Changeset 76d78c2 in sasmodels


Ignore:
Timestamp:
Mar 18, 2016 5:33:19 AM (9 years ago)
Author:
krzywon
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
29172aa, 74f7238, a06430c
Parents:
251b40b (diff), c079f50 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge remote-tracking branch 'origin/master'

Location:
sasmodels
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/adsorbed_layer.py

    rf10bc52 rc079f50  
    66 
    77r""" 
    8 This model describes the scattering from a layer of surfactant or polymer adsorbed on spherical particles under the conditions that (i) the particles (cores) are contrast-matched to the dispersion medium, (ii) *S(Q)* ~ 1 (ie, the particle volume fraction is dilute), (iii) the particle radius is >> layer thickness (ie, the interface is locally flat), and (iv) scattering from excess unadsorbed adsorbate in the bulk medium is absent or has been corrected for. 
     8This model describes the scattering from a layer of surfactant or polymer adsorbed on large, smooth, notionally spherical particles under the conditions that (i) the particles (cores) are contrast-matched to the dispersion medium, (ii) *S(Q)* ~ 1 (ie, the particle volume fraction is dilute), (iii) the particle radius is >> layer thickness (ie, the interface is locally flat), and (iv) scattering from excess unadsorbed adsorbate in the bulk medium is absent or has been corrected for. 
    99 
    1010Unlike many other core-shell models, this model does not assume any form for the density distribution of the adsorbed species normal to the interface (cf, a core-shell model normally assumes the density distribution to be a homogeneous step-function). For comparison, if the thickness of a (traditional core-shell like) step function distribution is *t*, the second moment about the mean of the density distribution (ie, the distance of the centre-of-mass of the distribution from the interface), |sigma| =  sqrt((*t* :sup:`2` )/12). 
     
    3434 
    3535description =  """ 
    36     Evaluates the scattering from particles 
     36    Evaluates the scattering from large particles 
    3737    with an adsorbed layer of surfactant or 
    3838    polymer, independent of the form of the 
     
    4242 
    4343#             ["name", "units", default, [lower, upper], "type", "description"], 
    44 parameters =  [["second_moment", "Ang", 23.0, [0.0, inf], "", "Second moment"], 
    45               ["adsorbed_amount", "mg/m2", 1.9, [0.0, inf], "", "Adsorbed amount"], 
    46               ["density_poly", "g/cm3", 0.7, [0.0, inf], "", "Polymer density"], 
    47               ["radius", "Ang", 500.0, [0.0, inf], "", "Particle radius"], 
    48               ["volfraction", "None", 0.14, [0.0, inf], "", "Particle vol fraction"], 
    49               ["polymer_sld", "1/Ang^2", 1.5e-06, [-inf, inf], "", "Polymer SLD"], 
    50               ["solvent_sld", "1/Ang^2", 6.3e-06, [-inf, inf], "", "Solvent SLD"]] 
     44parameters =  [["second_moment", "Ang", 23.0, [0.0, inf], "", "Second moment of polymer distribution"], 
     45              ["adsorbed_amount", "mg/m2", 1.9, [0.0, inf], "", "Adsorbed amount of polymer"], 
     46              ["density_shell", "g/cm3", 0.7, [0.0, inf], "", "Bulk density of polymer in the shell"], 
     47              ["radius", "Ang", 500.0, [0.0, inf], "", "Core particle radius"], 
     48              ["volfraction", "None", 0.14, [0.0, inf], "", "Core particle volume fraction"], 
     49              ["sld_shell", "1e-6/Ang^2", 1.5, [-inf, inf], "sld", "Polymer shell SLD"], 
     50              ["sld_solvent", "1e-6/Ang^2", 6.3, [-inf, inf], "sld", "Solvent SLD"]] 
    5151 
    5252# NB: Scale and Background are implicit parameters on every model 
    53 def Iq(q, second_moment, adsorbed_amount, density_poly, radius,  
    54         volfraction, polymer_sld, solvent_sld): 
     53def Iq(q, second_moment, adsorbed_amount, density_shell, radius,  
     54        volfraction, sld_shell, sld_solvent): 
    5555    # pylint: disable = missing-docstring 
    56     deltarhosqrd =  (polymer_sld - solvent_sld) * (polymer_sld - solvent_sld) 
    57     numerator =  6.0 * pi * volfraction * (adsorbed_amount * adsorbed_amount) 
    58     denominator =  (q * q) * (density_poly * density_poly) * radius 
    59     eterm =  exp(-1.0 * (q * q) * (second_moment * second_moment)) 
    60     #scale by 10^10 for units conversion to cm^-1 
    61     inten =  1.0e+10 * deltarhosqrd * ((numerator / denominator) * eterm) 
     56#    deltarhosqrd =  (sld_shell - sld_solvent) * (sld_shell - sld_solvent) 
     57#    numerator =  6.0 * pi * volfraction * (adsorbed_amount * adsorbed_amount) 
     58#    denominator =  (q * q) * (density_shell * density_shell) * radius 
     59#    eterm =  exp(-1.0 * (q * q) * (second_moment * second_moment)) 
     60#    #scale by 10^-2 for units conversion to cm^-1 
     61#    inten =  1.0e-02 * deltarhosqrd * ((numerator / denominator) * eterm) 
     62    aa =  (sld_shell - sld_solvent) * adsorbed_amount / q / density_shell  
     63    bb = q * second_moment 
     64    #scale by 10^-2 for units conversion to cm^-1 
     65    inten =  6.0e-02 * pi * volfraction * aa * aa * exp(-bb * bb) / radius 
    6266    return inten 
    6367Iq.vectorized =  True  # Iq accepts an array of q values 
     
    7175            second_moment = 23.0, 
    7276            adsorbed_amount = 1.9, 
    73             density_poly = 0.7, 
     77            density_shell = 0.7, 
    7478            radius = 500.0, 
    7579            volfraction = 0.14, 
    76             polymer_sld = 1.5e-06, 
    77             solvent_sld = 6.3e-06, 
     80            sld_shell = 1.5, 
     81            sld_solvent = 6.3, 
    7882            background = 0.0) 
    7983 
     
    8286               second_moment = 'second_moment', 
    8387               adsorbed_amount = 'ads_amount', 
    84                density_poly = 'density_poly', 
     88               density_shell = 'density_poly', 
    8589               radius = 'radius_core', 
    8690               volfraction = 'volf_cores', 
    87                polymer_sld = 'sld_poly', 
    88                solvent_sld = 'sld_solv', 
     91               sld_shell = 'sld_poly', 
     92               sld_solvent = 'sld_solv', 
    8993               background = 'background') 
    9094 
     
    9296tests =  [ 
    9397    [{'scale': 1.0, 'second_moment': 23.0, 'adsorbed_amount': 1.9,  
    94      'density_poly': 0.7, 'radius': 500.0, 'volfraction': 0.14,  
    95      'polymer_sld': 1.5e-06, 'solvent_sld': 6.3e-06, 'background': 0.0}, 
     98     'density_shell': 0.7, 'radius': 500.0, 'volfraction': 0.14,  
     99     'sld_shell': 1.5, 'sld_solvent': 6.3, 'background': 0.0}, 
    96100     [0.0106939, 0.469418], [73.741, 9.65391e-53]], 
    97101    ] 
     102# ADDED by: SMK  ON: 16Mar2016  convert from sasview, check vs SANDRA, 18Mar2016 RKH some edits & renaming 
  • sasmodels/sesans.py

    r02e70ff r251b40b  
    6363                   
    6464def Cosine2D(data, q_calc, Iq_calc, qx, qy, Iq_mono): 
    65     return hankel(data.x, data.y data.lam * 1e-9, 
     65    return hankel(data.x, data.y, data.lam * 1e-9, 
    6666                  data.sample.thickness / 10, 
    6767                  q_calc, Iq_calc) 
     
    7070#    Calls a model with existing model parameters already in place, then integrate the product of q and I(q) from 0 to (4*pi/lambda) 
    7171    allq = np.linspace(0,4*pi/wavelength,1000) 
    72     allIq =  
     72    allIq = 1 
    7373    integral = allq*allIq 
    7474     
     
    8686    Gprime = np.zeros_like(wavelength, 'd') 
    8787    f = np.zeros_like(wavelength, 'd') 
    88        for i, wavelength_i in enumerate(wavelength): 
    89             z = magfield*wavelength_i 
    90             allq=np.linspace() #for calculating the Q-range of the  scattering power integral 
    91             allIq=np.linspace()  # This is the model applied to the allq q-space. Needs to refference the model somehow 
    92             alldq = (allq[1]-allq[0])*1e10 
    93             sigma[i]=wavelength[i]^2*thickness/2/pi*np.sum(allIq*allq*alldq) 
    94             s[i]=1-exp(-sigma) 
    95             for j, Iqy_j, qy_j in enumerate(qy): 
    96                 for k, Iqz_k, qz_k in enumerate(qz): 
    97                     Iq = np.sqrt(Iqy_j^2+Iqz_k^2) 
    98                     q = np.sqrt(qy_j^2 + qz_k^2) 
    99                     Gintegral = Iq*cos(z*Qz_k) 
    100                     Gprime[i] += Gintegral 
    101     #                sigma = wavelength^2*thickness/2/pi* allq[i]*allIq[i] 
    102     #                s[i] += 1-exp(Totalscatter(modelname)*thickness) 
    103     #                For now, work with standard 2-phase scatter 
    104                     
    105                      
    106                     sd[i] += Iq 
    107             f[i] = 1-s[i]+sd[i] 
    108             P[i] = (1-sd[i]/f[i])+1/f[i]*Gprime[i]         
     88    for i, wavelength_i in enumerate(wavelength): 
     89        z = magfield*wavelength_i 
     90        allq=np.linspace() #for calculating the Q-range of the  scattering power integral 
     91        allIq=np.linspace()  # This is the model applied to the allq q-space. Needs to refference the model somehow 
     92        alldq = (allq[1]-allq[0])*1e10 
     93        sigma[i]=wavelength[i]^2*thickness/2/pi*np.sum(allIq*allq*alldq) 
     94        s[i]=1-exp(-sigma) 
     95        for j, Iqy_j, qy_j in enumerate(qy): 
     96            for k, Iqz_k, qz_k in enumerate(qz): 
     97                Iq = np.sqrt(Iqy_j^2+Iqz_k^2) 
     98                q = np.sqrt(qy_j^2 + qz_k^2) 
     99                Gintegral = Iq*cos(z*Qz_k) 
     100                Gprime[i] += Gintegral 
     101#                sigma = wavelength^2*thickness/2/pi* allq[i]*allIq[i] 
     102#                s[i] += 1-exp(Totalscatter(modelname)*thickness) 
     103#                For now, work with standard 2-phase scatter 
     104 
     105 
     106                sd[i] += Iq 
     107        f[i] = 1-s[i]+sd[i] 
     108        P[i] = (1-sd[i]/f[i])+1/f[i]*Gprime[i] 
    109109 
    110110 
     
    119119    G = np.zeros_like(SElength, 'd') 
    120120    threshold=2*pi*theta/wavelength 
    121         for i, SElength_i in enumerate(SElength): 
    122             allq=np.linspace() #for calculating the Q-range of the  scattering power integral 
    123             allIq=np.linspace()  # This is the model applied to the allq q-space. Needs to refference the model somehow 
    124             alldq = (allq[1]-allq[0])*1e10 
    125             sigma[i]=wavelength[i]^2*thickness/2/pi*np.sum(allIq*allq*alldq) 
    126             s[i]=1-exp(-sigma) 
    127              
    128             dq = (q[1]-q[0])*1e10 
    129             a = (x<threshold) 
    130             acceptq = a*q 
    131             acceptIq = a*Iq 
    132         
    133             G[i] = np.sum(besselj(0, acceptq*SElength_i)*acceptIq*acceptq*dq) 
    134                  
    135     #        G[i]=np.sum(integral) 
    136          
    137         G *= dq*1e10*2*pi 
    138      
    139         P = exp(thickness*wavelength**2/(4*pi**2)*(G-G[0])) 
     121    for i, SElength_i in enumerate(SElength): 
     122        allq=np.linspace() #for calculating the Q-range of the  scattering power integral 
     123        allIq=np.linspace()  # This is the model applied to the allq q-space. Needs to refference the model somehow 
     124        alldq = (allq[1]-allq[0])*1e10 
     125        sigma[i]=wavelength[i]^2*thickness/2/pi*np.sum(allIq*allq*alldq) 
     126        s[i]=1-exp(-sigma) 
     127 
     128        dq = (q[1]-q[0])*1e10 
     129        a = (x<threshold) 
     130        acceptq = a*q 
     131        acceptIq = a*Iq 
     132 
     133        G[i] = np.sum(besselj(0, acceptq*SElength_i)*acceptIq*acceptq*dq) 
     134 
     135#        G[i]=np.sum(integral) 
     136 
     137    G *= dq*1e10*2*pi 
     138 
     139    P = exp(thickness*wavelength**2/(4*pi**2)*(G-G[0])) 
    140140     
    141141def hankel(SElength, wavelength, thickness, q, Iq): 
Note: See TracChangeset for help on using the changeset viewer.