Changeset 693570c in sasmodels


Ignore:
Timestamp:
Mar 21, 2016 7:18:58 PM (9 years ago)
Author:
butler
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
e664a11
Parents:
c6652bb
Message:

check pringle model for correctness and completness and correct
equations and documentation. Also added term definitions.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/pringle.py

    raf4da90 r693570c  
    11r""" 
    2 This model provides the form factor, $P(q)$, for a 'pringle' or 'saddle-shaped' 
    3 object (a hyperbolic paraboloid). 
    4  
    5 .. figure:: img/pringles_fig1.png 
    6  
    7     (Graphic from Matt Henderson, matt@matthen.com) 
    8  
    9 The returned value is in units of cm^-1, on absolute scale. 
    10  
    112Definition 
    123---------- 
    134 
    14 The form factor calculated is 
     5The form factor for this bent disc is essentially that of a hyperbolic 
     6paraboloid and calculated as 
    157 
    168.. math:: 
    179 
    18     I(q) = (\Delta \rho )^2 V \int^{\pi/2}_0 d\psi \sin{\psi} sinc^2 
     10    P(q) = (\Delta \rho )^2 V \int^{\pi/2}_0 d\psi \sin{\psi} sinc^2 
    1911    \left( \frac{qd\cos{\psi}}{2} \right) 
    2012    \left[ \left( S^2_0+C^2_0\right) + 2\sum_{n=1}^{\infty} 
    21      \left( S^2_0+C^2_0\right) \right] 
     13     \left( S^2_n+C^2_n\right) \right] 
    2214 
    2315where 
     
    2517.. math:: 
    2618 
    27     C_n = \int^{R}_{0} r dr\cos{qr^2\alpha \cos{\psi}} 
     19    C_n = \int^{R}_{0} r dr\cos(qr^2\alpha \cos{\psi}) 
    2820    J_n\left( qr^2\beta \cos{\psi}\right) 
    2921    J_{2n}\left( qr \sin{\psi}\right) 
     
    3123.. math:: 
    3224 
    33     S_n = \int^{R}_{0} r dr\sin{qr^2\alpha \cos{\psi}} 
     25    S_n = \int^{R}_{0} r dr\sin(qr^2\alpha \cos{\psi}) 
    3426    J_n\left( qr^2\beta \cos{\psi}\right) 
    3527    J_{2n}\left( qr \sin{\psi}\right) 
    3628 
     29and $\Delta \rho \text{ is } \rho_{pringle}-\rho_{solvent}$, $V$ is the volume of 
     30the disc, $\psi$ is the angle between the normal to the disc and the q vector, 
     31$d$ and $R$ are the "pringle" thickness and radius respectively, $\alpha$ and 
     32$\beta$ are the two curvature parameters, and $J_n$ is the n\ :sup:`th` order 
     33Bessel function of the first kind.  
    3734 
    38 .. figure:: img/pringle-vs-cylinder.png 
     35.. figure:: img/pringles_fig1.png 
    3936 
    40     1D plot using the default values (with 150 data points). 
     37    Schematic of model shape (Graphic from Matt Henderson, matt@matthen.com) 
    4138 
    4239Reference 
    4340--------- 
    4441 
    45 Stefan Alexandru Rautu, Private Communication. 2012. 
    46 As of 2016: stefanar@ncbs.res.in 
     42Karen Edler, Universtiy of Bath, Private Communication. 2012. 
     43Derivation by Stefan Alexandru Rautu. 
     44 
     45**Author:** Andrew Jackson **on:** 2008 
     46 
     47**Last Modified by:** Wojciech Wpotrzebowski **on:** March 20, 2016 
     48 
     49**Last Reviewed by:** Paul Butler **on:** March 21, 2016 
    4750 
    4851""" 
     
    5053from numpy import inf, pi 
    5154 
    52 name = "pringles" 
    53 title = "Pringles model for K Edler. Represents a disc that is bent in two directions." 
     55name = "pringle" 
     56title = "The Pringle model provides the form factor, $P(q)$, for a 'pringle' \ 
     57or 'saddle-shaped' disc that is bent in two directions." 
    5458description = """\ 
    5559 
Note: See TracChangeset for help on using the changeset viewer.