, 526 -0.8694786750173527, 527 -0.8589789084007133, 528 -0.8481048644991847, 529 -0.8368612813885015, 530 -0.8252530581614230, 531 -0.8132852527930605, 532 -0.8009630799369827, 533 -0.7882919086530552, 534 -0.7752772600680049, 535 -0.7619248049697269, 536 -0.7482403613363824, 537 -0.7342298918013638, 538 -0.7198995010552305, 539 -0.7052554331857488, 540 -0.6903040689571928, 541 -0.6750519230300931, 542 -0.6595056411226444, 543 -0.6436719971150083, 544 -0.6275578900977726, 545 -0.6111703413658551, 546 -0.5945164913591590, 547 -0.5776035965513142, 548 -0.5604390262878617, 549 -0.5430302595752546, 550 -0.5253848818220803, 551 -0.5075105815339176, 552 -0.4894151469632753, 553 -0.4711064627160663, 554 -0.4525925063160997, 555 -0.4338813447290861, 556 -0.4149811308476706, 557 -0.3959000999390257, 558 -0.3766465660565522, 559 -0.3572289184172501, 560 -0.3376556177463400, 561 -0.3179351925907259, 562 -0.2980762356029071, 563 -0.2780873997969574, 564 -0.2579773947782034, 565 -0.2377549829482451, 566 -0.2174289756869712, 567 -0.1970082295132342, 568 -0.1765016422258567, 569 -0.1559181490266516, 570 -0.1352667186271445, 571 -0.1145563493406956, 572 -0.0937960651617229, 573 -0.0729949118337358, 574 -0.0521619529078925, 575 -0.0313062657937972, 576 -0.0104369378042598, 577 0.0104369378042598, 578 0.0313062657937972, 579 0.0521619529078925, 580 0.0729949118337358, 581 0.0937960651617229, 582 0.1145563493406956, 583 0.1352667186271445, 584 0.1559181490266516, 585 0.1765016422258567, 586 0.1970082295132342, 587 0.2174289756869712, 588 0.2377549829482451, 589 0.2579773947782034, 590 0.2780873997969574, 591 0.2980762356029071, 592 0.3179351925907259, 593 0.3376556177463400, 594 0.3572289184172501, 595 0.3766465660565522, 596 0.3959000999390257, 597 0.4149811308476706, 598 0.4338813447290861, 599 0.4525925063160997, 600 0.4711064627160663, 601 0.4894151469632753, 602 0.5075105815339176, 603 0.5253848818220803, 604 0.5430302595752546, 605 0.5604390262878617, 606 0.5776035965513142, 607 0.5945164913591590, 608 0.6111703413658551, 609 0.6275578900977726, 610 0.6436719971150083, 611 0.6595056411226444, 612 0.6750519230300931, 613 0.6903040689571928, 614 0.7052554331857488, 615 0.7198995010552305, 616 0.7342298918013638, 617 0.7482403613363824, 618 0.7619248049697269, 619 0.7752772600680049, 620 0.7882919086530552, 621 0.8009630799369827, 622 0.8132852527930605, 623 0.8252530581614230, 624 0.8368612813885015, 625 0.8481048644991847, 626 0.8589789084007133, 627 0.8694786750173527, 628 0.8795995893549102, 629 0.8893372414942055, 630 0.8986873885126239, 631 0.9076459563329236, 632 0.9162090414984952, 633 0.9243729128743136, 634 0.9321340132728527, 635 0.9394889610042837, 636 0.9464345513503147, 637 0.9529677579610971, 638 0.9590857341746905, 639 0.9647858142586956, 640 0.9700655145738374, 641 0.9749225346595943, 642 0.9793547582425894, 643 0.9833602541697529, 644 0.9869372772712794, 645 0.9900842691660192, 646 0.9927998590434373, 647 0.9950828645255290, 648 0.9969322929775997, 649 0.9983473449340834, 650 0.9993274305065947, 651 0.9998723404457334 652 ]) 653 654 Gauss150Wt = np.array([ 655 0.0003276086705538, 656 0.0007624720924706, 657 0.0011976474864367, 658 0.0016323569986067, 659 0.0020663664924131, 660 0.0024994789888943, 661 0.0029315036836558, 662 0.0033622516236779, 663 0.0037915348363451, 664 0.0042191661429919, 665 0.0046449591497966, 666 0.0050687282939456, 667 0.0054902889094487, 668 0.0059094573005900, 669 0.0063260508184704, 670 0.0067398879387430, 671 0.0071507883396855, 672 0.0075585729801782, 673 0.0079630641773633, 674 0.0083640856838475, 675 0.0087614627643580, 676 0.0091550222717888, 677 0.0095445927225849, 678 0.0099300043714212, 679 0.0103110892851360, 680 0.0106876814158841, 681 0.0110596166734735, 682 0.0114267329968529, 683 0.0117888704247183, 684 0.0121458711652067, 685 0.0124975796646449, 686 0.0128438426753249, 687 0.0131845093222756, 688 0.0135194311690004, 689 0.0138484622795371, 690 0.0141714592928592, 691 0.0144882814685445, 692 0.0147987907597169, 693 0.0151028518701744, 694 0.0154003323133401, 695 0.0156911024699895, 696 0.0159750356447283, 697 0.0162520081211971, 698 0.0165218992159766, 699 0.0167845913311726, 700 0.0170399700056559, 701 0.0172879239649355, 702 0.0175283451696437, 703 0.0177611288626114, 704 0.0179861736145128, 705 0.0182033813680609, 706 0.0184126574807331, 707 0.0186139107660094, 708 0.0188070535331042, 709 0.0189920016251754, 710 0.0191686744559934, 711 0.0193369950450545, 712 0.0194968900511231, 713 0.0196482898041878, 714 0.0197911283358190, 715 0.0199253434079123, 716 0.0200508765398072, 717 0.0201676730337687, 718 0.0202756819988200, 719 0.0203748563729175, 720 0.0204651529434560, 721 0.0205465323660984, 722 0.0206189591819181, 723 0.0206824018328499, 724 0.0207368326754401, 725 0.0207822279928917, 726 0.0208185680053983, 727 0.0208458368787627, 728 0.0208640227312962, 729 0.0208731176389954, 730 0.0208731176389954, 731 0.0208640227312962, 732 0.0208458368787627, 733 0.0208185680053983, 734 0.0207822279928917, 735 0.0207368326754401, 736 0.0206824018328499, 737 0.0206189591819181, 738 0.0205465323660984, 739 0.0204651529434560, 740 0.0203748563729175, 741 0.0202756819988200, 742 0.0201676730337687, 743 0.0200508765398072, 744 0.0199253434079123, 745 0.0197911283358190, 746 0.0196482898041878, 747 0.0194968900511231, 748 0.0193369950450545, 749 0.0191686744559934, 750 0.0189920016251754, 751 0.0188070535331042, 752 0.0186139107660094, 753 0.0184126574807331, 754 0.0182033813680609, 755 0.0179861736145128, 756 0.0177611288626114, 757 0.0175283451696437, 758 0.0172879239649355, 759 0.0170399700056559, 760 0.0167845913311726, 761 0.0165218992159766, 762 0.0162520081211971, 763 0.0159750356447283, 764 0.0156911024699895, 765 0.0154003323133401, 766 0.0151028518701744, 767 0.0147987907597169, 768 0.0144882814685445, 769 0.0141714592928592, 770 0.0138484622795371, 771 0.0135194311690004, 772 0.0131845093222756, 773 0.0128438426753249, 774 0.0124975796646449, 775 0.0121458711652067, 776 0.0117888704247183, 777 0.0114267329968529, 778 0.0110596166734735, 779 0.0106876814158841, 780 0.0103110892851360, 781 0.0099300043714212, 782 0.0095445927225849, 783 0.0091550222717888, 784 0.0087614627643580, 785 0.0083640856838475, 786 0.0079630641773633, 787 0.0075585729801782, 788 0.0071507883396855, 789 0.0067398879387430, 790 0.0063260508184704, 791 0.0059094573005900, 792 0.0054902889094487, 793 0.0050687282939456, 794 0.0046449591497966, 795 0.0042191661429919, 796 0.0037915348363451, 797 0.0033622516236779, 798 0.0029315036836558, 799 0.0024994789888943, 800 0.0020663664924131, 801 0.0016323569986067, 802 0.0011976474864367, 803 0.0007624720924706, 804 0.0003276086705538 805 ]) 298 class Gauss: 299 def __init__(self, w, z): 300 self.n = len(w) 301 self.w = w 302 self.z = z 303 304 gauss20 = Gauss( 305 w=np.array([ 306 .0176140071391521, 307 .0406014298003869, 308 .0626720483341091, 309 .0832767415767047, 310 .10193011981724, 311 .118194531961518, 312 .131688638449177, 313 .142096109318382, 314 .149172986472604, 315 .152753387130726, 316 .152753387130726, 317 .149172986472604, 318 .142096109318382, 319 .131688638449177, 320 .118194531961518, 321 .10193011981724, 322 .0832767415767047, 323 .0626720483341091, 324 .0406014298003869, 325 .0176140071391521 326 ]), 327 z=np.array([ 328 -.993128599185095, 329 -.963971927277914, 330 -.912234428251326, 331 -.839116971822219, 332 -.746331906460151, 333 -.636053680726515, 334 -.510867001950827, 335 -.37370608871542, 336 -.227785851141645, 337 -.076526521133497, 338 .0765265211334973, 339 .227785851141645, 340 .37370608871542, 341 .510867001950827, 342 .636053680726515, 343 .746331906460151, 344 .839116971822219, 345 .912234428251326, 346 .963971927277914, 347 .993128599185095 348 ]) 349 ) 350 351 gauss76 = Gauss( 352 w=np.array([ 353 .00126779163408536, #0 354 .00294910295364247, 355 .00462793522803742, 356 .00629918049732845, 357 .00795984747723973, 358 .00960710541471375, 359 .0112381685696677, 360 .0128502838475101, 361 .0144407317482767, 362 .0160068299122486, 363 .0175459372914742, #10 364 .0190554584671906, 365 .020532847967908, 366 .0219756145344162, 367 .0233813253070112, 368 .0247476099206597, 369 .026072164497986, 370 .0273527555318275, 371 .028587223650054, 372 .029773487255905, 373 .0309095460374916, #20 374 .0319934843404216, 375 .0330234743977917, 376 .0339977794120564, 377 .0349147564835508, 378 .0357728593807139, 379 .0365706411473296, 380 .0373067565423816, 381 .0379799643084053, 382 .0385891292645067, 383 .0391332242205184, #30 384 .0396113317090621, 385 .0400226455325968, 386 .040366472122844, 387 .0406422317102947, 388 .0408494593018285, 389 .040987805464794, 390 .0410570369162294, 391 .0410570369162294, 392 .040987805464794, 393 .0408494593018285, #40 394 .0406422317102947, 395 .040366472122844, 396 .0400226455325968, 397 .0396113317090621, 398 .0391332242205184, 399 .0385891292645067, 400 .0379799643084053, 401 .0373067565423816, 402 .0365706411473296, 403 .0357728593807139, #50 404 .0349147564835508, 405 .0339977794120564, 406 .0330234743977917, 407 .0319934843404216, 408 .0309095460374916, 409 .029773487255905, 410 .028587223650054, 411 .0273527555318275, 412 .026072164497986, 413 .0247476099206597, #60 414 .0233813253070112, 415 .0219756145344162, 416 .020532847967908, 417 .0190554584671906, 418 .0175459372914742, 419 .0160068299122486, 420 .0144407317482767, 421 .0128502838475101, 422 .0112381685696677, 423 .00960710541471375, #70 424 .00795984747723973, 425 .00629918049732845, 426 .00462793522803742, 427 .00294910295364247, 428 .00126779163408536 #75 (indexed from 0) 429 ]), 430 z=np.array([ 431 -.999505948362153, #0 432 -.997397786355355, 433 -.993608772723527, 434 -.988144453359837, 435 -.981013938975656, 436 -.972229228520377, 437 -.961805126758768, 438 -.949759207710896, 439 -.936111781934811, 440 -.92088586125215, 441 -.904107119545567, #10 442 -.885803849292083, 443 -.866006913771982, 444 -.844749694983342, 445 -.822068037328975, 446 -.7980001871612, 447 -.77258672828181, 448 -.74587051350361, 449 -.717896592387704, 450 -.688712135277641, 451 -.658366353758143, #20 452 -.626910417672267, 453 -.594397368836793, 454 -.560882031601237, 455 -.526420920401243, 456 -.491072144462194, 457 -.454895309813726, 458 -.417951418780327, 459 -.380302767117504, 460 -.342012838966962, 461 -.303146199807908, #30 462 -.263768387584994, 463 -.223945802196474, 464 -.183745593528914, 465 -.143235548227268, 466 -.102483975391227, 467 -.0615595913906112, 468 -.0205314039939986, 469 .0205314039939986, 470 .0615595913906112, 471 .102483975391227, #40 472 .143235548227268, 473 .183745593528914, 474 .223945802196474, 475 .263768387584994, 476 .303146199807908, 477 .342012838966962, 478 .380302767117504, 479 .417951418780327, 480 .454895309813726, 481 .491072144462194, #50 482 .526420920401243, 483 .560882031601237, 484 .594397368836793, 485 .626910417672267, 486 .658366353758143, 487 .688712135277641, 488 .717896592387704, 489 .74587051350361, 490 .77258672828181, 491 .7980001871612, #60 492 .822068037328975, 493 .844749694983342, 494 .866006913771982, 495 .885803849292083, 496 .904107119545567, 497 .92088586125215, 498 .936111781934811, 499 .949759207710896, 500 .961805126758768, 501 .972229228520377, #70 502 .981013938975656, 503 .988144453359837, 504 .993608772723527, 505 .997397786355355, 506 .999505948362153 #75 507 ]) 508 ) 509 510 gauss150 = Gauss( 511 z=np.array([ 512 -0.9998723404457334, 513 -0.9993274305065947, 514 -0.9983473449340834, 515 -0.9969322929775997, 516 -0.9950828645255290, 517 -0.9927998590434373, 518 -0.9900842691660192, 519 -0.9869372772712794, 520 -0.9833602541697529, 521 -0.9793547582425894, 522 -0.9749225346595943, 523 -0.9700655145738374, 524 -0.9647858142586956, 525 -0.9590857341746905, 526 -0.9529677579610971, 527 -0.9464345513503147, 528 -0.9394889610042837, 529 -0.9321340132728527, 530 -0.9243729128743136, 531 -0.9162090414984952, 532 -0.9076459563329236, 533 -0.8986873885126239, 534 -0.8893372414942055, 535 -0.8795995893549102, 536 -0.8694786750173527, 537 -0.8589789084007133, 538 -0.8481048644991847, 539 -0.8368612813885015, 540 -0.8252530581614230, 541 -0.8132852527930605, 542 -0.8009630799369827, 543 -0.7882919086530552, 544 -0.7752772600680049, 545 -0.7619248049697269, 546 -0.7482403613363824, 547 -0.7342298918013638, 548 -0.7198995010552305, 549 -0.7052554331857488, 550 -0.6903040689571928, 551 -0.6750519230300931, 552 -0.6595056411226444, 553 -0.6436719971150083, 554 -0.6275578900977726, 555 -0.6111703413658551, 556 -0.5945164913591590, 557 -0.5776035965513142, 558 -0.5604390262878617, 559 -0.5430302595752546, 560 -0.5253848818220803, 561 -0.5075105815339176, 562 -0.4894151469632753, 563 -0.4711064627160663, 564 -0.4525925063160997, 565 -0.4338813447290861, 566 -0.4149811308476706, 567 -0.3959000999390257, 568 -0.3766465660565522, 569 -0.3572289184172501, 570 -0.3376556177463400, 571 -0.3179351925907259, 572 -0.2980762356029071, 573 -0.2780873997969574, 574 -0.2579773947782034, 575 -0.2377549829482451, 576 -0.2174289756869712, 577 -0.1970082295132342, 578 -0.1765016422258567, 579 -0.1559181490266516, 580 -0.1352667186271445, 581 -0.1145563493406956, 582 -0.0937960651617229, 583 -0.0729949118337358, 584 -0.0521619529078925, 585 -0.0313062657937972, 586 -0.0104369378042598, 587 0.0104369378042598, 588 0.0313062657937972, 589 0.0521619529078925, 590 0.0729949118337358, 591 0.0937960651617229, 592 0.1145563493406956, 593 0.1352667186271445, 594 0.1559181490266516, 595 0.1765016422258567, 596 0.1970082295132342, 597 0.2174289756869712, 598 0.2377549829482451, 599 0.2579773947782034, 600 0.2780873997969574, 601 0.2980762356029071, 602 0.3179351925907259, 603 0.3376556177463400, 604 0.3572289184172501, 605 0.3766465660565522, 606 0.3959000999390257, 607 0.4149811308476706, 608 0.4338813447290861, 609 0.4525925063160997, 610 0.4711064627160663, 611 0.4894151469632753, 612 0.5075105815339176, 613 0.5253848818220803, 614 0.5430302595752546, 615 0.5604390262878617, 616 0.5776035965513142, 617 0.5945164913591590, 618 0.6111703413658551, 619 0.6275578900977726, 620 0.6436719971150083, 621 0.6595056411226444, 622 0.6750519230300931, 623 0.6903040689571928, 624 0.7052554331857488, 625 0.7198995010552305, 626 0.7342298918013638, 627 0.7482403613363824, 628 0.7619248049697269, 629 0.7752772600680049, 630 0.7882919086530552, 631 0.8009630799369827, 632 0.8132852527930605, 633 0.8252530581614230, 634 0.8368612813885015, 635 0.8481048644991847, 636 0.8589789084007133, 637 0.8694786750173527, 638 0.8795995893549102, 639 0.8893372414942055, 640 0.8986873885126239, 641 0.9076459563329236, 642 0.9162090414984952, 643 0.9243729128743136, 644 0.9321340132728527, 645 0.9394889610042837, 646 0.9464345513503147, 647 0.9529677579610971, 648 0.9590857341746905, 649 0.9647858142586956, 650 0.9700655145738374, 651 0.9749225346595943, 652 0.9793547582425894, 653 0.9833602541697529, 654 0.9869372772712794, 655 0.9900842691660192, 656 0.9927998590434373, 657 0.9950828645255290, 658 0.9969322929775997, 659 0.9983473449340834, 660 0.9993274305065947, 661 0.9998723404457334 662 ]), 663 w=np.array([ 664 0.0003276086705538, 665 0.0007624720924706, 666 0.0011976474864367, 667 0.0016323569986067, 668 0.0020663664924131, 669 0.0024994789888943, 670 0.0029315036836558, 671 0.0033622516236779, 672 0.0037915348363451, 673 0.0042191661429919, 674 0.0046449591497966, 675 0.0050687282939456, 676 0.0054902889094487, 677 0.0059094573005900, 678 0.0063260508184704, 679 0.0067398879387430, 680 0.0071507883396855, 681 0.0075585729801782, 682 0.0079630641773633, 683 0.0083640856838475, 684 0.0087614627643580, 685 0.0091550222717888, 686 0.0095445927225849, 687 0.0099300043714212, 688 0.0103110892851360, 689 0.0106876814158841, 690 0.0110596166734735, 691 0.0114267329968529, 692 0.0117888704247183, 693 0.0121458711652067, 694 0.0124975796646449, 695 0.0128438426753249, 696 0.0131845093222756, 697 0.0135194311690004, 698 0.0138484622795371, 699 0.0141714592928592, 700 0.0144882814685445, 701 0.0147987907597169, 702 0.0151028518701744, 703 0.0154003323133401, 704 0.0156911024699895, 705 0.0159750356447283, 706 0.0162520081211971, 707 0.0165218992159766, 708 0.0167845913311726, 709 0.0170399700056559, 710 0.0172879239649355, 711 0.0175283451696437, 712 0.0177611288626114, 713 0.0179861736145128, 714 0.0182033813680609, 715 0.0184126574807331, 716 0.0186139107660094, 717 0.0188070535331042, 718 0.0189920016251754, 719 0.0191686744559934, 720 0.0193369950450545, 721 0.0194968900511231, 722 0.0196482898041878, 723 0.0197911283358190, 724 0.0199253434079123, 725 0.0200508765398072, 726 0.0201676730337687, 727 0.0202756819988200, 728 0.0203748563729175, 729 0.0204651529434560, 730 0.0205465323660984, 731 0.0206189591819181, 732 0.0206824018328499, 733 0.0207368326754401, 734 0.0207822279928917, 735 0.0208185680053983, 736 0.0208458368787627, 737 0.0208640227312962, 738 0.0208731176389954, 739 0.0208731176389954, 740 0.0208640227312962, 741 0.0208458368787627, 742 0.0208185680053983, 743 0.0207822279928917, 744 0.0207368326754401, 745 0.0206824018328499, 746 0.0206189591819181, 747 0.0205465323660984, 748 0.0204651529434560, 749 0.0203748563729175, 750 0.0202756819988200, 751 0.0201676730337687, 752 0.0200508765398072, 753 0.0199253434079123, 754 0.0197911283358190, 755 0.0196482898041878, 756 0.0194968900511231, 757 0.0193369950450545, 758 0.0191686744559934, 759 0.0189920016251754, 760 0.0188070535331042, 761 0.0186139107660094, 762 0.0184126574807331, 763 0.0182033813680609, 764 0.0179861736145128, 765 0.0177611288626114, 766 0.0175283451696437, 767 0.0172879239649355, 768 0.0170399700056559, 769 0.0167845913311726, 770 0.0165218992159766, 771 0.0162520081211971, 772 0.0159750356447283, 773 0.0156911024699895, 774 0.0154003323133401, 775 0.0151028518701744, 776 0.0147987907597169, 777 0.0144882814685445, 778 0.0141714592928592, 779 0.0138484622795371, 780 0.0135194311690004, 781 0.0131845093222756, 782 0.0128438426753249, 783 0.0124975796646449, 784 0.0121458711652067, 785 0.0117888704247183, 786 0.0114267329968529, 787 0.0110596166734735, 788 0.0106876814158841, 789 0.0103110892851360, 790 0.0099300043714212, 791 0.0095445927225849, 792 0.0091550222717888, 793 0.0087614627643580, 794 0.0083640856838475, 795 0.0079630641773633, 796 0.0075585729801782, 797 0.0071507883396855, 798 0.0067398879387430, 799 0.0063260508184704, 800 0.0059094573005900, 801 0.0054902889094487, 802 0.0050687282939456, 803 0.0046449591497966, 804 0.0042191661429919, 805 0.0037915348363451, 806 0.0033622516236779, 807 0.0029315036836558, 808 0.0024994789888943, 809 0.0020663664924131, 810 0.0016323569986067, 811 0.0011976474864367, 812 0.0007624720924706, 813 0.0003276086705538 814 ]) 815 )
Note: See TracChangeset
for help on using the changeset viewer.