Changes in / [5a483877:7d4b2ae] in sasmodels


Ignore:
Files:
1 added
7 deleted
2 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/lib/lanczos_gamma.c

    re6f1410 r5c1d341  
    22double lanczos_gamma(double q) 
    33{ 
    4     // Lanczos approximation to the Log Gamma function. 
     4    // Lanczos approximation to the Gamma function. 
    55 
    66    double x,y,tmp,ser; 
  • sasmodels/models/lib/sph_j1c.c

    re6f1410 rc437dbb  
    55* Note that the values differ from sasview ~ 5e-12 rather than 5e-14, but 
    66* in this case it is likely cancellation errors in the original expression 
    7 * using double precision that are the source. 
     7* using double precision that are the source.  Single precision only 
     8* requires the first 3 terms.  Double precision requires the 4th term. 
     9* The fifth term is not needed, and is commented out. 
     10* Taylor expansion: 
     11*      1.0 + q2*(-3./30. + q2*(3./840.))+ q2*(-3./45360. + q2*(3./3991680.)))) 
    812*/ 
    9  
    10 // The choice of the number of terms in the series and the cutoff value for 
    11 // switching between series and direct calculation depends on the numeric 
    12 // precision. 
    13 // 
    14 // Point where direct calculation reaches machine precision: 
    15 // 
    16 //   single machine precision eps 3e-8 at qr=1.1 ** 
    17 //   double machine precision eps 4e-16 at qr=1.1 
    18 // 
    19 // Point where Taylor series reaches machine precision (eps), where taylor 
    20 // series matches direct calculation (cross) and the error at that point: 
    21 // 
    22 //   prec   n eps  cross  error 
    23 //   single 3 0.28  0.4   6.2e-7 
    24 //   single 4 0.68  0.7   2.3e-7 
    25 //   single 5 1.18  1.2   7.5e-8 
    26 //   double 3 0.01  0.03  2.3e-13 
    27 //   double 4 0.06  0.1   3.1e-14 
    28 //   double 5 0.16  0.2   5.0e-15 
    29 // 
    30 // ** Note: relative error on single precision starts increase on the direct 
    31 // method at qr=1.1, rising from 3e-8 to 5e-5 by qr=1e3.  This should be 
    32 // safe for the sans range, with objects of 100 nm supported to a q of 0.1 
    33 // while maintaining 5 digits of precision.  For usans/sesans, the objects 
    34 // are larger but the q is smaller, so again it should be fine. 
    35 // 
    36 // See explore/sph_j1c.py for code to explore these ranges. 
    37  
    38 // Use 4th order series 
    39 #if FLOAT_SIZE>4 
    40 #define SPH_J1C_CUTOFF 0.1 
    41 #else 
    42 #define SPH_J1C_CUTOFF 0.7 
    43 #endif 
    4413 
    4514double sph_j1c(double q); 
    4615double sph_j1c(double q) 
    4716{ 
    48     if (q < SPH_J1C_CUTOFF) { 
    49         const double q2 = q*q; 
    50         return (1.0 + q2*(-3./30. + q2*(3./840. + q2*(-3./45360.))));// + q2*(3./3991680.))))); 
     17    const double q2 = q*q; 
     18    double sin_q, cos_q; 
     19 
     20    SINCOS(q, sin_q, cos_q); 
     21 
     22#if FLOAT_SIZE>4 
     23// For double precision, choose a cutoff of 0.18, which is the lower limit 
     24// for the trig expression to 14 digits.  If only 12 digits are needed, then 
     25// only 4 terms of the Taylor expansion are needed. 
     26#define CUTOFF 0.18 
     27#else 
     28// For single precision, choose a cutoff halfway between the single precision 
     29// lower limit for the trig expression of 1.03 and the upper limit of 1.3 
     30// for the Taylor series expansion with 5 terms (or 9 if you count the zeros). 
     31// For 5 digits of precision, you can drop two terms of the taylor series 
     32// and choose a cutoff of 0.3. 
     33#define CUTOFF 1.15 
     34#endif 
     35 
     36    const double bessel = (q < CUTOFF) 
     37        ? (1.0 + q2*(-3./30. + q2*(3./840. + q2*(-3./45360. + q2*(3./3991680.))))) 
     38        : 3.0*(sin_q/q - cos_q)/q2; 
     39    return bessel; 
     40 
     41/* 
     42    // Code to test various expressions 
     43    // tested using sympy.mpmath.mp with 
     44    //    mp.dps = 50 (which is good for q down to 1e-6) 
     45    //    def j1c(x): return 3*(mp.sin(x)/x - mp.cos(x))/x**2 
     46    double ret; 
     47    if (sizeof(q2) > 8) { 
     48 
     49        ret = 3.0*(sinl(q)/q - cosl(q))/q2; 
     50printf("%.15Lf %.15Lg\n", q, ret); 
     51    //} else if (q < 0.384038453352533) { 
     52    //} else if (q < 0.18) { 
     53    } else if (q < 18e-10) { 
     54        // NB: all are good to 5 digits below 0.18f 
     55        // good is defined as 14 digits for double and 7 for single 
     56        //ret = 1.0 + q2*q2*(3./840.) - q2*(3./30.); // good below 0.02d 0.34f 
     57        ret = square((1. + 3./5600.*q2*q2) - q2/20.); // good below 0.03d 0.08f 
     58        //ret = 1.0 - q2*(3./30.); // good below 0.02d 0.07f 
     59        //ret = 1.0 + q2*(-3./30. + q2*(3./840.)); // good below 0.02d 0.34f 
     60        //ret = 1.0 + q2*(-3./30. + q2*(3./840. + q2*(-3./45360.))); // good below 0.1d 0.8f, 12 digits below 0.18d 
     61        //ret = 1.0 + q2*(-3./30. + q2*(3./840. + q2*(-3./45360. + q2*(3./3991680.)))); // good below 0.18d 1.3f 
     62printf("%.15g %.15g\n", q, ret); 
    5163    } else { 
    52         double sin_q, cos_q; 
    53         SINCOS(q, sin_q, cos_q); 
    54         return 3.0*(sin_q/q - cos_q)/(q*q); 
     64        // NB: can use a cutoff of 0.1f if the goal is 5 digits rather than 7 
     65        ret = 3.0*(sin_q/q - cos_q)/q2; // good above 0.18d, 1.03f 
     66printf("%.15g %.15g\n", q, ret); 
    5567    } 
     68    return ret; 
     69*/ 
    5670} 
Note: See TracChangeset for help on using the changeset viewer.