Changeset 6386cd8 in sasview
- Timestamp:
- Apr 24, 2014 12:24:52 PM (11 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- 6d7b5dd7
- Parents:
- 93b6fcc
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sans/models/media/model_functions.rst
r93b6fcc r6386cd8 1 1 .. model_functions.rst 2 2 3 .. NB: This document does not have M Gonzalez's model descriptions in it.4 5 3 .. This is a port of the original SasView model_functions.html to ReSTructured text 6 .. S King, Apr 2014 7 .. with thanks to A Jackson & P Kienzle for advice! 4 .. by S King, ISIS, during and after SasView CodeCamp-II in April 2014. 5 6 .. Thanks are due to A Jackson & P Kienzle for advice on RST! 7 8 .. The CoreShellEllipsoidXTModel was ported and documented by R K Heenan, ISIS, Apr 2014 9 .. The RectangularPrism models were coded and documented by M A Gonzalez, ILL, Apr 2014 10 11 .. To do: 12 .. Remove the 'This is xi' & 'This is zeta' lines before release! 13 .. Add example parameters/plots for the CoreShellEllipsoidXTModel 14 .. Add example parameters/plots for the RectangularPrism models 15 .. Check the content against the NIST Igor Help File 16 .. Wordsmith the content for consistency of style, etc 17 18 19 20 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 21 8 22 9 23 … … 67 81 This is zeta, |zeta| 68 82 83 84 69 85 SasView Model Functions 70 86 ======================= … … 95 111 96 112 Many of our models use the form factor calculations implemented in a c-library provided by the NIST Center for Neutron 97 Research and thus some content and figures in this document are originated from or shared with the NIST Igor analysis98 package.113 Research and thus some content and figures in this document are originated from or shared with the NIST SANS Igor-based 114 analysis package. 99 115 100 116 This software provides form factors for various particle shapes. After giving a mathematical definition of each model, … … 121 137 122 138 Our so-called 1D scattering intensity functions provide *P(q)* for the case where the scatterer is randomly oriented. In 123 that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SA NS139 that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SAS 124 140 detector will have an azimuthal symmetry around *q*\ =0 . 125 141 … … 209 225 - ParallelepipedModel_ (including magnetic 2D version) 210 226 - CSParallelepipedModel_ 227 - RectangularPrismModel_ 228 - RectangularHollowPrismModel_ 229 - RectangularHollowPrismInfThinWallsModel_ 211 230 212 231 .. _Shape-independent: … … 214 233 2.2 Shape-Independent Functions 215 234 ------------------------------- 235 236 (In alphabetical order) 216 237 217 238 - AbsolutePower_Law_ … … 224 245 - FractalCoreShell_ 225 246 - GaussLorentzGel_ 247 - GelFitModel_ 226 248 - Guinier_ 227 249 - GuinierPorod_ 250 - LineModel_ 228 251 - Lorentz_ 229 252 - MassFractalModel_ 230 253 - MassSurfaceFractal_ 231 - PeakGaussModel 232 - PeakLorentzModel 233 - Poly_GaussCoil 234 - PolyExclVolume 235 - PorodModel 236 - RPA10Model 237 - StarPolymer 254 - PeakGaussModel_ 255 - PeakLorentzModel_ 256 - Poly_GaussCoil_ 257 - PolyExclVolume_ 258 - PorodModel_ 259 - RPA10Model_ 260 - StarPolymer_ 238 261 - SurfaceFractalModel_ 239 262 - TeubnerStrey_ 240 - TwoLorentzian 241 - TwoPowerLaw 242 - UnifiedPowerRg 243 - LineModel 244 - ReflectivityModel 245 - ReflectivityIIModel 246 - GelFitModel 263 - TwoLorentzian_ 264 - TwoPowerLaw_ 265 - UnifiedPowerRg_ 266 - ReflectivityModel_ 267 - ReflectivityIIModel_ 247 268 248 269 .. _Structure-factor: … … 1390 1411 .. image:: img/image115.JPG 1391 1412 1392 and its radius ofgyration1413 and its radius-of-gyration 1393 1414 1394 1415 .. image:: img/image116.JPG … … 1874 1895 1875 1896 1876 and its radius ofgyration is1897 and its radius-of-gyration is 1877 1898 1878 1899 .. image:: img/image109.JPG … … 2257 2278 be valid. 2258 2279 2259 If SA NS data are in absolute units, and the SLDs are correct, then *scale* should be the total volume fraction of the2280 If SAS data are in absolute units, and the SLDs are correct, then *scale* should be the total volume fraction of the 2260 2281 "outer particle". When *S(q)* is introduced this moves to the *S(q)* volume fraction, and *scale* should then be 1.0, 2261 2282 or contain some other units conversion factor (for example, if you have SAXS data). … … 2307 2328 *semi_axisA* axis is parallel to the *x*-axis of the detector. 2308 2329 2309 The radius ofgyration for this system is *Rg*\ :sup:`2` = (*Ra*\ :sup:`2` *Rb*\ :sup:`2` *Rc*\ :sup:`2`)/5.2330 The radius-of-gyration for this system is *Rg*\ :sup:`2` = (*Ra*\ :sup:`2` *Rb*\ :sup:`2` *Rc*\ :sup:`2`)/5. 2310 2331 2311 2332 The contrast is defined as SLD(ellipsoid) - SLD(solvent). In the parameters, *semi_axisA* = *Ra* (or minor equatorial … … 2938 2959 2939 2960 This model provides the form factor, *P(q)*, for a rectangular cylinder (below) where the form factor is normalized by 2940 the volume of the cylinder. 2961 the volume of the cylinder. If you need to apply polydispersity, see the RectangularPrismModel_. 2941 2962 2942 2963 *P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background* … … 3122 3143 3123 3144 3145 .. _RectangularPrismModel: 3146 3147 **2.1.39. RectangularPrismModel** 3148 3149 This model provides the form factor, *P(q)*, for a rectangular prism. 3150 3151 Note that this model is almost totally equivalent to the existing ParallelepipedModel_. The only difference is that the 3152 way the relevant parameters are defined here (*a*, *b/a*, *c/a* instead of *a*, *b*, *c*) allows to use polydispersity 3153 with this model while keeping the shape of the prism (e.g. setting *b/a* = 1 and *c/a* = 1 and applying polydispersity 3154 to *a* will generate a distribution of cubes of different sizes). 3155 3156 *2.1.39.1. Definition* 3157 3158 The 1D scattering intensity for this model was calculated by Mittelbach and Porod (Mittelbach, 1961), but the 3159 implementation here is closer to the equations given by Nayuk and Huber (Nayuk, 2012). 3160 3161 The scattering from a massive parallelepiped with an orientation with respect to the scattering vector given by |theta| 3162 and |phi| is given by 3163 3164 .. math:: 3165 A_P\,(q) = \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \, \times \, 3166 \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \, \times \, 3167 \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi} 3168 3169 where *A*, *B* and *C* are the sides of the parallelepiped and must fulfill :math:`A \le B \le C`, |theta| is the angle 3170 between the *z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering 3171 vector (lying in the *xy* plane) and the *y* axis. 3172 3173 The normalized form factor in 1D is obtained averaging over all possible orientations 3174 3175 .. math:: 3176 P(q) = \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_P^2(q) \, \sin\theta \, d\theta \, d\phi 3177 3178 The 1D scattering intensity is then calculated as 3179 3180 .. math:: 3181 I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q) 3182 3183 where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the 3184 parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute 3185 units) *scale* represents the volume fraction (which is unitless). 3186 3187 **The 2D scattering intensity is not computed by this model.** 3188 3189 The returned value is scaled to units of |cm^-1| and the parameters of the RectangularPrismModel are the following 3190 3191 ============== ======== ============= 3192 Parameter name Units Default value 3193 ============== ======== ============= 3194 scale None 1 3195 short_side |Ang| 35 3196 b2a_ratio None 1 3197 c2a_ratio None 1 3198 sldPipe |Ang^-2| 6.3e-6 3199 sldSolv |Ang^-2| 1.0e-6 3200 background |cm^-1| 0 3201 ============== ======== ============= 3202 3203 *2.1.39.2. Validation of the RectangularPrismModel* 3204 3205 Validation of the code was conducted by comparing the output of the 1D model to the output of the existing 3206 parallelepiped model. 3207 3208 REFERENCES 3209 3210 P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211 3211 3212 R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 3213 3214 3215 3216 .. _RectangularHollowPrismModel: 3217 3218 **2.1.40. RectangularHollowPrismModel** 3219 3220 This model provides the form factor, *P(q)*, for a hollow rectangular parallelepiped with a wall thickness |bigdelta|. 3221 3222 *2.1.40.1. Definition* 3223 3224 The 1D scattering intensity for this model is calculated by forming the difference of the amplitudes of two massive 3225 parallelepipeds differing in their outermost dimensions in each direction by the same length increment 2 |bigdelta| 3226 (Nayuk, 2012). 3227 3228 As in the case of the massive parallelepiped, the scattering amplitude is computed for a particular orientation of the 3229 parallelepiped with respect to the scattering vector and then averaged over all possible orientations, giving 3230 3231 .. math:: 3232 P(q) = \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_{P\Delta}^2(q) \, 3233 \sin\theta \, d\theta \, d\phi 3234 3235 where |theta| is the angle between the *z* axis and the longest axis of the parallelepiped, |phi| is the angle between 3236 the scattering vector (lying in the *xy* plane) and the *y* axis, and 3237 3238 .. math:: 3239 A_{P\Delta}\,(q) = A \, B \, C \, \times 3240 \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \, 3241 \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \, 3242 \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi} - 3243 8 \, \bigl( \frac{A}{2} - \Delta \bigr) \, \bigl( \frac{B}{2} - \Delta \bigr) \, 3244 \bigl( \frac{C}{2} - \Delta \bigr) \, \times 3245 \frac{\sin \bigl[ q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta \bigr]} 3246 {q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta} \, 3247 \frac{\sin \bigl[ q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi \bigr]} 3248 {q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi} \, 3249 \frac{\sin \bigl[ q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi \bigr]} 3250 {q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi} \, 3251 3252 where *A*, *B* and *C* are the external sides of the parallelepiped fulfilling :math:`A \le B \le C`, and the volume *V* 3253 of the parallelepiped is 3254 3255 .. math:: 3256 V = A B C \, - \, (A - 2\Delta) (B - 2\Delta) (C - 2\Delta) 3257 3258 The 1D scattering intensity is then calculated as 3259 3260 .. math:: 3261 I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q) 3262 3263 where :math:`\rho_{\mbox{pipe}}` is the scattering length of the parallelepiped, :math:`\rho_{\mbox{solvent}}` is the 3264 scattering length of the solvent, and (if the data are in absolute units) *scale* represents the volume fraction (which 3265 is unitless). 3266 3267 **The 2D scattering intensity is not computed by this model.** 3268 3269 The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismModel are the 3270 following 3271 3272 ============== ======== ============= 3273 Parameter name Units Default value 3274 ============== ======== ============= 3275 scale None 1 3276 short_side |Ang| 35 3277 b2a_ratio None 1 3278 c2a_ratio None 1 3279 thickness |Ang| 1 3280 sldPipe |Ang^-2| 6.3e-6 3281 sldSolv |Ang^-2| 1.0e-6 3282 background |cm^-1| 0 3283 ============== ======== ============= 3284 3285 *2.1.40.2. Validation of the RectangularHollowPrismModel* 3286 3287 Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown in 3288 (Nayuk, 2012). 3289 3290 REFERENCES 3291 3292 R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 3293 3294 3295 3296 .. _RectangularHollowPrismInfThinWallsModel: 3297 3298 **2.1.41. RectangularHollowPrismInfThinWallsModel** 3299 3300 This model provides the form factor, *P(q)*, for a hollow rectangular prism with infinitely thin walls. 3301 3302 *2.1.41.1. Definition* 3303 3304 The 1D scattering intensity for this model is calculated according to the equations given by Nayuk and Huber 3305 (Nayuk, 2012). 3306 3307 Assuming a hollow parallelepiped with infinitely thin walls, edge lengths :math:`A \le B \le C` and presenting an 3308 orientation with respect to the scattering vector given by |theta| and |phi|, where |theta| is the angle between the 3309 *z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering vector 3310 (lying in the *xy* plane) and the *y* axis, the form factor is given by 3311 3312 .. math:: 3313 P(q) = \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} [A_L(q)+A_T(q)]^2 3314 \, \sin\theta \, d\theta \, d\phi 3315 3316 where 3317 3318 .. math:: 3319 V = 2AB + 2AC + 2BC 3320 3321 .. math:: 3322 A_L\,(q) = 8 \times \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr) 3323 \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) 3324 \cos \bigl( q \frac{C}{2} \cos\theta \bigr) } 3325 {q^2 \, \sin^2\theta \, \sin\phi \cos\phi} 3326 3327 .. math:: 3328 A_T\,(q) = A_F\,(q) \times \frac{2 \, \sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \, \cos\theta} 3329 3330 and 3331 3332 .. math:: 3333 A_F\,(q) = 4 \frac{ \cos \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr) 3334 \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) } 3335 {q \, \cos\phi \, \sin\theta} + 3336 4 \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr) 3337 \cos \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) } 3338 {q \, \sin\phi \, \sin\theta} 3339 3340 The 1D scattering intensity is then calculated as 3341 3342 .. math:: 3343 I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q) 3344 3345 where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the 3346 parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute 3347 units) *scale* represents the volume fraction (which is unitless). 3348 3349 **The 2D scattering intensity is not computed by this model.** 3350 3351 The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismInfThinWallModel 3352 are the following 3353 3354 ============== ======== ============= 3355 Parameter name Units Default value 3356 ============== ======== ============= 3357 scale None 1 3358 short_side |Ang| 35 3359 b2a_ratio None 1 3360 c2a_ratio None 1 3361 sldPipe |Ang^-2| 6.3e-6 3362 sldSolv |Ang^-2| 1.0e-6 3363 background |cm^-1| 0 3364 ============== ======== ============= 3365 3366 *2.1.41.2. Validation of the RectangularHollowPrismInfThinWallsModel* 3367 3368 Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown in 3369 (Nayuk, 2012). 3370 3371 REFERENCES 3372 3373 R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 3374 3375 3376 3124 3377 2.2 Shape-independent Functions 3125 3378 ------------------------------- 3126 3379 3127 The following are models used for shape-independent SA NS analysis.3380 The following are models used for shape-independent SAS analysis. 3128 3381 3129 3382 .. _Debye: … … 3131 3384 **2.2.1. Debye (Gaussian Coil Model)** 3132 3385 3133 The Debye model is a form factor for a linear polymer chain . In addition to the radius of gyration, *Rg*, a scale factor3134 *scale*, and a constant background term are included in the calculation. **NB: No size polydispersity is included in** 3135 **this model, use the** Poly_GaussCoil_ **Model instead**3386 The Debye model is a form factor for a linear polymer chain obeying Gaussian statistics (ie, it is in the theta state). 3387 In addition to the radius-of-gyration, *Rg*, a scale factor *scale*, and a constant background term are included in the 3388 calculation. **NB: No size polydispersity is included in this model, use the** Poly_GaussCoil_ **Model instead** 3136 3389 3137 3390 .. image:: img/image172.PNG … … 3163 3416 **2.2.2. BroadPeakModel** 3164 3417 3165 This model calculates an empirical functional form for SA NS data characterized by a broad scattering peak. Many SANS3418 This model calculates an empirical functional form for SAS data characterized by a broad scattering peak. Many SAS 3166 3419 spectra are characterized by a broad peak even though they are from amorphous soft materials. For example, soft systems 3167 that show a SA NS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc.3420 that show a SAS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc. 3168 3421 3169 3422 The d-spacing corresponding to the broad peak is a characteristic distance between the scattering inhomogeneities (such … … 3212 3465 **2.2.3. CorrLength (Correlation Length Model)** 3213 3466 3214 Calculates an empirical functional form for SA NS data characterized by a low-Q signal and a high-Q signal.3467 Calculates an empirical functional form for SAS data characterized by a low-Q signal and a high-Q signal. 3215 3468 3216 3469 The returned value is scaled to units of |cm^-1|, absolute scale. … … 3634 3887 a sum of a low-*q* exponential decay plus a lorentzian at higher *q*-values. 3635 3888 3889 Also see the GelFitModel_. 3890 3636 3891 The returned value is scaled to units of |cm^-1|, absolute scale. 3637 3892 … … 3779 4034 Note that 3780 4035 3781 the radius ofgyration for a sphere of radius *R* is given by *Rg* = *R* sqrt(3/5)3782 3783  the cross-sectional radius ofgyration for a randomly oriented cylinder of radius *R* is given by *Rg* = *R* / sqrt(2)3784 3785 the cross-sectional radius ofgyration of a randomly oriented lamella of thickness *T* is given by *Rg* = *T* / sqrt(12)4036 the radius-of-gyration for a sphere of radius *R* is given by *Rg* = *R* sqrt(3/5) 4037 4038  the cross-sectional radius-of-gyration for a randomly oriented cylinder of radius *R* is given by *Rg* = *R* / sqrt(2) 4039 4040 the cross-sectional radius-of-gyration of a randomly oriented lamella of thickness *T* is given by *Rg* = *T* / sqrt(12) 3786 4041 3787 4042 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as … … 3816 4071 **2.2.17. PorodModel** 3817 4072 3818 A Porod analysis is done by linearizing the data at high q by plotting 3819 it as log(I) versus log(Q). In the high q region we can fit the 3820 following model: 4073 This model fits the Porod function 3821 4074 3822 4075 .. image:: img/image197.PNG 3823 4076 3824 C is the scale factor and  Sv is the specific surface area of the sample 3825 and ÃâÃï¿œ is the contrast factor. 3826 3827 The background term is added for data analysis.4077 to the data directly without any need for linearisation (*cf*. Log *I(q)* vs Log *q*). 4078 4079 Here *C* is the scale factor and *Sv* is the specific surface area (ie, surface area / volume) of the sample, and 4080 |drho| is the contrast factor. 3828 4081 3829 4082 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as … … 3838 4091 ============== ======== ============= 3839 4092 4093 REFERENCE 4094 4095 None. 4096 3840 4097 3841 4098 … … 3844 4101 **2.2.18. PeakGaussModel** 3845 4102 3846 Model describes a Gaussian shaped peak including a flat background, 4103 This model describes a Gaussian shaped peak on a flat background 3847 4104 3848 4105 .. image:: img/image198.PNG 3849 4106 3850 with the peak having height of I0 centered at qpk having standard 3851 deviation of B. The fwhm is 2.354\*B.  3852 3853 Parameters I0, B, qpk, and BGD can all be adjusted during fitting. **NB: These don't match the table!** 3854 3855 REFERENCE 3856 3857 None 4107 with the peak having height of *I0* centered at *q0* and having a standard deviation of *B*. The FWHM (full-width 4108 half-maximum) is 2.354 B.  3858 4109 3859 4110 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as … … 3874 4125 *Figure. 1D plot using the default values (w/500 data points).* 3875 4126 4127 REFERENCE 4128 4129 None. 4130 3876 4131 3877 4132 … … 3880 4135 **2.2.19. PeakLorentzModel** 3881 4136 3882 Model describes a Lorentzian shaped peak including a flat background, 4137 This model describes a Lorentzian shaped peak on a flat background 3883 4138 3884 4139 .. image:: img/image200.PNG 3885 4140 3886 with the peak having height of I0 centered at qpk having a hwhm 3887 (half-width-half-maximum) of B. 3888 3889 The parameters I0, B, qpk, and BGD can all be adjusted during fitting. **NB: These don't match the table!** 3890 3891 REFERENCE 3892 3893 None 4141 with the peak having height of *I0* centered at *q0* and having a HWHM (half-width half-maximum) of B. 3894 4142 3895 4143 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as … … 3910 4158 *Figure. 1D plot using the default values (w/500 data points).* 3911 4159 4160 REFERENCE 4161 4162 None. 4163 3912 4164 3913 4165 … … 3916 4168 **2.2.20. Poly_GaussCoil (Model)** 3917 4169 3918 Polydisperse Gaussian Coil: Calculate an empirical functional form for 3919 scattering from a polydisperse polymer chain ina good solvent. The 3920 polymer is polydisperse with a Schulz-Zimm polydispersity of the 3921 molecular weight distribution. 4170 This model calculates an empirical functional form for the scattering from a **polydisperse** polymer chain in the 4171 theta state assuming a Schulz-Zimm type molecular weight distribution. Polydispersity on the radius-of-gyration is also 4172 provided for. 3922 4173 3923 4174 The returned value is scaled to units of |cm^-1|, absolute scale. 3924 4175 4176 *2.2.20.1. Definition* 4177 4178 The scattering intensity *I(q)* is calculated as 4179 3925 4180 .. image:: img/image202.PNG 3926 4181 3927 where the dimensionless chain dimension is :4182 where the dimensionless chain dimension is 3928 4183 3929 4184 .. image:: img/image203.PNG 3930 4185 3931 and the polydispersi onis4186 and the polydispersity is 3932 4187 3933 4188 .. image:: img/image204.PNG 3934 4189 3935 The scattering intensity *I(q)* is calculated as:3936 3937 The polydispersion in rg is provided.3938 3939 4190 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 3940 4191 3941 4192 .. image:: img/image040.GIF 3942 4193 3943 TEST DATASET 3944 3945 This example dataset is produced by running the Poly_GaussCoil, using 200 data points, *qmin* = 0.001 |Ang^-1| , 3946 qmax = 0.7 |Ang^-1| and the default values below. 4194 This example dataset is produced using 200 data points, using 200 data points, 4195 *qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values 3947 4196 3948 4197 ============== ======== ============= … … 3961 4210 REFERENCE 3962 4211 3963 Glatter & Kratky - p404 4212 O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982) 4213 Page 404 3964 4214 3965 4215 J S Higgins, and H C Benoit, Polymers and Neutron Scattering, Oxford Science Publications (1996) … … 3971 4221 **2.2.21. PolymerExclVolume (Model)** 3972 4222 3973 Calculates the scattering from polymers with excluded volume effects. 4223 This model describes the scattering from polymer chains subject to excluded volume effects, and has been used as a 4224 template for describing mass fractals. 3974 4225 3975 4226 The returned value is scaled to units of |cm^-1|, absolute scale. 3976 4227 3977 The returned value is P(Q) as written in equation (2), plus the 3978 incoherent background term. The result is in the units of |cm^-1|, 3979 absolute scale. 3980 3981 A model describing polymer chain conformations with excluded volume was 3982 introduced to describe the conformation of polymer chains, and has been 3983 used as a template for describing mass fractals. The form factor for 3984 that model (Benoit, 1957) was originally presented in the following 3985 integral form: 3986 3987 .. image:: img/image206.JPG    (1) 3988 3989 Here n is the excluded volume parameter which is related to the Porod 3990 exponent m as n = 1/m, a is the polymer chain statistical segment length 3991 and n is the degree of polymerization. This integral was later put into 3992 an almost analytical form (Hammouda, 1993) as follows: 3993 3994 .. image:: img/image207.JPG   (2) 3995 3996 Here, g(x,U) is the incomplete gamma function which is a built-in 3997 function in computer libraries. 4228 *2.2.21.1 Definition* 4229 4230 The form factor was originally presented in the following integral form (Benoit, 1957) 4231 4232 .. image:: img/image206.JPG 4233 4234 where |nu| is the excluded volume parameter (which is related to the Porod exponent *m* as |nu| = 1 / *m*), *a* is the 4235 statistical segment length of the polymer chain, and *n* is the degree of polymerization. This integral was later put 4236 into an almost analytical form as follows (Hammouda, 1993) 4237 4238 .. image:: img/image207.JPG 4239 4240 where |gamma|\ *(x,U)* is the incomplete gamma function 3998 4241 3999 4242 .. image:: img/image208.JPG 4000 4243 4001 The variable U is given in terms of the scattering variable Q as: 4244 and the variable *U* is given in terms of the scattering vector *Q* as 4002 4245 4003 4246 .. image:: img/image209.JPG 4004 4247 4005 The radius of gyration squared has been defined as:4248 The square of the radius-of-gyration is defined as 4006 4249 4007 4250 .. image:: img/image210.JPG 4008 4251 4009 Note that this model describing polymer chains with excluded volume 4010 applies only in the mass fractal range ( 5/3 <= m <= 3) and does not 4011 apply to surface fractals ( 3 < m <= 4). It does not reproduce the rigid 4012 rod limit (m = 1) because it assumes chain flexibility from the outset. 4013 It may cover a portion of the semiflexible chain range ( 1 < m < 5/3). 4014 4015 The low-Q expansion yields the Guinier form and the high-Q expansion 4016 yields the Porod form which is given by: 4252 Note that this model applies only in the mass fractal range (ie, 5/3 <= *m* <= 3) and **does not** apply to surface 4253 fractals (3 < *m* <= 4). It also does not reproduce the rigid rod limit (*m* = 1) because it assumes chain flexibility 4254 from the outset. It may cover a portion of the semi-flexible chain range (1 < *m* < 5/3). 4255 4256 A low-*Q* expansion yields the Guinier form and a high-*Q* expansion yields the Porod form which is given by 4017 4257 4018 4258 .. image:: img/image211.JPG 4019 4259 4020 Here G(x) = g(x,inf) is the gamma function. The asymptotic limit is 4021 dominated by the first term: 4260 Here |biggamma|\ *(x)* = |gamma|\ *(x,inf)* is the gamma function. 4261 4262 The asymptotic limit is dominated by the first term 4022 4263 4023 4264 .. image:: img/image212.JPG 4024 4265 4025 The special case when n = 0.5 (or m = 1/n = 2) corresponds to Gaussian 4026 chains for which the form factor is given by the familiar Debye 4027 function. 4266 The special case when |nu| = 0.5 (or *m* = 1/|nu| = 2) corresponds to Gaussian chains for which the form factor is given 4267 by the familiar Debye_ function. 4028 4268 4029 4269 .. image:: img/image213.JPG 4030 4270 4031 The form factor given by Eq. 2 is the calculated result, and is plotted4032 below for the default parameter values.4033 4034 REFERENCE4035 4036 H Benoit, *Comptes Rendus*, 245 (1957) 2244-22474037 4038 B Hammouda, *SANS from Homogeneous Polymer Mixtures  A Unified Overview*, *Advances in Polym. Sci.*, 106 (1993) 87-1334039 4040 4271 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 4041 4272 4042 4273 .. image:: img/image040.GIF 4043 4274 4044 TEST DATASET 4045 4046 This example dataset is produced, using 200 data points, qmin = 0.001 |Ang^-1| , qmax = 0.2 |Ang^-1|  and the 4047 default values below. 4275 This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.2 |Ang^-1| and the default 4276 values 4048 4277 4049 4278 =================== ======== ============= … … 4060 4289 *Figure. 1D plot using the default values (w/500 data points).* 4061 4290 4291 REFERENCE 4292 4293 H Benoit, *Comptes Rendus*, 245 (1957) 2244-2247 4294 4295 B Hammouda, *SANS from Homogeneous Polymer Mixtures  A Unified Overview*, *Advances in Polym. Sci.*, 106 (1993) 87-133 4296 4062 4297 4063 4298 … … 4066 4301 **2.2.22. RPA10Model** 4067 4302 4068 Calculates the macroscopic scattering intensity (units of cm^-1) for a 4069 multicomponent homogeneous mixture of polymers using the Random Phase 4070 Approximation. This general formalism contains 10 specific cases: 4071 4072 Case 0: C/D Binary mixture of homopolymers 4073 4074 Case 1: C-D Diblock copolymer 4075 4076 Case 2: B/C/D Ternary mixture of homopolymers 4077 4078 Case 3: C/C-D Mixture of a homopolymer B and a diblock copolymer C-D 4079 4080 Case 4: B-C-D Triblock copolymer 4081 4082 Case 5: A/B/C/D Quaternary mixture of homopolymers 4083 4084 Case 6: A/B/C-D Mixture of two homopolymers A/B and a diblock C-D 4085 4086 Case 7: A/B-C-D Mixture of a homopolymer A and a triblock B-C-D 4087 4088 Case 8: A-B/C-D Mixture of two diblock copolymers A-B and C-D 4089 4090 Case 9: A-B-C-D Four-block copolymer 4091 4092 Note: the case numbers are different from the IGOR/NIST SANS package. 4093 4094 Only one case can be used at any one time. Plotting a different case 4095 will overwrite the original parameter waves. 4096 4097 The returned value is scaled to units of [cm-1]. 4098 4099 Component D is assumed to be the "background" component (all contrasts 4100 are calculated with respect to component D). 4101 4102 Scattering contrast for a C/D blend= {SLD (component C) - SLD (component 4103 D)}2 4104 4105 Depending on what case is used, the number of fitting parameters varies. 4106 These represent the segment lengths (ba, bb, etc) and the Chi parameters 4107 (Kab, Kac, etc). The last one of these is a scaling factor to be held 4108 constant equal to unity. 4109 4110 The input parameters are the degree of polymerization, the volume 4111 fractions for each component the specific volumes and the neutron 4112 scattering length densities. 4113 4114 This RPA (mean field) formalism applies only when the multicomponent 4115 polymer mixture is in the homogeneous mixed-phase region. 4116 4117 REFERENCE 4118 4119 A Z Akcasu, R Klein and B Hammouda, *Macromolecules*, 26 (1993) 4136 4120 4121 Fitting parameters for Case0 Model 4303 Calculates the macroscopic scattering intensity (units of |cm^-1|) for a multicomponent homogeneous mixture of polymers 4304 using the Random Phase Approximation. This general formalism contains 10 specific cases 4305 4306 Case 0: C/D binary mixture of homopolymers 4307 4308 Case 1: C-D diblock copolymer 4309 4310 Case 2: B/C/D ternary mixture of homopolymers 4311 4312 Case 3: C/C-D mixture of a homopolymer B and a diblock copolymer C-D 4313 4314 Case 4: B-C-D triblock copolymer 4315 4316 Case 5: A/B/C/D quaternary mixture of homopolymers 4317 4318 Case 6: A/B/C-D mixture of two homopolymers A/B and a diblock C-D 4319 4320 Case 7: A/B-C-D mixture of a homopolymer A and a triblock B-C-D 4321 4322 Case 8: A-B/C-D mixture of two diblock copolymers A-B and C-D 4323 4324 Case 9: A-B-C-D tetra-block copolymer 4325 4326 **NB: these case numbers are different from those in the NIST SANS package!** 4327 4328 Only one case can be used at any one time. 4329 4330 The returned value is scaled to units of |cm^-1|, absolute scale. 4331 4332 The RPA (mean field) formalism only applies only when the multicomponent polymer mixture is in the homogeneous 4333 mixed-phase region. 4334 4335 **Component D is assumed to be the "background" component (ie, all contrasts are calculated with respect to** 4336 **component D).** So the scattering contrast for a C/D blend = [SLD(component C) - SLD(component D)]\ :sup:`2`. 4337 4338 Depending on which case is being used, the number of fitting parameters - the segment lengths (ba, bb, etc) and |chi| 4339 parameters (Kab, Kac, etc) - vary. The *scale* parameter should be held equal to unity. 4340 4341 The input parameters are the degrees of polymerization, the volume fractions, the specific volumes, and the neutron 4342 scattering length densities for each component. 4343 4344 Fitting parameters for a Case 0 Model 4122 4345 4123 4346 ======================= ======== ============= … … 4131 4354 ======================= ======== ============= 4132 4355 4133 Fixed parameters for Case0 Model4356 Fixed parameters for a Case 0 Model 4134 4357 4135 4358 ======================= ======== ============= … … 4150 4373 *Figure. 1D plot using the default values (w/500 data points).* 4151 4374 4375 REFERENCE 4376 4377 A Z Akcasu, R Klein and B Hammouda, *Macromolecules*, 26 (1993) 4136 4152 4378 4153 4379 … … 4157 4383 **2.2.23. TwoLorentzian (Model)** 4158 4384 4159 Calculate an empirical functional form for SANS data characterized by a 4160 two Lorentzian functions. 4385 This model calculates an empirical functional form for SAS data characterized by two Lorentzian-type functions. 4161 4386 4162 4387 The returned value is scaled to units of |cm^-1|, absolute scale. 4163 4388 4164 The scattering intensity *I(q)* is calculated by: 4389 *2.2.23.1. Definition* 4390 4391 The scattering intensity *I(q)* is calculated as 4165 4392 4166 4393 .. image:: img/image216.JPG 4167 4394 4168 A = Lorentzian scale #1 4169 4170 C = Lorentzian scale #2 4171 4172 where scale is the peak height centered at q0, and B refers to the 4173 standard deviation of the function. 4174 4175 The background term is added for data analysis. 4395 where *A* = Lorentzian scale factor #1, *C* = Lorentzian scale #2, |xi|\ :sub:`1` and |xi|\ :sub:`2` are the 4396 corresponding correlation lengths, and *n* and *m* are the respective power law exponents (set *n* = *m* = 2 for 4397 Ornstein-Zernicke behaviour). 4176 4398 4177 4399 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 4178 4400 4179 4401 .. image:: img/image040.GIF 4180 4181 **Default input parameter values**4182 4402 4183 4403 =============================== ======== ============= … … 4199 4419 REFERENCE 4200 4420 4201 None 4421 None. 4202 4422 4203 4423 … … 4207 4427 **2.2.24. TwoPowerLaw (Model)** 4208 4428 4209 Calculate an empirical functional form for SANS data characterized by 4210 two power laws. 4429 This model calculates an empirical functional form for SAS data characterized by two power laws. 4211 4430 4212 4431 The returned value is scaled to units of |cm^-1|, absolute scale. 4213 4432 4214 The scattering intensity *I(q)* is calculated by: 4433 *2.2.24.1. Definition* 4434 4435 The scattering intensity *I(q)* is calculated as 4215 4436 4216 4437 .. image:: img/image218.JPG 4217 4438 4218 qc is the location of the crossover from one slope to the other. The 4219 scaling A, sets the overall intensity of the lower Q power law region. 4220 The scaling of the second power law region is scaled to match the first. 4221 Be sure to enter the power law exponents as positive values. 4439 where *qc* is the location of the crossover from one slope to the other. The scaling *coef_A* sets the overall 4440 intensity of the lower *q* power law region. The scaling of the second power law region is then automatically scaled to 4441 match the first. 4442 4443 **NB: Be sure to enter the power law exponents as positive values!** 4222 4444 4223 4445 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 4224 4446 4225 4447 .. image:: img/image040.GIF 4226 4227 **Default input parameter values**4228 4448 4229 4449 ============== ======== ============= … … 4241 4461 *Figure. 1D plot using the default values (w/500 data points).* 4242 4462 4463 REFERENCE 4464 4465 None. 4466 4243 4467 4244 4468 … … 4247 4471 **2.2.25. UnifiedPowerRg (Beaucage Model)** 4248 4472 4473 This model deploys the empirical multiple level unified Exponential/Power-law fit method developed by G Beaucage. Four 4474 functions are included so that 1, 2, 3, or 4 levels can be used. In addition a 0 level has been added which simply 4475 calculates 4476 4477 *I(q)* = *scale* / *q* + *background* 4478 4249 4479 The returned value is scaled to units of |cm^-1|, absolute scale. 4250 4480 4251 Note that the level 0 is an extra function that is the inverse function; 4252 I (q) = scale/q + background. 4253 4254 Otherwise, program incorporates the empirical multiple level unified 4255 Exponential/Power-law fit method developed by G Beaucage. Four 4256 functions are included so that One, Two, Three, or Four levels can be 4257 used. 4258 4259 The empirical expressions are able to reasonably approximate the 4260 scattering from many different types of particles, including fractal 4261 clusters, random coils (Debye equation), ellipsoidal particles, etc. 4481 The Beaucage method is able to reasonably approximate the scattering from many different types of particles, including 4482 fractal clusters, random coils (Debye equation), ellipsoidal particles, etc. 4483 4484 *2.2.25.1 Definition* 4485 4262 4486 The empirical fit function is 4263 4487 4264 4488 .. image:: img/image220.JPG 4265 4489 4266 For each level, the four parameters Gi, Rg,i, Bi and Pi must be chosen. 4267 4268 For example, to approximate the scattering from random coils (Debye 4269 equation), set Rg,i as the Guinier radius, Pi = 2, and Bi = 2 Gi / Rg,i 4270 4271 See the listed references for further information on choosing the 4272 parameters. 4490 For each level, the four parameters *Gi*, *Rg,i*, *Bi* and *Pi* must be chosen. 4491 4492 For example, to approximate the scattering from random coils (Debye_ equation), set *Rg,i* as the Guinier radius, 4493 *Pi* = 2, and *Bi* = 2 *Gi* / *Rg,i* 4494 4495 See the references for further information on choosing the parameters. 4273 4496 4274 4497 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 4275 4498 4276 4499 .. image:: img/image040.GIF 4277 4278 **Default input parameter values**4279 4500 4280 4501 ============== ======== ============= … … 4299 4520 REFERENCE 4300 4521 4301 G Beaucage (1995). J. Appl. Cryst., vol. 28, p717-728.4302 4303 G Beaucage (1996). J. Appl. Cryst., vol. 29, p134-146.4522 G Beaucage, *J. Appl. Cryst.*, 28 (1995) 717-728 4523 4524 G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146 4304 4525 4305 4526 … … 4309 4530 **2.2.26. LineModel** 4310 4531 4311 This is a linear function that calculates:4532 This calculates the simple linear function 4312 4533 4313 4534 .. image:: img/image222.PNG 4314 4535 4315 where A and B are the coefficients of the first and second order terms. 4316 4317 **Note:** For 2D plot, *I(q)* = *I(qx)* / *I(qy)* which is defined differently 4318 from other shape independent models. 4319 4320 ============== ======== ============= 4321 Parameter name Units Default value 4322 ============== ======== ============= 4323 A |cm^-1| 1.0 4324 B |Ang| 1.0 4325 ============== ======== ============= 4536 **NB: For 2D plots,** *I(q)* = *I(qx)*\ *\ *I(qy)*, **which is a different definition to other shape independent models.** 4537 4538 ============== ============== ============= 4539 Parameter name Units Default value 4540 ============== ============== ============= 4541 A |cm^-1| 1.0 4542 B |Ang|\ |cm^-1| 1.0 4543 ============== ============== ============= 4544 4545 REFERENCE 4546 4547 None. 4548 4549 4550 4551 .. _GelFitModel: 4552 4553 **2.2.27. GelFitModel** 4554 4555 *This model was implemented by an interested user!* 4556 4557 Unlike a concentrated polymer solution, the fine-scale polymer distribution in a gel involves at least two 4558 characteristic length scales, a shorter correlation length (*a1*) to describe the rapid fluctuations in the position 4559 of the polymer chains that ensure thermodynamic equilibrium, and a longer distance (denoted here as *a2*) needed to 4560 account for the static accumulations of polymer pinned down by junction points or clusters of such points. The latter 4561 is derived from a simple Guinier function. 4562 4563 Also see the GaussLorentzGel_ Model. 4564 4565 *2.2.27.1. Definition* 4566 4567 The scattered intensity *I(q)* is calculated as 4568 4569 .. image:: img/image233.GIF 4570 4571 where 4572 4573 .. image:: img/image234.GIF 4574 4575 Note that the first term reduces to the Ornstein-Zernicke equation when *D* = 2; ie, when the Flory exponent is 0.5 4576 (theta conditions). In gels with significant hydrogen bonding *D* has been reported to be ~2.6 to 2.8. 4577 4578 ============================ ======== ============= 4579 Parameter name Units Default value 4580 ============================ ======== ============= 4581 Background |cm^-1| 0.01 4582 Guinier scale (= *I(0)G*) |cm^-1| 1.7 4583 Lorentzian scale (= *I(0)L*) |cm^-1| 3.5 4584 Radius of gyration (= *Rg*) |Ang| 104 4585 Fractal exponent (= *D*) None  2 4586 Correlation length (= *a1*) |Ang| 16 4587 ============================ ======== ============= 4588 4589 .. image:: img/image235.GIF 4590 4591 *Figure. 1D plot using the default values (w/300 data points).* 4592 4593 REFERENCE 4594 4595 Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, J. Chem. Phys. 1992, 97 (9), 6829-6841 4596 4597 Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, Macromolecules 1991, 24, 543-548 4598 4599 4600 4601 .. _StarPolymer: 4602 4603 **2.2.28. Star Polymer with Gaussian Statistics** 4604 4605 This model is also known as the Benoit Star model. 4606 4607 *2.2.28.1. Definition* 4608 4609 For a star with *f* arms: 4610 4611 .. image:: img/star1.PNG 4612 4613 where 4614 4615 .. image:: img/star2.PNG 4616 4617 and 4618 4619 .. image:: img/star3.PNG 4620 4621 is the square of the ensemble average radius-of-gyration of an arm. 4622 4623 REFERENCE 4624 4625 H Benoit,  J. Polymer Science., 11, 596-599 (1953) 4326 4626 4327 4627 … … 4329 4629 .. _ReflectivityModel: 4330 4630 4331 **2.2.27. ReflectivityModel** 4332 4333 This model calculates the reflectivity and uses the Parrett algorithm. 4334 Up to nine film layers are supported between Bottom(substrate) and 4335 Medium(Superstrate where the neutron enters the first top film). Each 4336 layers are composed of [ Âœ of the interface(from the previous layer or 4337 substrate) + flat portion + Âœ of the interface(to the next layer or 4338 medium)]. Only two simple interfacial functions are selectable, error 4339 function and linear function. The each interfacial thickness is 4340 equivalent to (- 2.5 sigma to +2.5 sigma for the error function, 4341 sigma=roughness). 4342 4343 Note: This model was contributed by an interested user. 4631 **2.2.29. ReflectivityModel** 4632 4633 *This model was contributed by an interested user!* 4634 4635 This model calculates **reflectivity** using the Parrett algorithm. 4636 4637 Up to nine film layers are supported between Bottom(substrate) and Medium(Superstrate) where the neutron enters the 4638 first top film. Each of the layers are composed of 4639 4640 [Âœ of the interface (from the previous layer or substrate) + flat portion + Âœ of the interface (to the next layer or medium)] 4641 4642 Two simple functions are provided to describe the interfacial density distribution; a linear function and an error 4643 function. The interfacial thickness is equivalent to (-2.5 |sigma| to +2.5 |sigma| for the error function, where 4644 |sigma| = roughness). 4645 4646 Also see ReflectivityIIModel_. 4344 4647 4345 4648 .. image:: img/image231.BMP 4346 4649 4347 *Figure. Comparison (using the SLD profile below) with NISTweb calculation (circles)*4650 *Figure. Comparison (using the SLD profile below) with the NIST web calculation (circles)* 4348 4651 http://www.ncnr.nist.gov/resources/reflcalc.html 4349 4652 4350 4653 .. image:: img/image232.GIF 4351 4654 4352 *Figure. SLD profile used for the calculation(above).* 4655 *Figure. SLD profile used for the calculation (above).* 4656 4657 REFERENCE 4658 4659 None. 4353 4660 4354 4661 … … 4356 4663 .. _ReflectivityIIModel: 4357 4664 4358 **2.2. 28. ReflectivityIIModel**4359 4360    Same as the ReflectivityModel except that the it is more 4361 customizable. More interfacial functions are supplied. The number of 4362 points (npts_inter) for each interface can be choosen.    The constant 4363 (A below but 'nu' as a parameter name of the model) for exp, erf, or 4364 power-law is an input. The SLD at the interface between layers, 4365 *rinter_i*, is calculated with a function chosen by a user, where the4366 functions are: 4367 4368 1) Erf ;4665 **2.2.30. ReflectivityIIModel** 4666 4667 *This model was contributed by an interested user!* 4668 4669 This **reflectivity** model is a more flexible version of ReflectivityModel_. More interfacial density 4670 functions are supported, and the number of points (*npts_inter*) for each interface can be chosen. 4671 4672 The SLD at the interface between layers, |rho|\ *inter_i*, is calculated with a function chosen by a user, where the 4673 available functions are 4674 4675 1) Erf 4369 4676 4370 4677 .. image:: img/image051.GIF 4371 4678 4372 2) Power-Law ;4679 2) Power-Law 4373 4680 4374 4681 .. image:: img/image050.GIF 4375 4682 4376 3) Exp ;4683 3) Exp 4377 4684 4378 4685 .. image:: img/image049.GIF 4379 4686 4380    Note: This model was implemented by an interested user. 4381 4382 4383 4384 .. _GelFitModel: 4385 4386 **2.2.29. GelFitModel** 4387 4388    Unlike a concentrated polymer solution, the fine-scale polymer 4389 distribution in a gel involves at least two characteristic length 4390 scales, a shorter correlation length (a1) to describe the rapid 4391 fluctuations in the position of the polymer chains that ensure 4392 thermodynamic equilibrium, and a longer distance (denoted here as a2) 4393 needed to account for the static accumulations of polymer pinned down by 4394 junction points or clusters of such points. The letter is derived from a 4395 simple Guinier function. 4396 4397 The scattered intensity *I(q)* is then calculated as: 4398 4399 .. image:: img/image233.GIF 4400 4401 Where: 4402 4403 .. image:: img/image234.GIF 4404 4405    Note the first term reduces to the Ornstein-Zernicke equation when 4406 D=2; ie, when the Flory exponent is 0.5 (theta conditions).  In gels 4407 with significant hydrogen bonding D has been reported to be ~2.6 to 2.8. 4408 4409    Note: This model was implemented by an interested user. 4410 4411 **Default input parameter values** 4412 4413 ================== ======== ============= 4414 Parameter name Units Default value 4415 ================== ======== ============= 4416 Background |cm^-1| 0.01 4417 Guinier scale |cm^-1| 1.7 4418 Lorentzian scale |cm^-1| 3.5 4419 Radius of gyration |Ang| 104 4420 Fractal exponent None  2 4421 Correlation length |Ang| 16 4422 ================== ======== ============= 4423 4424 .. image:: img/image235.GIF 4425 4426 *Figure. 1D plot using the default values (w/300 data points, 4427 qmin=0.001, and qmax=0.3).* 4428 4429 REFERENCE 4430 4431 Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, J. Chem. Phys. 1992, 97 (9), 6829-6841 4432 4433 Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, Macromolecules 1991, 24, 543-548 4434 4435 4436 4437 .. _StarPolymer: 4438 4439 **2.2.30. Star Polymer with Gaussian Statistics** 4440 4441 For a star with *f* arms: 4442 4443 .. image:: img/star1.PNG 4444 4445 .. image:: img/star2.PNG 4446 4447 .. image:: img/star3.PNG 4448 4449 where is the ensemble average radius of gyration squared of an arm. 4450 4451 REFERENCE 4452 4453 H Benoit,  J. Polymer Science., 11, 596-599 (1953) 4687 The constant *A* in the expressions above (but the parameter *nu* in the model!) is an input. 4688 4689 REFERENCE 4690 4691 None. 4454 4692 4455 4693 … … 4458 4696 ------------------------------ 4459 4697 4460 The information in this section is originated from NIST SANS IgorPropackage.4698 The information in this section originated from NIST SANS package. 4461 4699 4462 4700 .. _HardSphereStructure:
Note: See TracChangeset
for help on using the changeset viewer.