Changes in / [3040843:5befedd] in sasmodels
- Files:
-
- 15 added
- 11 deleted
- 26 edited
Legend:
- Unmodified
- Added
- Removed
-
.gitignore
r61ba623 r946cdc8e 9 9 /doc/api/ 10 10 /doc/model/ 11 /doc/ref/models12 11 .mplconfig -
doc/Makefile
r61ba623 r19dcb933 32 32 MODELS_RST = $(patsubst ../sasmodels/models/%.py,model/%.rst,$(MODELS_PY)) 33 33 34 model/img/%: ../sasmodels/models/img/% 35 $(COPY) $< $@ 36 37 model/%.rst: ../sasmodels/models/%.py 38 $(PYTHON) genmodel.py $< $@ 39 40 .PHONY: help clean html dirhtml pickle json htmlhelp qthelp latex changes linkcheck doctest build 41 34 42 help: 35 43 @echo "Please use \`make <target>' where <target> is one of" … … 45 53 @echo " doctest to run all doctests embedded in the documentation (if enabled)" 46 54 47 model/img/%: ../sasmodels/models/img/%48 $(COPY) $< $@49 50 model/%.rst: ../sasmodels/models/%.py51 $(PYTHON) genmodel.py $< $@52 53 ref/models/index.rst: gentoc.py $(MODELS_PY)54 $(PYTHON) gentoc.py $(MODELS_PY)55 56 .PHONY: help clean html dirhtml pickle json htmlhelp qthelp latex changes linkcheck doctest build57 58 55 api: genapi.py 59 56 $(RMDIR) api … … 64 61 $(MKDIR) model/img 65 62 66 build: model $(MODELS_RST) $(IMG_DEST) api ref/models/index.rst63 build: model $(MODELS_RST) $(IMG_DEST) api 67 64 #cd ../.. && python setup.py build 68 65 -
doc/genmodel.py
r61ba623 rcb6ecf4 3 3 sys.path.insert(0,'..') 4 4 5 # Convert ../sasmodels/models /name.py to sasmodels.models.name5 # Convert ../sasmodels/models.name.py to sasmodels.models.name 6 6 module_name = sys.argv[1][3:-3].replace('/','.').replace('\\','.') 7 7 print module_name -
doc/index.rst
r61ba623 r19dcb933 15 15 16 16 guide/index.rst 17 ref/index.rst17 models/index.rst 18 18 api/index.rst 19 19 -
sasmodels/generate.py
ra5d0d00 r6137124 210 210 RST_UNITS = { 211 211 "Ang": "|Ang|", 212 "1/Ang": "|Ang^-1|",213 212 "1/Ang^2": "|Ang^-2|", 214 213 "1e-6/Ang^2": "|1e-6Ang^-2|", -
sasmodels/models/barbell.py
ra5d0d00 r0706431 16 16 The barbell geometry is defined as 17 17 18 .. image:: img/ barbell_geometry.jpg18 .. image:: img/image105.jpg 19 19 20 20 where *r* is the radius of the cylinder. All other parameters are as defined in the diagram. … … 71 71 **The requirement that** *R* >= *r* **is not enforced in the model!** It is up to you to restrict this during analysis. 72 72 73 This example dataset is produced by running the Macro PlotBarbell(), 74 using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1|, 75 *sld* = 4e-6 |Ang^-2| and the default model values. 73 This example dataset is produced by running the Macro PlotBarbell(), using 200 data points, *qmin* = 0.001 |Ang^-1|, 74 *qmax* = 0.7 |Ang^-1| and the following default values 76 75 77 .. image:: img/barbell_1d.jpg 76 ============== ======== ============= 77 Parameter name Units Default value 78 ============== ======== ============= 79 scale None 1.0 80 len_bar |Ang| 400.0 81 rad_bar |Ang| 20.0 82 rad_bell |Ang| 40.0 83 sld_barbell |Ang^-2| 1.0e-006 84 sld_solv |Ang^-2| 6.3e-006 85 background |cm^-1| 0 86 ============== ======== ============= 87 88 .. image:: img/image110.jpg 78 89 79 90 *Figure. 1D plot using the default values (w/256 data point).* … … 82 93 |theta| = 45 deg and |phi| = 0 deg with default values for other parameters 83 94 84 .. image:: img/ barbell_2d.jpg95 .. image:: img/image111.jpg 85 96 86 97 *Figure. 2D plot (w/(256X265) data points).* … … 95 106 96 107 REFERENCE 97 ---------98 108 99 109 H Kaya, *J. Appl. Cryst.*, 37 (2004) 37 223-230 … … 112 122 It must be that rad_bar <(=) rad_bell. 113 123 """ 114 category = "shape:cylinder"115 124 116 125 parameters = [ -
sasmodels/models/bcc.py
ra5d0d00 re166cb9 3 3 #note - calculation requires double precision 4 4 """ 5 Calculates the scattering from a **body-centered cubic lattice** with 6 paracrystalline distortion. Thermal vibrations are considered to be negligible, 7 and the size of the paracrystal is infinitely large. Paracrystalline distortion 8 is assumed to be isotropic and characterized by a Gaussian distribution. 5 Calculates the scattering from a **body-centered cubic lattice** with paracrystalline distortion. Thermal vibrations 6 are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is 7 assumed to be isotropic and characterized by a Gaussian distribution. 9 8 10 9 The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. … … 13 12 ---------- 14 13 15 The scattering intensity $I(q)$is calculated as14 The scattering intensity *I(q)* is calculated as 16 15 17 .. math:16 .. image:: img/image167.jpg 18 17 19 I(q) = \frac{\text{scale}}{V_P} V_\text{lattice} P(q) Z(q) 18 where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume 19 correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the 20 paracrystalline structure factor for a body-centered cubic structure. 20 21 22 Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (29)-(31) from the 1987 paper for 23 *Z1*\ , *Z2*\ , and *Z3*\ . 21 24 22 where *scale* is the volume fraction of spheres, *Vp* is the volume of the 23 primary particle, *V(lattice)* is a volume correction for the crystal 24 structure, $P(q)$ is the form factor of the sphere (normalized), and $Z(q)$ 25 is the paracrystalline structure factor for a body-centered cubic structure. 25 The lattice correction (the occupied volume of the lattice) for a body-centered cubic structure of particles of radius 26 *R* and nearest neighbor separation *D* is 26 27 27 Equation (1) of the 1990 reference is used to calculate $Z(q)$, using 28 equations (29)-(31) from the 1987 paper for *Z1*\ , *Z2*\ , and *Z3*\ . 28 .. image:: img/image159.jpg 29 29 30 The lattice correction (the occupied volume of the lattice) for a 31 body-centered cubic structure of particles of radius $R$ and nearest neighbor 32 separation $D$ is 30 The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)* 33 31 34 .. math:32 .. image:: img/image160.jpg 35 33 36 V_\text{lattice} = \frac{16\pi}{3} \frac{R^3}{\left(D\sqrt{2}\right)^3} 37 38 39 The distortion factor (one standard deviation) of the paracrystal is included 40 in the calculation of $Z(q)$ 41 42 .. math: 43 44 \Delta a = g D 45 46 where $g$ is a fractional distortion based on the nearest neighbor distance. 34 where *g* is a fractional distortion based on the nearest neighbor distance. 47 35 48 36 The body-centered cubic lattice is 49 37 50 .. image:: img/ bcc_lattice.jpg38 .. image:: img/image168.jpg 51 39 52 40 For a crystal, diffraction peaks appear at reduced q-values given by 53 41 54 .. math:42 .. image:: img/image162.jpg 55 43 56 \frac{qD}{2\pi} = \sqrt{h^2 + k^2 + l^2} 44 where for a body-centered cubic lattice, only reflections where (\ *h* + *k* + *l*\ ) = even are allowed and 45 reflections where (\ *h* + *k* + *l*\ ) = odd are forbidden. Thus the peak positions correspond to (just the first 5) 57 46 58 where for a body-centered cubic lattice, only reflections where 59 $(h + k + l) = \text{even}$ are allowed and reflections where 60 $(h + k + l) = \text{odd}$ are forbidden. Thus the peak positions 61 correspond to (just the first 5) 47 .. image:: img/image169.jpg 62 48 63 .. math: 49 **NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of** 50 **points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is 51 SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This 52 makes a triple integral. Very, very slow. Go get lunch! 64 53 65 \begin{eqnarray} 66 &q/q_o&&\quad 1&& \ \sqrt{2} && \ \sqrt{3} && \ \sqrt{4} && \ \sqrt{5} \\ 67 &\text{Indices}&& (110) && (200) && (211) && (220) && (310) 68 \end{eqnarray} 54 This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above 55 default values. 69 56 70 **NB: The calculation of $Z(q)$ is a double numerical integral that must 71 be carried out with a high density of points to properly capture the sharp 72 peaks of the paracrystalline scattering.** So be warned that the calculation 73 is SLOW. Go get some coffee. Fitting of any experimental data must be 74 resolution smeared for any meaningful fit. This makes a triple integral. 75 Very, very slow. Go get lunch! 76 77 This example dataset is produced using 200 data points, 78 *qmin* = 0.001 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above default values. 79 80 .. image:: img/bcc_1d.jpg 57 .. image:: img/image170.jpg 81 58 82 59 *Figure. 1D plot in the linear scale using the default values (w/200 data point).* 83 60 84 The 2D (Anisotropic model) is based on the reference below where $I(q)$ is 85 approximated for 1d scattering. Thus the scattering pattern for 2D may not 86 be accurate. Note that we are not responsible for any incorrectness of the 2D 87 model computation. 61 The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the 62 scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model 63 computation. 88 64 89 .. image:: img/ bcc_orientation.gif65 .. image:: img/image165.gif 90 66 91 .. image:: img/ bcc_2d.jpg67 .. image:: img/image171.jpg 92 68 93 69 *Figure. 2D plot using the default values (w/200X200 pixels).* 94 70 95 71 REFERENCE 96 ---------97 72 98 73 Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 … … 112 87 assumed to be isotropic and characterized by a Gaussian distribution. 113 88 """ 114 category="shape:paracrystal"115 89 116 90 parameters = [ -
sasmodels/models/broad_peak.py
ra5d0d00 rf734e7d 30 30 q = \sqrt{q_x^2 + q_y^2} 31 31 32 ===================== ========= ============= 33 Parameter name Units Default value 34 ===================== ========= ============= 35 lorentz_scale(=C) None 10 36 porod_scale (=A) None 1e-05 37 lorentz_length (= |xi| ) |Ang| 50 38 peak_pos (=Q0) |Ang^-1| 0.1 39 porod_exp (=n) None 2 40 lorentz_exp (=m) None 3 41 Background (=B) |cm^-1| 0.1 42 ================== ======== ============= 32 43 33 44 .. image:: img/image175.jpg … … 36 47 37 48 REFERENCE 38 ---------39 49 40 50 None. … … 61 71 lorentz_exp = Lorentzian exponent 62 72 background = Incoherent background""" 63 category="shape-independent"64 73 65 74 parameters = [ -
sasmodels/models/capped_cylinder.py
ra5d0d00 ra503bfd 130 130 solvent_sld: SLD of the solvent. 131 131 """ 132 category = "shape:cylinder"133 132 134 133 parameters = [ -
sasmodels/models/core_shell_cylinder.py
ra5d0d00 ra503bfd 133 133 phi: the axis_phi of the cylinder 134 134 """ 135 category = "shape:cylinder"136 135 137 136 parameters = [ -
sasmodels/models/cylinder.py
ra5d0d00 r43bdddc 128 128 f(q,alpha)^(2)*sin(alpha)*dalpha + background 129 129 """ 130 category = "shape:cylinder"131 130 132 131 parameters = [ -
sasmodels/models/dab.py
ra5d0d00 r80768fc 44 44 45 45 """ 46 category = "shape-independent"47 46 48 47 parameters = [ -
sasmodels/models/ellipsoid.py
ra5d0d00 ra503bfd 136 136 Re: equatorial radius of the ellipsoid 137 137 """ 138 category = "shape:ellipsoid"139 138 140 139 parameters = [ -
sasmodels/models/fcc.py
ra5d0d00 re7b3d7b 87 87 assumed to be isotropic and characterized by a Gaussian distribution. 88 88 """ 89 category = "shape:paracrystal"90 89 91 90 parameters = [ -
sasmodels/models/gaussian_peak.py
ra5d0d00 r6ea6902 16 16 17 17 REFERENCE 18 ---------19 18 20 19 None. … … 29 28 Provide F(q) = scale*exp( -1/2 *[(q-q0)/B]^2 )+ background 30 29 """ 31 category = "shape-independent"32 30 33 31 parameters = [ 34 32 # [ "name", "units", default, [lower, upper], "type", 35 33 # "description" ], 36 [ "q0", " 1/Ang", 0.05, [-inf,inf], "",34 [ "q0", "Ang^-1", 0.05, [-inf,inf], "", 37 35 "Peak position" ], 38 [ "sigma", " 1/Ang", 0.005, [-inf,inf], "",36 [ "sigma", "Ang^-1", 0.005, [-inf,inf], "", 39 37 "Peak width (standard deviation)" ], 40 38 ] -
sasmodels/models/hardsphere.py
ra5d0d00 r301e096 1 1 # Note: model title and parameter table are inserted automatically 2 r"""Calculate the interparticle structure factor for monodisperse 3 spherical particles interacting through hard sphere (excluded volume) 4 interactions. 2 r"""This calculates the interparticle structure factor for monodisperse spherical particles interacting through hard 3 sphere (excluded volume) interactions. 5 4 6 The calculation uses the Percus-Yevick closure where the interparticle 7 potential is 5 The calculation uses the Percus-Yevick closure where the interparticle potential is 8 6 9 .. math: 10 11 U(r) = \begin{cases} 12 \infty & r < 2R \\ 13 0 & r \geq 2R 14 \end{cases} 7 .. image:: img/HardSphere_223.PNG 15 8 16 9 where *r* is the distance from the center of the sphere of a radius *R*. … … 20 13 .. math:: 21 14 22 q = \sqrt{q_x^2 + q_y^2}15 Q = \sqrt{Q_x^2 + Q_y^2} 23 16 24 17 25 .. image:: img/HardSphere_1d.jpg 18 ============== ======== ============= 19 Parameter name Units Default value 20 ============== ======== ============= 21 effect_radius |Ang| 50.0 22 volfraction None 0.2 23 ============== ======== ============= 24 25 .. image:: img/HardSphere_224.jpg 26 26 27 27 *Figure. 1D plot using the default values (in linear scale).* … … 39 39 [Hard sphere structure factor, with Percus-Yevick closure] 40 40 Interparticle S(Q) for random, non-interacting spheres. 41 May be a reasonable approximation for other shapes of42 particles that freely rotate, and for moderately polydisperse41 May be a reasonable approximation for other shapes of 42 particles that freely rotate, and for moderately polydisperse 43 43 systems. Though strictly the maths needs to be modified - 44 which sasview does not do yet.45 effect_radius is the hard sphere radius46 volfraction is the volume fraction occupied by the spheres.44 which sasview does not do yet. 45 effect_radius is the hard sphere radius 46 volfraction is the volume fraction occupied by the spheres. 47 47 """ 48 category = "structure-factor"49 48 50 49 parameters = [ … … 97 96 Iqxy = """ 98 97 // never called since no orientation or magnetic parameters. 99 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);98 return -1.0; 100 99 """ 101 100 -
sasmodels/models/lamellar.py
ra5d0d00 ra503bfd 61 61 scale = scale factor 62 62 """ 63 category = "shape:lamellae"64 63 65 64 parameters = [ -
sasmodels/models/lamellarCaille.py
ra5d0d00 rdc02af0 1 1 # Note: model title and parameter table are inserted automatically 2 2 r""" 3 This model provides the scattering intensity, $I(q) = P(q) S(q)$, for a 4 lamellar phase where a random distribution in solution are assumed. 5 Here a Caille $S(Q)$ is used for the lamellar stacks. 3 This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lamellar phase where a random 4 distribution in solution are assumed. Here a Caille S(Q) is used for the lamellar stacks. 6 5 7 The scattering intensity $I(q)$is6 The scattering intensity *I(q)* is 8 7 9 .. math: 10 11 I(q) = 2\pi \frac{P(q)S(q)}{\delta q^2} 8 .. image:: img/lamellarCaille_139.PNG 12 9 13 10 The form factor is 14 11 15 .. math: 16 17 P(q) = \frac{2\Delta\rho^2}{q^2}\left(1-\cos q\delta \right) 12 .. image:: img/lamellarCaille_134.PNG 18 13 19 14 and the structure factor is 20 15 21 .. math: 22 23 S(q) = 1 + 2 \sum_1^{N-1}\left(1-\frac{n}{N}\right) 24 \cos(qdn)\exp\left(-\frac{2q^2d^2\alpha(n)}{2}\right) 16 .. image:: img/lamellarCaille_.PNG 25 17 26 18 where 27 19 28 .. math:20 .. image:: img/lamellarCaille_.PNG 29 21 30 \begin{eqnarray} 31 \alpha(n) &=& \frac{\eta_{cp}}{4\pi^2} \left(\ln(\pi n)+\gamma_E\right) \\ 32 \gamma_E &=& 0.5772156649 && \text{Euler's constant} \\ 33 \eta_{cp} &=& \frac{q_o^2k_B T}{8\pi\sqrt{K\overline{B}}} && \text{Caille constant} 34 \end{eqnarray} 22 Here *d* = (repeat) spacing, |delta| = bilayer thickness, the contrast |drho| = SLD(headgroup) - SLD(solvent), 23 K = smectic bending elasticity, B = compression modulus, and N = number of lamellar plates (*n_plates*). 35 24 36 Here $d$ = (repeat) spacing, $\delta$ = bilayer thickness, 37 the contrast $\Delta\rho$ = SLD(headgroup) - SLD(solvent), 38 $K$ = smectic bending elasticity, $B$ = compression modulus, and 39 $N$ = number of lamellar plates (*n_plates*). 25 NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.** 26 And due to a complication of the model function, users are responsible for making sure that all the assumptions are 27 handled accurately (see the original reference below for more details). 40 28 41 NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the 42 assumptions of the model are incorrect.** And due to a complication of the 43 model function, users are responsible for making sure that all the assumptions 44 are handled accurately (see the original reference below for more details). 29 Non-integer numbers of stacks are calculated as a linear combination of results for the next lower and higher values. 45 30 46 Non-integer numbers of stacks are calculated as a linear combination of 47 results for the next lower and higher values. 48 49 The 2D scattering intensity is calculated in the same way as 1D, where the 50 $q$ vector is defined as 31 The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 51 32 52 33 .. math:: 53 34 54 q = \sqrt{q_x^2 + q_y^2}35 Q = \sqrt{Q_x^2 + Q_y^2} 55 36 56 37 The returned value is in units of |cm^-1|, on absolute scale. 57 38 58 .. image:: img/lamellarCaille_1d.jpg 39 ============== ======== ============= 40 Parameter name Units Default value 41 ============== ======== ============= 42 background |cm^-1| 0.0 43 contrast |Ang^-2| 5e-06 44 scale None 1 45 delta |Ang| 30 46 n_plates None 20 47 spacing |Ang| 400 48 caille |Ang^-2| 0.1 49 ============== ======== ============= 50 51 .. image:: img/lamellarPS_142.jpg 59 52 60 53 *Figure. 1D plot using the default values (w/6000 data point).* 61 54 62 Our model uses the form factor calculations as implemented in a c library63 provided by the NIST Center for Neutron Research(Kline, 2006).55 Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research 56 (Kline, 2006). 64 57 65 58 REFERENCE 66 ---------67 59 68 60 F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502 … … 83 75 scale = scale factor 84 76 """ 85 category = "shape:lamellae"86 77 87 78 parameters = [ … … 94 85 [ "spacing", "Ang", 400., [0.0,inf], "volume", 95 86 "d-spacing of Caille S(Q)" ], 96 [ "Caille_parameter", " 1/Ang^2", 0.1, [0.0,0.8], "",87 [ "Caille_parameter", "Ang^-2", 0.1, [0.0,0.8], "", 97 88 "Caille parameter" ], 98 89 [ "sld", "1e-6/Ang^2", 6.3, [-inf,inf], "", -
sasmodels/models/lamellarCailleHG.py
ra5d0d00 rcd55ac3 82 82 scale = scale factor 83 83 """ 84 category = "shape:lamellae"85 84 86 85 parameters = [ -
sasmodels/models/lamellarFFHG.py
ra5d0d00 rdc02af0 71 71 scale = scale factor 72 72 """ 73 category = "shape:lamellae"74 73 75 74 parameters = [ -
sasmodels/models/lamellarPC.py
ra5d0d00 rf734e7d 71 71 scale = scale factor 72 72 """ 73 category = "shape:lamellae"74 73 75 74 parameters = [ -
sasmodels/models/parallelepiped.py
ra5d0d00 rc5b7d07 114 114 mu = q*B 115 115 """ 116 category = "shape:parallelpiped"117 116 118 117 parameters = [ 119 118 # [ "name", "units", default, [lower, upper], "type", 120 119 # "description" ], 121 [ "sld", " 1e-6/Ang^2", 4, [-inf,inf], "",120 [ "sld", "6e-6/Ang^2", 4, [-inf,inf], "", 122 121 "Parallelepiped scattering length density" ], 123 122 [ "solvent_sld", "1e-6/Ang^2", 1, [-inf,inf], "", -
sasmodels/models/sphere.py
ra5d0d00 ra503bfd 70 70 solvent_sld: the SLD of the solvent 71 71 """ 72 category = "shape:sphere"73 72 74 73 parameters = [ -
sasmodels/models/spherepy.py
ra5d0d00 ra503bfd 71 71 solvent_sld: the SLD of the solvent 72 72 """ 73 category = "shape:sphere"74 73 75 74 parameters = [ -
sasmodels/models/stickyhardsphere.py
ra5d0d00 r9cb1415 70 70 parameters used in P(Q). 71 71 """ 72 category = "structure-factor"73 72 74 73 parameters = [ -
sasmodels/models/triaxial_ellipsoid.py
ra5d0d00 ra503bfd 100 100 not be correct. 101 101 """ 102 category = "shape:ellipsoid"103 102 104 103 parameters = [
Note: See TracChangeset
for help on using the changeset viewer.