Changeset 6386cd8 in sasview for src/sans/models


Ignore:
Timestamp:
Apr 24, 2014 12:24:52 PM (11 years ago)
Author:
smk78
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
6d7b5dd7
Parents:
93b6fcc
Message:

More updates by SMK

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sans/models/media/model_functions.rst

    r93b6fcc r6386cd8  
    11.. model_functions.rst 
    22 
    3 .. NB: This document does not have M Gonzalez's model descriptions in it. 
    4  
    53.. This is a port of the original SasView model_functions.html to ReSTructured text 
    6 .. S King, Apr 2014 
    7 .. with thanks to A Jackson & P Kienzle for advice! 
     4.. by S King, ISIS, during and after SasView CodeCamp-II in April 2014. 
     5 
     6.. Thanks are due to A Jackson & P Kienzle for advice on RST! 
     7 
     8.. The CoreShellEllipsoidXTModel was ported and documented by R K Heenan, ISIS, Apr 2014 
     9.. The RectangularPrism models were coded and documented by M A Gonzalez, ILL, Apr 2014 
     10 
     11.. To do: 
     12.. Remove the 'This is xi' & 'This is zeta' lines before release! 
     13.. Add example parameters/plots for the CoreShellEllipsoidXTModel 
     14.. Add example parameters/plots for the RectangularPrism models 
     15.. Check the content against the NIST Igor Help File 
     16.. Wordsmith the content for consistency of style, etc 
     17 
     18 
     19 
     20.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
     21 
    822 
    923 
     
    6781This is zeta, |zeta| 
    6882 
     83 
     84 
    6985SasView Model Functions 
    7086======================= 
     
    95111 
    96112Many of our models use the form factor calculations implemented in a c-library provided by the NIST Center for Neutron 
    97 Research and thus some content and figures in this document are originated from or shared with the NIST Igor analysis 
    98 package. 
     113Research and thus some content and figures in this document are originated from or shared with the NIST SANS Igor-based 
     114analysis package. 
    99115 
    100116This software provides form factors for various particle shapes. After giving a mathematical definition of each model, 
     
    121137 
    122138Our so-called 1D scattering intensity functions provide *P(q)* for the case where the scatterer is randomly oriented. In 
    123 that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SANS 
     139that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SAS 
    124140detector will have an azimuthal symmetry around *q*\ =0 . 
    125141 
     
    209225- ParallelepipedModel_ (including magnetic 2D version) 
    210226- CSParallelepipedModel_ 
     227- RectangularPrismModel_ 
     228- RectangularHollowPrismModel_ 
     229- RectangularHollowPrismInfThinWallsModel_ 
    211230 
    212231.. _Shape-independent: 
     
    2142332.2 Shape-Independent Functions 
    215234------------------------------- 
     235 
     236(In alphabetical order) 
    216237 
    217238- AbsolutePower_Law_ 
     
    224245- FractalCoreShell_ 
    225246- GaussLorentzGel_ 
     247- GelFitModel_ 
    226248- Guinier_ 
    227249- GuinierPorod_ 
     250- LineModel_ 
    228251- Lorentz_ 
    229252- MassFractalModel_ 
    230253- MassSurfaceFractal_ 
    231 - PeakGaussModel 
    232 - PeakLorentzModel 
    233 - Poly_GaussCoil 
    234 - PolyExclVolume 
    235 - PorodModel 
    236 - RPA10Model 
    237 - StarPolymer 
     254- PeakGaussModel_ 
     255- PeakLorentzModel_ 
     256- Poly_GaussCoil_ 
     257- PolyExclVolume_ 
     258- PorodModel_ 
     259- RPA10Model_ 
     260- StarPolymer_ 
    238261- SurfaceFractalModel_ 
    239262- TeubnerStrey_ 
    240 - TwoLorentzian 
    241 - TwoPowerLaw 
    242 - UnifiedPowerRg 
    243 - LineModel 
    244 - ReflectivityModel 
    245 - ReflectivityIIModel 
    246 - GelFitModel 
     263- TwoLorentzian_ 
     264- TwoPowerLaw_ 
     265- UnifiedPowerRg_ 
     266- ReflectivityModel_ 
     267- ReflectivityIIModel_ 
    247268 
    248269.. _Structure-factor: 
     
    13901411.. image:: img/image115.JPG 
    13911412 
    1392 and its radius of gyration 
     1413and its radius-of-gyration 
    13931414 
    13941415.. image:: img/image116.JPG 
     
    18741895 
    18751896 
    1876 and its radius of gyration is 
     1897and its radius-of-gyration is 
    18771898 
    18781899.. image:: img/image109.JPG 
     
    22572278be valid. 
    22582279 
    2259 If SANS data are in absolute units, and the SLDs are correct, then *scale* should be the total volume fraction of the 
     2280If SAS data are in absolute units, and the SLDs are correct, then *scale* should be the total volume fraction of the 
    22602281"outer particle". When *S(q)* is introduced this moves to the *S(q)* volume fraction, and *scale* should then be 1.0, 
    22612282or contain some other units conversion factor (for example, if you have SAXS data). 
     
    23072328*semi_axisA* axis is parallel to the *x*-axis of the detector. 
    23082329 
    2309 The radius of gyration for this system is *Rg*\ :sup:`2` = (*Ra*\ :sup:`2` *Rb*\ :sup:`2` *Rc*\ :sup:`2`)/5. 
     2330The radius-of-gyration for this system is *Rg*\ :sup:`2` = (*Ra*\ :sup:`2` *Rb*\ :sup:`2` *Rc*\ :sup:`2`)/5. 
    23102331 
    23112332The contrast is defined as SLD(ellipsoid) - SLD(solvent). In the parameters, *semi_axisA* = *Ra* (or minor equatorial 
     
    29382959 
    29392960This model provides the form factor, *P(q)*, for a rectangular cylinder (below) where the form factor is normalized by 
    2940 the volume of the cylinder. 
     2961the volume of the cylinder. If you need to apply polydispersity, see the RectangularPrismModel_. 
    29412962 
    29422963*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background* 
     
    31223143 
    31233144 
     3145.. _RectangularPrismModel: 
     3146 
     3147**2.1.39. RectangularPrismModel** 
     3148 
     3149This model provides the form factor, *P(q)*, for a rectangular prism. 
     3150 
     3151Note that this model is almost totally equivalent to the existing ParallelepipedModel_. The only difference is that the 
     3152way the relevant parameters are defined here (*a*, *b/a*, *c/a* instead of *a*, *b*, *c*) allows to use polydispersity 
     3153with this model while keeping the shape of the prism (e.g. setting *b/a* = 1 and *c/a* = 1 and applying polydispersity 
     3154to *a* will generate a distribution of cubes of different sizes). 
     3155 
     3156*2.1.39.1. Definition* 
     3157 
     3158The 1D scattering intensity for this model was calculated by Mittelbach and Porod (Mittelbach, 1961), but the 
     3159implementation here is closer to the equations given by Nayuk and Huber (Nayuk, 2012). 
     3160 
     3161The scattering from a massive parallelepiped with an orientation with respect to the scattering vector given by |theta| 
     3162and |phi| is given by 
     3163 
     3164.. math:: 
     3165  A_P\,(q) =  \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \, \times \, 
     3166  \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \, \times \, 
     3167  \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi} 
     3168 
     3169where *A*, *B* and *C* are the sides of the parallelepiped and must fulfill :math:`A \le B \le C`, |theta| is the angle 
     3170between the *z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering 
     3171vector (lying in the *xy* plane) and the *y* axis. 
     3172 
     3173The normalized form factor in 1D is obtained averaging over all possible orientations 
     3174 
     3175.. math:: 
     3176  P(q) =  \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_P^2(q) \, \sin\theta \, d\theta \, d\phi 
     3177 
     3178The 1D scattering intensity is then calculated as 
     3179 
     3180.. math:: 
     3181  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q) 
     3182 
     3183where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the 
     3184parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute 
     3185units) *scale* represents the volume fraction (which is unitless). 
     3186 
     3187**The 2D scattering intensity is not computed by this model.** 
     3188 
     3189The returned value is scaled to units of |cm^-1| and the parameters of the RectangularPrismModel are the following 
     3190 
     3191==============  ========  ============= 
     3192Parameter name  Units     Default value 
     3193==============  ========  ============= 
     3194scale           None      1 
     3195short_side      |Ang|     35 
     3196b2a_ratio       None      1 
     3197c2a_ratio       None      1 
     3198sldPipe         |Ang^-2|  6.3e-6 
     3199sldSolv         |Ang^-2|  1.0e-6 
     3200background      |cm^-1|   0 
     3201==============  ========  ============= 
     3202 
     3203*2.1.39.2. Validation of the RectangularPrismModel* 
     3204 
     3205Validation of the code was conducted by comparing the output of the 1D model to the output of the existing 
     3206parallelepiped model. 
     3207 
     3208REFERENCES 
     3209 
     3210P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211 
     3211 
     3212R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 
     3213 
     3214 
     3215 
     3216.. _RectangularHollowPrismModel: 
     3217 
     3218**2.1.40. RectangularHollowPrismModel** 
     3219 
     3220This model provides the form factor, *P(q)*, for a hollow rectangular parallelepiped with a wall thickness |bigdelta|. 
     3221 
     3222*2.1.40.1. Definition* 
     3223 
     3224The 1D scattering intensity for this model is calculated by forming the difference of the amplitudes of two massive 
     3225parallelepipeds differing in their outermost dimensions in each direction by the same length increment 2 |bigdelta| 
     3226(Nayuk, 2012). 
     3227 
     3228As in the case of the massive parallelepiped, the scattering amplitude is computed for a particular orientation of the 
     3229parallelepiped with respect to the scattering vector and then averaged over all possible orientations, giving 
     3230 
     3231.. math:: 
     3232  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_{P\Delta}^2(q) \, 
     3233  \sin\theta \, d\theta \, d\phi 
     3234 
     3235where |theta| is the angle between the *z* axis and the longest axis of the parallelepiped, |phi| is the angle between 
     3236the scattering vector (lying in the *xy* plane) and the *y* axis, and 
     3237 
     3238.. math:: 
     3239  A_{P\Delta}\,(q) =  A \, B \, C \, \times 
     3240                      \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \, 
     3241                      \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \, 
     3242                      \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi} - 
     3243                      8 \, \bigl( \frac{A}{2} - \Delta \bigr) \, \bigl( \frac{B}{2} - \Delta \bigr) \, 
     3244                      \bigl( \frac{C}{2} - \Delta \bigr) \, \times 
     3245                      \frac{\sin \bigl[ q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta \bigr]} 
     3246                      {q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta} \, 
     3247                      \frac{\sin \bigl[ q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi \bigr]} 
     3248                      {q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi} \, 
     3249                      \frac{\sin \bigl[ q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi \bigr]} 
     3250                      {q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi} \, 
     3251 
     3252where *A*, *B* and *C* are the external sides of the parallelepiped fulfilling :math:`A \le B \le C`, and the volume *V* 
     3253of the parallelepiped is 
     3254 
     3255.. math:: 
     3256  V = A B C \, - \, (A - 2\Delta) (B - 2\Delta) (C - 2\Delta) 
     3257 
     3258The 1D scattering intensity is then calculated as 
     3259 
     3260.. math:: 
     3261  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q) 
     3262 
     3263where :math:`\rho_{\mbox{pipe}}` is the scattering length of the parallelepiped, :math:`\rho_{\mbox{solvent}}` is the 
     3264scattering length of the solvent, and (if the data are in absolute units) *scale* represents the volume fraction (which 
     3265is unitless). 
     3266 
     3267**The 2D scattering intensity is not computed by this model.** 
     3268 
     3269The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismModel are the 
     3270following 
     3271 
     3272==============  ========  ============= 
     3273Parameter name  Units     Default value 
     3274==============  ========  ============= 
     3275scale           None      1 
     3276short_side      |Ang|     35 
     3277b2a_ratio       None      1 
     3278c2a_ratio       None      1 
     3279thickness       |Ang|     1 
     3280sldPipe         |Ang^-2|  6.3e-6 
     3281sldSolv         |Ang^-2|  1.0e-6 
     3282background      |cm^-1|   0 
     3283==============  ========  ============= 
     3284 
     3285*2.1.40.2. Validation of the RectangularHollowPrismModel* 
     3286 
     3287Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown in 
     3288(Nayuk, 2012). 
     3289 
     3290REFERENCES 
     3291 
     3292R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 
     3293 
     3294 
     3295 
     3296.. _RectangularHollowPrismInfThinWallsModel: 
     3297 
     3298**2.1.41. RectangularHollowPrismInfThinWallsModel** 
     3299 
     3300This model provides the form factor, *P(q)*, for a hollow rectangular prism with infinitely thin walls. 
     3301 
     3302*2.1.41.1. Definition* 
     3303 
     3304The 1D scattering intensity for this model is calculated according to the equations given by Nayuk and Huber 
     3305(Nayuk, 2012). 
     3306 
     3307Assuming a hollow parallelepiped with infinitely thin walls, edge lengths :math:`A \le B \le C` and presenting an 
     3308orientation with respect to the scattering vector given by |theta| and |phi|, where |theta| is the angle between the 
     3309*z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering vector 
     3310(lying in the *xy* plane) and the *y* axis, the form factor is given by 
     3311 
     3312.. math:: 
     3313  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} [A_L(q)+A_T(q)]^2 
     3314  \, \sin\theta \, d\theta \, d\phi 
     3315 
     3316where 
     3317 
     3318.. math:: 
     3319  V = 2AB + 2AC + 2BC 
     3320 
     3321.. math:: 
     3322  A_L\,(q) =  8 \times \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr) 
     3323                              \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) 
     3324                              \cos \bigl( q \frac{C}{2} \cos\theta \bigr) } 
     3325                            {q^2 \, \sin^2\theta \, \sin\phi \cos\phi} 
     3326 
     3327.. math:: 
     3328  A_T\,(q) =  A_F\,(q) \times \frac{2 \, \sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \, \cos\theta} 
     3329 
     3330and 
     3331 
     3332.. math:: 
     3333  A_F\,(q) =  4 \frac{ \cos \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr) 
     3334                       \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) } 
     3335                     {q \, \cos\phi \, \sin\theta} + 
     3336              4 \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr) 
     3337                       \cos \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) } 
     3338                     {q \, \sin\phi \, \sin\theta} 
     3339 
     3340The 1D scattering intensity is then calculated as 
     3341 
     3342.. math:: 
     3343  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q) 
     3344 
     3345where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the 
     3346parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute 
     3347units) *scale* represents the volume fraction (which is unitless). 
     3348 
     3349**The 2D scattering intensity is not computed by this model.** 
     3350 
     3351The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismInfThinWallModel 
     3352are the following 
     3353 
     3354==============  ========  ============= 
     3355Parameter name  Units     Default value 
     3356==============  ========  ============= 
     3357scale           None      1 
     3358short_side      |Ang|     35 
     3359b2a_ratio       None      1 
     3360c2a_ratio       None      1 
     3361sldPipe         |Ang^-2|  6.3e-6 
     3362sldSolv         |Ang^-2|  1.0e-6 
     3363background      |cm^-1|   0 
     3364==============  ========  ============= 
     3365 
     3366*2.1.41.2. Validation of the RectangularHollowPrismInfThinWallsModel* 
     3367 
     3368Validation of the code was conducted  by qualitatively comparing the output of the 1D model to the curves shown in 
     3369(Nayuk, 2012). 
     3370 
     3371REFERENCES 
     3372 
     3373R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 
     3374 
     3375 
     3376 
    312433772.2 Shape-independent Functions 
    31253378------------------------------- 
    31263379 
    3127 The following are models used for shape-independent SANS analysis. 
     3380The following are models used for shape-independent SAS analysis. 
    31283381 
    31293382.. _Debye: 
     
    31313384**2.2.1. Debye (Gaussian Coil Model)** 
    31323385 
    3133 The Debye model is a form factor for a linear polymer chain. In addition to the radius of gyration, *Rg*, a scale factor 
    3134 *scale*, and a constant background term are included in the calculation. **NB: No size polydispersity is included in** 
    3135 **this model, use the** Poly_GaussCoil_ **Model instead** 
     3386The Debye model is a form factor for a linear polymer chain obeying Gaussian statistics (ie, it is in the theta state). 
     3387In addition to the radius-of-gyration, *Rg*, a scale factor *scale*, and a constant background term are included in the 
     3388calculation. **NB: No size polydispersity is included in this model, use the** Poly_GaussCoil_ **Model instead** 
    31363389 
    31373390.. image:: img/image172.PNG 
     
    31633416**2.2.2. BroadPeakModel** 
    31643417 
    3165 This model calculates an empirical functional form for SANS data characterized by a broad scattering peak. Many SANS 
     3418This model calculates an empirical functional form for SAS data characterized by a broad scattering peak. Many SAS 
    31663419spectra are characterized by a broad peak even though they are from amorphous soft materials. For example, soft systems 
    3167 that show a SANS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc. 
     3420that show a SAS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc. 
    31683421 
    31693422The d-spacing corresponding to the broad peak is a characteristic distance between the scattering inhomogeneities (such 
     
    32123465**2.2.3. CorrLength (Correlation Length Model)** 
    32133466 
    3214 Calculates an empirical functional form for SANS data characterized by a low-Q signal and a high-Q signal. 
     3467Calculates an empirical functional form for SAS data characterized by a low-Q signal and a high-Q signal. 
    32153468 
    32163469The returned value is scaled to units of |cm^-1|, absolute scale. 
     
    36343887a sum of a low-*q* exponential decay plus a lorentzian at higher *q*-values. 
    36353888 
     3889Also see the GelFitModel_. 
     3890 
    36363891The returned value is scaled to units of |cm^-1|, absolute scale. 
    36373892 
     
    37794034Note that 
    37804035 
    3781  the radius of gyration for a sphere of radius *R* is given by *Rg* = *R* sqrt(3/5) 
    3782  
    3783 Â the cross-sectional radius of gyration for a randomly oriented cylinder of radius *R* is given by *Rg* = *R* / sqrt(2) 
    3784  
    3785  the cross-sectional radius of gyration of a randomly oriented lamella of thickness *T* is given by *Rg* = *T* / sqrt(12) 
     4036 the radius-of-gyration for a sphere of radius *R* is given by *Rg* = *R* sqrt(3/5) 
     4037 
     4038 the cross-sectional radius-of-gyration for a randomly oriented cylinder of radius *R* is given by *Rg* = *R* / sqrt(2) 
     4039 
     4040 the cross-sectional radius-of-gyration of a randomly oriented lamella of thickness *T* is given by *Rg* = *T* / sqrt(12) 
    37864041 
    37874042For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
     
    38164071**2.2.17. PorodModel** 
    38174072 
    3818 A Porod analysis is done by linearizing the data at high q by plotting 
    3819 it as log(I) versus log(Q). In the high q region we can fit the 
    3820 following model: 
     4073This model fits the Porod function 
    38214074 
    38224075.. image:: img/image197.PNG 
    38234076 
    3824 C is the scale factor and  Sv is the specific surface area of the sample 
    3825 and ΔÏᅵ is the contrast factor. 
    3826  
    3827 The background term is added for data analysis. 
     4077to the data directly without any need for linearisation (*cf*. Log *I(q)* vs Log *q*). 
     4078 
     4079Here *C* is the scale factor and *Sv* is the specific surface area (ie, surface area / volume) of the sample, and 
     4080|drho| is the contrast factor. 
    38284081 
    38294082For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
     
    38384091==============  ========  ============= 
    38394092 
     4093REFERENCE 
     4094 
     4095None. 
     4096 
    38404097 
    38414098 
     
    38444101**2.2.18. PeakGaussModel** 
    38454102 
    3846 Model describes a Gaussian shaped peak including a flat background, 
     4103This model describes a Gaussian shaped peak on a flat background 
    38474104 
    38484105.. image:: img/image198.PNG 
    38494106 
    3850 with the peak having height of I0 centered at qpk having standard 
    3851 deviation of B.  The fwhm is 2.354\*B.   
    3852  
    3853 Parameters I0, B, qpk, and BGD can all be adjusted during fitting. **NB: These don't match the table!** 
    3854  
    3855 REFERENCE 
    3856  
    3857 None 
     4107with the peak having height of *I0* centered at *q0* and having a standard deviation of *B*.  The FWHM (full-width 
     4108half-maximum) is 2.354 B.   
    38584109 
    38594110For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
     
    38744125*Figure. 1D plot using the default values (w/500 data points).* 
    38754126 
     4127REFERENCE 
     4128 
     4129None. 
     4130 
    38764131 
    38774132 
     
    38804135**2.2.19. PeakLorentzModel** 
    38814136 
    3882 Model describes a Lorentzian shaped peak including a flat background, 
     4137This model describes a Lorentzian shaped peak on a flat background 
    38834138 
    38844139.. image:: img/image200.PNG 
    38854140 
    3886 with the peak having height of I0 centered at qpk having a hwhm 
    3887 (half-width-half-maximum) of B.  
    3888  
    3889 The parameters I0, B, qpk, and BGD can all be adjusted during fitting. **NB: These don't match the table!** 
    3890  
    3891 REFERENCE 
    3892  
    3893 None 
     4141with the peak having height of *I0* centered at *q0* and having a HWHM (half-width half-maximum) of B.  
    38944142 
    38954143For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
     
    39104158*Figure. 1D plot using the default values (w/500 data points).* 
    39114159 
     4160REFERENCE 
     4161 
     4162None. 
     4163 
    39124164 
    39134165 
     
    39164168**2.2.20. Poly_GaussCoil (Model)** 
    39174169 
    3918 Polydisperse Gaussian Coil: Calculate an empirical functional form for 
    3919 scattering from a polydisperse polymer chain ina good solvent. The 
    3920 polymer is polydisperse with a Schulz-Zimm polydispersity of the 
    3921 molecular weight distribution.  
     4170This model calculates an empirical functional form for the scattering from a **polydisperse** polymer chain in the 
     4171theta state assuming a Schulz-Zimm type molecular weight distribution. Polydispersity on the radius-of-gyration is also 
     4172provided for. 
    39224173 
    39234174The returned value is scaled to units of |cm^-1|, absolute scale. 
    39244175 
     4176*2.2.20.1. Definition* 
     4177 
     4178The scattering intensity *I(q)* is calculated as 
     4179 
    39254180.. image:: img/image202.PNG 
    39264181 
    3927 where the dimensionless chain dimension is: 
     4182where the dimensionless chain dimension is 
    39284183 
    39294184.. image:: img/image203.PNG 
    39304185 
    3931 and the polydispersion is 
     4186and the polydispersity is 
    39324187 
    39334188.. image:: img/image204.PNG 
    39344189 
    3935 The scattering intensity *I(q)* is calculated as: 
    3936  
    3937 The polydispersion in rg is provided. 
    3938  
    39394190For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
    39404191 
    39414192.. image:: img/image040.GIF 
    39424193 
    3943 TEST DATASET 
    3944  
    3945 This example dataset is produced by running the Poly_GaussCoil, using 200 data points, *qmin* = 0.001 |Ang^-1| , 
    3946 qmax = 0.7 |Ang^-1| and the default values below. 
     4194This example dataset is produced using 200 data points, using 200 data points, 
     4195*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values 
    39474196 
    39484197==============  ========  ============= 
     
    39614210REFERENCE 
    39624211 
    3963 Glatter & Kratky - p404 
     4212O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982) 
     4213Page 404 
    39644214 
    39654215J S Higgins, and H C Benoit, Polymers and Neutron Scattering, Oxford Science Publications (1996) 
     
    39714221**2.2.21. PolymerExclVolume (Model)** 
    39724222 
    3973 Calculates the scattering from polymers with excluded volume effects. 
     4223This model describes the scattering from polymer chains subject to excluded volume effects, and has been used as a 
     4224template for describing mass fractals. 
    39744225 
    39754226The returned value is scaled to units of |cm^-1|, absolute scale. 
    39764227 
    3977 The returned value is P(Q) as written in equation (2), plus the 
    3978 incoherent background term. The result is in the units of |cm^-1|, 
    3979 absolute scale. 
    3980  
    3981 A model describing polymer chain conformations with excluded volume was 
    3982 introduced to describe the conformation of polymer chains, and has been 
    3983 used as a template for describing mass fractals. The form factor for 
    3984 that model (Benoit, 1957) was originally presented in the following 
    3985 integral form: 
    3986  
    3987 .. image:: img/image206.JPG     (1) 
    3988  
    3989 Here n is the excluded volume parameter which is related to the Porod 
    3990 exponent m as n = 1/m, a is the polymer chain statistical segment length 
    3991 and n is the degree of polymerization. This integral was later put into 
    3992 an almost analytical form (Hammouda, 1993) as follows: 
    3993  
    3994 .. image:: img/image207.JPG    (2) 
    3995  
    3996 Here, g(x,U) is the incomplete gamma function which is a built-in 
    3997 function in computer libraries. 
     4228*2.2.21.1 Definition* 
     4229 
     4230The form factor  was originally presented in the following integral form (Benoit, 1957) 
     4231 
     4232.. image:: img/image206.JPG 
     4233 
     4234where |nu| is the excluded volume parameter (which is related to the Porod exponent *m* as |nu| = 1 / *m*), *a* is the 
     4235statistical segment length of the polymer chain, and *n* is the degree of polymerization. This integral was later put 
     4236into an almost analytical form as follows (Hammouda, 1993) 
     4237 
     4238.. image:: img/image207.JPG 
     4239 
     4240where |gamma|\ *(x,U)* is the incomplete gamma function 
    39984241 
    39994242.. image:: img/image208.JPG 
    40004243 
    4001 The variable U is given in terms of the scattering variable Q as: 
     4244and the variable *U* is given in terms of the scattering vector *Q* as 
    40024245 
    40034246.. image:: img/image209.JPG 
    40044247 
    4005 The radius of gyration squared has been defined as: 
     4248The square of the radius-of-gyration is defined as 
    40064249 
    40074250.. image:: img/image210.JPG 
    40084251 
    4009 Note that this model describing polymer chains with excluded volume 
    4010 applies only in the mass fractal range ( 5/3 <= m <= 3) and does not 
    4011 apply to surface fractals ( 3 < m <= 4). It does not reproduce the rigid 
    4012 rod limit (m = 1) because it assumes chain flexibility from the outset.  
    4013 It may cover a portion of the semiflexible chain range ( 1 < m < 5/3). 
    4014  
    4015 The low-Q expansion yields the Guinier form and the high-Q expansion 
    4016 yields the Porod form which is given by: 
     4252Note that this model applies only in the mass fractal range (ie, 5/3 <= *m* <= 3) and **does not** apply to surface 
     4253fractals (3 < *m* <= 4). It also does not reproduce the rigid rod limit (*m* = 1) because it assumes chain flexibility 
     4254from the outset. It may cover a portion of the semi-flexible chain range (1 < *m* < 5/3). 
     4255 
     4256A low-*Q* expansion yields the Guinier form and a high-*Q* expansion yields the Porod form which is given by 
    40174257 
    40184258.. image:: img/image211.JPG 
    40194259 
    4020 Here G(x) = g(x,inf) is the gamma function. The asymptotic limit is 
    4021 dominated by the first term: 
     4260Here |biggamma|\ *(x)* = |gamma|\ *(x,inf)* is the gamma function. 
     4261 
     4262The asymptotic limit is dominated by the first term 
    40224263 
    40234264.. image:: img/image212.JPG 
    40244265 
    4025 The special case when n = 0.5 (or m = 1/n = 2) corresponds to Gaussian 
    4026 chains for which the form factor is given by the familiar Debye 
    4027 function. 
     4266The special case when |nu| = 0.5 (or *m* = 1/|nu| = 2) corresponds to Gaussian chains for which the form factor is given 
     4267by the familiar Debye_ function. 
    40284268 
    40294269.. image:: img/image213.JPG 
    40304270 
    4031 The form factor given by Eq. 2 is the calculated result, and is plotted 
    4032 below for the default parameter values. 
    4033  
    4034 REFERENCE 
    4035  
    4036 H Benoit, *Comptes Rendus*, 245 (1957) 2244-2247 
    4037  
    4038 B Hammouda, *SANS from Homogeneous Polymer Mixtures ­ A Unified Overview*, *Advances in Polym. Sci.*, 106 (1993) 87-133 
    4039  
    40404271For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
    40414272 
    40424273.. image:: img/image040.GIF 
    40434274 
    4044 TEST DATASET 
    4045  
    4046 This example dataset is produced, using 200 data points, qmin = 0.001 |Ang^-1| ,  qmax = 0.2 |Ang^-1|  and the 
    4047 default values below. 
     4275This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.2 |Ang^-1| and the default 
     4276values 
    40484277 
    40494278===================  ========  ============= 
     
    40604289*Figure. 1D plot using the default values (w/500 data points).* 
    40614290 
     4291REFERENCE 
     4292 
     4293H Benoit, *Comptes Rendus*, 245 (1957) 2244-2247 
     4294 
     4295B Hammouda, *SANS from Homogeneous Polymer Mixtures ­ A Unified Overview*, *Advances in Polym. Sci.*, 106 (1993) 87-133 
     4296 
    40624297 
    40634298 
     
    40664301**2.2.22. RPA10Model** 
    40674302 
    4068 Calculates the macroscopic scattering intensity (units of cm^-1) for a 
    4069 multicomponent homogeneous mixture of polymers using the Random Phase 
    4070 Approximation. This general formalism contains 10 specific cases: 
    4071  
    4072 Case 0: C/D Binary mixture of homopolymers 
    4073  
    4074 Case 1: C-D Diblock copolymer 
    4075  
    4076 Case 2: B/C/D Ternary mixture of homopolymers 
    4077  
    4078 Case 3: C/C-D Mixture of a homopolymer B and a diblock copolymer C-D 
    4079  
    4080 Case 4: B-C-D Triblock copolymer 
    4081  
    4082 Case 5: A/B/C/D Quaternary mixture of homopolymers 
    4083  
    4084 Case 6: A/B/C-D Mixture of two homopolymers A/B and a diblock C-D 
    4085  
    4086 Case 7: A/B-C-D Mixture of a homopolymer A and a triblock B-C-D 
    4087  
    4088 Case 8: A-B/C-D Mixture of two diblock copolymers A-B and C-D 
    4089  
    4090 Case 9: A-B-C-D Four-block copolymer 
    4091  
    4092 Note: the case numbers are different from the IGOR/NIST SANS package. 
    4093  
    4094 Only one case can be used at any one time.  Plotting a different case 
    4095 will overwrite the original parameter waves. 
    4096  
    4097 The returned value is scaled to units of [cm-1]. 
    4098  
    4099 Component D is assumed to be the "background" component (all contrasts 
    4100 are calculated with respect to component D). 
    4101  
    4102 Scattering contrast for a C/D blend= {SLD (component C) - SLD (component 
    4103 D)}2 
    4104  
    4105 Depending on what case is used, the number of fitting parameters varies. 
    4106 These represent the segment lengths (ba, bb, etc) and the Chi parameters 
    4107 (Kab, Kac, etc). The last one of these is a scaling factor to be held 
    4108 constant equal to unity. 
    4109  
    4110 The input parameters are the degree of polymerization, the volume 
    4111 fractions for each component the specific volumes and the neutron 
    4112 scattering length densities. 
    4113  
    4114 This RPA (mean field) formalism applies only when the multicomponent 
    4115 polymer mixture is in the homogeneous mixed-phase region. 
    4116  
    4117 REFERENCE 
    4118  
    4119 A Z Akcasu, R Klein and B Hammouda, *Macromolecules*, 26 (1993) 4136 
    4120  
    4121 Fitting parameters for Case0 Model 
     4303Calculates the macroscopic scattering intensity (units of |cm^-1|) for a multicomponent homogeneous mixture of polymers 
     4304using the Random Phase Approximation. This general formalism contains 10 specific cases 
     4305 
     4306Case 0: C/D binary mixture of homopolymers 
     4307 
     4308Case 1: C-D diblock copolymer 
     4309 
     4310Case 2: B/C/D ternary mixture of homopolymers 
     4311 
     4312Case 3: C/C-D mixture of a homopolymer B and a diblock copolymer C-D 
     4313 
     4314Case 4: B-C-D triblock copolymer 
     4315 
     4316Case 5: A/B/C/D quaternary mixture of homopolymers 
     4317 
     4318Case 6: A/B/C-D mixture of two homopolymers A/B and a diblock C-D 
     4319 
     4320Case 7: A/B-C-D mixture of a homopolymer A and a triblock B-C-D 
     4321 
     4322Case 8: A-B/C-D mixture of two diblock copolymers A-B and C-D 
     4323 
     4324Case 9: A-B-C-D tetra-block copolymer 
     4325 
     4326**NB: these case numbers are different from those in the NIST SANS package!** 
     4327 
     4328Only one case can be used at any one time. 
     4329 
     4330The returned value is scaled to units of |cm^-1|, absolute scale. 
     4331 
     4332The RPA (mean field) formalism only applies only when the multicomponent polymer mixture is in the homogeneous 
     4333mixed-phase region. 
     4334 
     4335**Component D is assumed to be the "background" component (ie, all contrasts are calculated with respect to** 
     4336**component D).** So the scattering contrast for a C/D blend = [SLD(component C) - SLD(component D)]\ :sup:`2`. 
     4337 
     4338Depending on which case is being used, the number of fitting parameters - the segment lengths (ba, bb, etc) and |chi| 
     4339parameters (Kab, Kac, etc) - vary. The *scale* parameter should be held equal to unity. 
     4340 
     4341The input parameters are the degrees of polymerization, the volume fractions, the specific volumes, and the neutron 
     4342scattering length densities for each component. 
     4343 
     4344Fitting parameters for a Case 0 Model 
    41224345 
    41234346=======================  ========  ============= 
     
    41314354=======================  ========  ============= 
    41324355 
    4133 Fixed parameters for Case0 Model 
     4356Fixed parameters for a Case 0 Model 
    41344357 
    41354358=======================  ========  ============= 
     
    41504373*Figure. 1D plot using the default values (w/500 data points).* 
    41514374 
     4375REFERENCE 
     4376 
     4377A Z Akcasu, R Klein and B Hammouda, *Macromolecules*, 26 (1993) 4136 
    41524378 
    41534379 
     
    41574383**2.2.23. TwoLorentzian (Model)** 
    41584384 
    4159 Calculate an empirical functional form for SANS data characterized by a 
    4160 two Lorentzian functions. 
     4385This model calculates an empirical functional form for SAS data characterized by two Lorentzian-type functions. 
    41614386 
    41624387The returned value is scaled to units of |cm^-1|, absolute scale. 
    41634388 
    4164 The scattering intensity *I(q)* is calculated by:  
     4389*2.2.23.1. Definition* 
     4390 
     4391The scattering intensity *I(q)* is calculated as 
    41654392 
    41664393.. image:: img/image216.JPG  
    41674394 
    4168 A = Lorentzian scale #1 
    4169  
    4170 C = Lorentzian scale #2  
    4171  
    4172 where scale is the peak height centered at q0, and B refers to the 
    4173 standard deviation of the function. 
    4174  
    4175 The background term is added for data analysis. 
     4395where *A* = Lorentzian scale factor #1, *C* = Lorentzian scale #2, |xi|\ :sub:`1` and |xi|\ :sub:`2` are the 
     4396corresponding correlation lengths, and *n* and *m* are the respective power law exponents (set *n* = *m* = 2 for 
     4397Ornstein-Zernicke behaviour). 
    41764398 
    41774399For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
    41784400 
    41794401.. image:: img/image040.GIF 
    4180  
    4181 **Default input parameter values** 
    41824402 
    41834403===============================  ========  ============= 
     
    41994419REFERENCE 
    42004420 
    4201 None 
     4421None. 
    42024422 
    42034423 
     
    42074427**2.2.24. TwoPowerLaw (Model)** 
    42084428 
    4209 Calculate an empirical functional form for SANS data characterized by 
    4210 two power laws. 
     4429This model calculates an empirical functional form for SAS data characterized by two power laws. 
    42114430 
    42124431The returned value is scaled to units of |cm^-1|, absolute scale. 
    42134432 
    4214 The scattering intensity *I(q)* is calculated by: 
     4433*2.2.24.1. Definition* 
     4434 
     4435The scattering intensity *I(q)* is calculated as 
    42154436 
    42164437.. image:: img/image218.JPG 
    42174438 
    4218 qc is the location of the crossover from one slope to the other. The 
    4219 scaling A, sets the overall intensity of the lower Q power law region. 
    4220 The scaling of the second power law region is scaled to match the first. 
    4221 Be sure to enter the power law exponents as positive values. 
     4439where *qc* is the location of the crossover from one slope to the other. The scaling *coef_A* sets the overall 
     4440intensity of the lower *q* power law region. The scaling of the second power law region is then automatically scaled to 
     4441match the first. 
     4442 
     4443**NB: Be sure to enter the power law exponents as positive values!** 
    42224444 
    42234445For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
    42244446 
    42254447.. image:: img/image040.GIF 
    4226  
    4227 **Default input parameter values** 
    42284448 
    42294449==============  ========  ============= 
     
    42414461*Figure. 1D plot using the default values (w/500 data points).* 
    42424462 
     4463REFERENCE 
     4464 
     4465None. 
     4466 
    42434467 
    42444468 
     
    42474471**2.2.25. UnifiedPowerRg (Beaucage Model)** 
    42484472 
     4473This model deploys the empirical multiple level unified Exponential/Power-law fit method developed by G Beaucage. Four 
     4474functions are included so that 1, 2, 3, or 4 levels can be used. In addition a 0 level has been added which simply 
     4475calculates 
     4476 
     4477*I(q)* = *scale* / *q* + *background* 
     4478 
    42494479The returned value is scaled to units of |cm^-1|, absolute scale.  
    42504480 
    4251 Note that the level 0 is an extra function that is the inverse function; 
    4252 I (q) = scale/q + background. 
    4253  
    4254 Otherwise, program incorporates the empirical multiple level unified 
    4255 Exponential/Power-law fit method developed by G Beaucage. Four 
    4256 functions are included so that One, Two, Three, or Four levels can be 
    4257 used. 
    4258  
    4259 The empirical expressions are able to reasonably approximate the 
    4260 scattering from many different types of particles, including fractal 
    4261 clusters, random coils (Debye equation), ellipsoidal particles, etc.  
     4481The Beaucage method is able to reasonably approximate the scattering from many different types of particles, including 
     4482fractal clusters, random coils (Debye equation), ellipsoidal particles, etc.  
     4483 
     4484*2.2.25.1 Definition* 
     4485 
    42624486The empirical fit function is  
    42634487 
    42644488.. image:: img/image220.JPG 
    42654489 
    4266 For each level, the four parameters Gi, Rg,i, Bi and Pi must be chosen.  
    4267  
    4268 For example, to approximate the scattering from random coils (Debye 
    4269 equation), set Rg,i as the Guinier radius, Pi = 2, and Bi = 2 Gi / Rg,i  
    4270  
    4271 See the listed references for further information on choosing the 
    4272 parameters. 
     4490For each level, the four parameters *Gi*, *Rg,i*, *Bi* and *Pi* must be chosen.  
     4491 
     4492For example, to approximate the scattering from random coils (Debye_ equation), set *Rg,i* as the Guinier radius, 
     4493*Pi* = 2, and *Bi* = 2 *Gi* / *Rg,i*  
     4494 
     4495See the references for further information on choosing the parameters. 
    42734496 
    42744497For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
    42754498 
    42764499.. image:: img/image040.GIF 
    4277  
    4278 **Default input parameter values** 
    42794500 
    42804501==============  ========  ============= 
     
    42994520REFERENCE 
    43004521 
    4301 G Beaucage (1995).  J. Appl. Cryst., vol. 28, p717-728. 
    4302  
    4303 G Beaucage (1996).  J. Appl. Cryst., vol. 29, p134-146. 
     4522G Beaucage, *J. Appl. Cryst.*, 28 (1995) 717-728 
     4523 
     4524G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146 
    43044525 
    43054526 
     
    43094530**2.2.26. LineModel** 
    43104531 
    4311 This is a linear function that calculates: 
     4532This calculates the simple linear function 
    43124533 
    43134534.. image:: img/image222.PNG 
    43144535 
    4315 where A and B are the coefficients of the first and second order terms. 
    4316  
    4317 **Note:** For 2D plot, *I(q)* = *I(qx)* / *I(qy)*  which is defined differently 
    4318 from other shape independent models. 
    4319  
    4320 ==============  ========  ============= 
    4321 Parameter name  Units     Default value 
    4322 ==============  ========  ============= 
    4323 A               |cm^-1|   1.0 
    4324 B               |Ang|     1.0 
    4325 ==============  ========  ============= 
     4536**NB: For 2D plots,** *I(q)* = *I(qx)*\ *\ *I(qy)*, **which is a different definition to other shape independent models.** 
     4537 
     4538==============  ==============  ============= 
     4539Parameter name  Units           Default value 
     4540==============  ==============  ============= 
     4541A               |cm^-1|         1.0 
     4542B               |Ang|\ |cm^-1|  1.0 
     4543==============  ==============  ============= 
     4544 
     4545REFERENCE 
     4546 
     4547None. 
     4548 
     4549 
     4550 
     4551.. _GelFitModel: 
     4552 
     4553**2.2.27. GelFitModel** 
     4554 
     4555*This model was implemented by an interested user!* 
     4556 
     4557Unlike a concentrated polymer solution, the fine-scale polymer distribution in a gel involves at least two 
     4558characteristic length scales, a shorter correlation length (*a1*) to describe the rapid fluctuations in the position 
     4559of the polymer chains that ensure thermodynamic equilibrium, and a longer distance (denoted here as *a2*) needed to 
     4560account for the static accumulations of polymer pinned down by junction points or clusters of such points. The latter 
     4561is derived from a simple Guinier function. 
     4562 
     4563Also see the GaussLorentzGel_ Model. 
     4564 
     4565*2.2.27.1. Definition* 
     4566 
     4567The scattered intensity *I(q)* is calculated as 
     4568 
     4569.. image:: img/image233.GIF 
     4570 
     4571where 
     4572 
     4573.. image:: img/image234.GIF 
     4574 
     4575Note that the first term reduces to the Ornstein-Zernicke equation when *D* = 2; ie, when the Flory exponent is 0.5 
     4576(theta conditions). In gels with significant hydrogen bonding *D* has been reported to be ~2.6 to 2.8. 
     4577 
     4578============================  ========  ============= 
     4579Parameter name                Units     Default value 
     4580============================  ========  ============= 
     4581Background                    |cm^-1|   0.01 
     4582Guinier scale    (= *I(0)G*)  |cm^-1|   1.7 
     4583Lorentzian scale (= *I(0)L*)  |cm^-1|   3.5 
     4584Radius of gyration  (= *Rg*)  |Ang|     104 
     4585Fractal exponent     (= *D*)  None      2 
     4586Correlation length  (= *a1*)  |Ang|     16 
     4587============================  ========  ============= 
     4588 
     4589.. image:: img/image235.GIF 
     4590 
     4591*Figure. 1D plot using the default values (w/300 data points).* 
     4592 
     4593REFERENCE 
     4594 
     4595Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, J. Chem. Phys. 1992, 97 (9), 6829-6841 
     4596 
     4597Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, Macromolecules 1991, 24, 543-548 
     4598 
     4599 
     4600 
     4601.. _StarPolymer: 
     4602 
     4603**2.2.28. Star Polymer with Gaussian Statistics** 
     4604 
     4605This model is also known as the Benoit Star model. 
     4606 
     4607*2.2.28.1. Definition* 
     4608 
     4609For a star with *f* arms: 
     4610 
     4611.. image:: img/star1.PNG 
     4612 
     4613where 
     4614 
     4615.. image:: img/star2.PNG 
     4616 
     4617and 
     4618 
     4619.. image:: img/star3.PNG 
     4620 
     4621is the square of the ensemble average radius-of-gyration of an arm. 
     4622 
     4623REFERENCE 
     4624 
     4625H Benoit,   J. Polymer Science.,  11, 596-599  (1953) 
    43264626 
    43274627 
     
    43294629.. _ReflectivityModel: 
    43304630 
    4331 **2.2.27. ReflectivityModel** 
    4332  
    4333 This model calculates the reflectivity and uses the Parrett algorithm. 
    4334 Up to nine film layers are supported between Bottom(substrate) and 
    4335 Medium(Superstrate where the neutron enters the first top film). Each 
    4336 layers are composed of [ Âœ of the interface(from the previous layer or 
    4337 substrate) + flat portion + Âœ of the interface(to the next layer or 
    4338 medium)]. Only two simple interfacial functions are selectable, error 
    4339 function and linear function. The each interfacial thickness is 
    4340 equivalent to (- 2.5 sigma to +2.5 sigma for the error function, 
    4341 sigma=roughness). 
    4342  
    4343 Note: This model was contributed by an interested user. 
     4631**2.2.29. ReflectivityModel** 
     4632 
     4633*This model was contributed by an interested user!* 
     4634 
     4635This model calculates **reflectivity** using the Parrett algorithm. 
     4636 
     4637Up to nine film layers are supported between Bottom(substrate) and Medium(Superstrate) where the neutron enters the 
     4638first top film. Each of the layers are composed of 
     4639 
     4640[Âœ of the interface (from the previous layer or substrate) + flat portion + Âœ of the interface (to the next layer or medium)] 
     4641 
     4642Two simple functions are provided to describe the interfacial density distribution; a linear function and an error 
     4643function. The interfacial thickness is equivalent to (-2.5 |sigma| to +2.5 |sigma| for the error function, where 
     4644|sigma| = roughness). 
     4645 
     4646Also see ReflectivityIIModel_. 
    43444647 
    43454648.. image:: img/image231.BMP 
    43464649 
    4347 *Figure. Comparison (using the SLD profile below) with NISTweb calculation (circles)* 
     4650*Figure. Comparison (using the SLD profile below) with the NIST web calculation (circles)* 
    43484651http://www.ncnr.nist.gov/resources/reflcalc.html 
    43494652 
    43504653.. image:: img/image232.GIF 
    43514654 
    4352 *Figure. SLD profile used for the calculation(above).* 
     4655*Figure. SLD profile used for the calculation (above).* 
     4656 
     4657REFERENCE 
     4658 
     4659None. 
    43534660 
    43544661 
     
    43564663.. _ReflectivityIIModel: 
    43574664 
    4358 **2.2.28. ReflectivityIIModel** 
    4359  
    4360 Â Â Â  Same as the ReflectivityModel except that the it is more 
    4361 customizable. More interfacial functions are supplied. The number of 
    4362 points (npts_inter) for each interface can be choosen.     The constant 
    4363 (A below but 'nu' as a parameter name of the model) for exp, erf, or 
    4364 power-law is an input. The SLD at the interface between layers, 
    4365 *rinter_i*, is calculated with a function chosen by a user, where the 
    4366 functions are: 
    4367  
    4368 1) Erf; 
     4665**2.2.30. ReflectivityIIModel** 
     4666 
     4667*This model was contributed by an interested user!* 
     4668 
     4669This **reflectivity** model is a more flexible version of ReflectivityModel_. More interfacial density 
     4670functions are supported, and the number of points (*npts_inter*) for each interface can be chosen. 
     4671 
     4672The SLD at the interface between layers, |rho|\ *inter_i*, is calculated with a function chosen by a user, where the 
     4673available functions are 
     4674 
     46751) Erf 
    43694676 
    43704677.. image:: img/image051.GIF 
    43714678 
    4372 2) Power-Law; 
     46792) Power-Law 
    43734680 
    43744681.. image:: img/image050.GIF 
    43754682 
    4376 3) Exp; 
     46833) Exp 
    43774684 
    43784685.. image:: img/image049.GIF 
    43794686 
    4380 Â Â Â  Note: This model was implemented by an interested user. 
    4381  
    4382  
    4383  
    4384 .. _GelFitModel: 
    4385  
    4386 **2.2.29. GelFitModel** 
    4387  
    4388 Â Â Â  Unlike a concentrated polymer solution, the fine-scale polymer 
    4389 distribution in a gel involves at least two characteristic length 
    4390 scales, a shorter correlation length (a1) to describe the rapid 
    4391 fluctuations in the position of the polymer chains that ensure 
    4392 thermodynamic equilibrium, and a longer distance (denoted here as a2) 
    4393 needed to account for the static accumulations of polymer pinned down by 
    4394 junction points or clusters of such points. The letter is derived from a 
    4395 simple Guinier function. 
    4396  
    4397 The scattered intensity *I(q)* is then calculated as: 
    4398  
    4399 .. image:: img/image233.GIF 
    4400  
    4401 Where: 
    4402  
    4403 .. image:: img/image234.GIF 
    4404  
    4405 Â Â Â  Note the first term reduces to the Ornstein-Zernicke equation when 
    4406 D=2; ie, when the Flory exponent is 0.5 (theta conditions).   In gels 
    4407 with significant hydrogen bonding D has been reported to be ~2.6 to 2.8. 
    4408  
    4409 Â Â Â  Note: This model was implemented by an interested user. 
    4410  
    4411 **Default input parameter values** 
    4412  
    4413 ==================  ========  ============= 
    4414 Parameter name      Units     Default value 
    4415 ==================  ========  ============= 
    4416 Background          |cm^-1|   0.01 
    4417 Guinier scale       |cm^-1|   1.7 
    4418 Lorentzian scale    |cm^-1|   3.5 
    4419 Radius of gyration  |Ang|     104 
    4420 Fractal exponent    None      2 
    4421 Correlation length  |Ang|     16 
    4422 ==================  ========  ============= 
    4423  
    4424 .. image:: img/image235.GIF 
    4425  
    4426 *Figure. 1D plot using the default values (w/300 data points, 
    4427 qmin=0.001, and qmax=0.3).* 
    4428  
    4429 REFERENCE 
    4430  
    4431 Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, J. Chem. Phys. 1992, 97 (9), 6829-6841 
    4432  
    4433 Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, Macromolecules 1991, 24, 543-548 
    4434  
    4435  
    4436  
    4437 .. _StarPolymer: 
    4438  
    4439 **2.2.30. Star Polymer with Gaussian Statistics** 
    4440  
    4441 For a star with *f* arms: 
    4442  
    4443 .. image:: img/star1.PNG 
    4444  
    4445 .. image:: img/star2.PNG 
    4446  
    4447 .. image:: img/star3.PNG 
    4448  
    4449 where is the ensemble average radius of gyration squared of an arm. 
    4450  
    4451 REFERENCE 
    4452  
    4453 H Benoit,   J. Polymer Science.,  11, 596-599  (1953) 
     4687The constant *A* in the expressions above (but the parameter *nu* in the model!) is an input. 
     4688 
     4689REFERENCE 
     4690 
     4691None. 
    44544692 
    44554693 
     
    44584696------------------------------ 
    44594697 
    4460 The information in this section is originated from NIST SANS IgorPro package. 
     4698The information in this section originated from NIST SANS package. 
    44614699 
    44624700.. _HardSphereStructure: 
Note: See TracChangeset for help on using the changeset viewer.