Changes in / [3040843:5befedd] in sasmodels


Ignore:
Files:
15 added
11 deleted
26 edited

Legend:

Unmodified
Added
Removed
  • .gitignore

    r61ba623 r946cdc8e  
    99/doc/api/ 
    1010/doc/model/ 
    11 /doc/ref/models 
    1211.mplconfig 
  • doc/Makefile

    r61ba623 r19dcb933  
    3232MODELS_RST = $(patsubst ../sasmodels/models/%.py,model/%.rst,$(MODELS_PY)) 
    3333 
     34model/img/%: ../sasmodels/models/img/% 
     35        $(COPY) $< $@ 
     36 
     37model/%.rst: ../sasmodels/models/%.py 
     38        $(PYTHON) genmodel.py $< $@ 
     39 
     40.PHONY: help clean html dirhtml pickle json htmlhelp qthelp latex changes linkcheck doctest build 
     41 
    3442help: 
    3543        @echo "Please use \`make <target>' where <target> is one of" 
     
    4553        @echo "  doctest   to run all doctests embedded in the documentation (if enabled)" 
    4654 
    47 model/img/%: ../sasmodels/models/img/% 
    48         $(COPY) $< $@ 
    49  
    50 model/%.rst: ../sasmodels/models/%.py 
    51         $(PYTHON) genmodel.py $< $@ 
    52  
    53 ref/models/index.rst: gentoc.py $(MODELS_PY) 
    54         $(PYTHON) gentoc.py $(MODELS_PY) 
    55  
    56 .PHONY: help clean html dirhtml pickle json htmlhelp qthelp latex changes linkcheck doctest build 
    57  
    5855api: genapi.py 
    5956        $(RMDIR) api 
     
    6461        $(MKDIR) model/img 
    6562 
    66 build: model $(MODELS_RST) $(IMG_DEST) api ref/models/index.rst 
     63build: model $(MODELS_RST) $(IMG_DEST) api 
    6764        #cd ../.. && python setup.py build 
    6865 
  • doc/genmodel.py

    r61ba623 rcb6ecf4  
    33sys.path.insert(0,'..') 
    44 
    5 # Convert ../sasmodels/models/name.py to sasmodels.models.name 
     5# Convert ../sasmodels/models.name.py to sasmodels.models.name 
    66module_name = sys.argv[1][3:-3].replace('/','.').replace('\\','.') 
    77print module_name 
  • doc/index.rst

    r61ba623 r19dcb933  
    1515 
    1616   guide/index.rst 
    17    ref/index.rst 
     17   models/index.rst 
    1818   api/index.rst 
    1919 
  • sasmodels/generate.py

    ra5d0d00 r6137124  
    210210RST_UNITS = { 
    211211    "Ang": "|Ang|", 
    212     "1/Ang": "|Ang^-1|", 
    213212    "1/Ang^2": "|Ang^-2|", 
    214213    "1e-6/Ang^2": "|1e-6Ang^-2|", 
  • sasmodels/models/barbell.py

    ra5d0d00 r0706431  
    1616The barbell geometry is defined as 
    1717 
    18 .. image:: img/barbell_geometry.jpg 
     18.. image:: img/image105.jpg 
    1919 
    2020where *r* is the radius of the cylinder. All other parameters are as defined in the diagram. 
     
    7171**The requirement that** *R* >= *r* **is not enforced in the model!** It is up to you to restrict this during analysis. 
    7272 
    73 This example dataset is produced by running the Macro PlotBarbell(), 
    74 using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1|, 
    75 *sld* = 4e-6 |Ang^-2| and the default model values. 
     73This example dataset is produced by running the Macro PlotBarbell(), using 200 data points, *qmin* = 0.001 |Ang^-1|, 
     74*qmax* = 0.7 |Ang^-1| and the following default values 
    7675 
    77 .. image:: img/barbell_1d.jpg 
     76==============  ========  ============= 
     77Parameter name  Units     Default value 
     78==============  ========  ============= 
     79scale           None      1.0 
     80len_bar         |Ang|     400.0 
     81rad_bar         |Ang|     20.0 
     82rad_bell        |Ang|     40.0 
     83sld_barbell     |Ang^-2|  1.0e-006 
     84sld_solv        |Ang^-2|  6.3e-006 
     85background      |cm^-1|   0 
     86==============  ========  ============= 
     87 
     88.. image:: img/image110.jpg 
    7889 
    7990*Figure. 1D plot using the default values (w/256 data point).* 
     
    8293|theta| = 45 deg and |phi| = 0 deg with default values for other parameters 
    8394 
    84 .. image:: img/barbell_2d.jpg 
     95.. image:: img/image111.jpg 
    8596 
    8697*Figure. 2D plot (w/(256X265) data points).* 
     
    95106 
    96107REFERENCE 
    97 --------- 
    98108 
    99109H Kaya, *J. Appl. Cryst.*, 37 (2004) 37 223-230 
     
    112122                It must be that rad_bar <(=) rad_bell. 
    113123""" 
    114 category = "shape:cylinder" 
    115124 
    116125parameters = [ 
  • sasmodels/models/bcc.py

    ra5d0d00 re166cb9  
    33#note - calculation requires double precision 
    44""" 
    5 Calculates the scattering from a **body-centered cubic lattice** with 
    6 paracrystalline distortion. Thermal vibrations are considered to be negligible, 
    7 and the size of the paracrystal is infinitely large. Paracrystalline distortion 
    8 is assumed to be isotropic and characterized by a Gaussian distribution. 
     5Calculates the scattering from a **body-centered cubic lattice** with paracrystalline distortion. Thermal vibrations 
     6are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is 
     7assumed to be isotropic and characterized by a Gaussian distribution. 
    98 
    109The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 
     
    1312---------- 
    1413 
    15 The scattering intensity $I(q)$ is calculated as 
     14The scattering intensity *I(q)* is calculated as 
    1615 
    17 .. math: 
     16.. image:: img/image167.jpg 
    1817 
    19     I(q) = \frac{\text{scale}}{V_P} V_\text{lattice} P(q) Z(q) 
     18where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume 
     19correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the 
     20paracrystalline structure factor for a body-centered cubic structure. 
    2021 
     22Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (29)-(31) from the 1987 paper for 
     23*Z1*\ , *Z2*\ , and *Z3*\ . 
    2124 
    22 where *scale* is the volume fraction of spheres, *Vp* is the volume of the 
    23 primary particle, *V(lattice)* is a volume correction for the crystal 
    24 structure, $P(q)$ is the form factor of the sphere (normalized), and $Z(q)$ 
    25 is the paracrystalline structure factor for a body-centered cubic structure. 
     25The lattice correction (the occupied volume of the lattice) for a body-centered cubic structure of particles of radius 
     26*R* and nearest neighbor separation *D* is 
    2627 
    27 Equation (1) of the 1990 reference is used to calculate $Z(q)$, using 
    28 equations (29)-(31) from the 1987 paper for *Z1*\ , *Z2*\ , and *Z3*\ . 
     28.. image:: img/image159.jpg 
    2929 
    30 The lattice correction (the occupied volume of the lattice) for a 
    31 body-centered cubic structure of particles of radius $R$ and nearest neighbor 
    32 separation $D$ is 
     30The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)* 
    3331 
    34 .. math: 
     32.. image:: img/image160.jpg 
    3533 
    36     V_\text{lattice} = \frac{16\pi}{3} \frac{R^3}{\left(D\sqrt{2}\right)^3} 
    37  
    38  
    39 The distortion factor (one standard deviation) of the paracrystal is included 
    40 in the calculation of $Z(q)$ 
    41  
    42 .. math: 
    43  
    44     \Delta a = g D 
    45  
    46 where $g$ is a fractional distortion based on the nearest neighbor distance. 
     34where *g* is a fractional distortion based on the nearest neighbor distance. 
    4735 
    4836The body-centered cubic lattice is 
    4937 
    50 .. image:: img/bcc_lattice.jpg 
     38.. image:: img/image168.jpg 
    5139 
    5240For a crystal, diffraction peaks appear at reduced q-values given by 
    5341 
    54 .. math: 
     42.. image:: img/image162.jpg 
    5543 
    56     \frac{qD}{2\pi} = \sqrt{h^2 + k^2 + l^2} 
     44where for a body-centered cubic lattice, only reflections where (\ *h* + *k* + *l*\ ) = even are allowed and 
     45reflections where (\ *h* + *k* + *l*\ ) = odd are forbidden. Thus the peak positions correspond to (just the first 5) 
    5746 
    58 where for a body-centered cubic lattice, only reflections where 
    59 $(h + k + l) = \text{even}$ are allowed and reflections where 
    60 $(h + k + l) = \text{odd}$ are forbidden. Thus the peak positions 
    61 correspond to (just the first 5) 
     47.. image:: img/image169.jpg 
    6248 
    63 .. math: 
     49**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of** 
     50**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is 
     51SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This 
     52makes a triple integral. Very, very slow. Go get lunch! 
    6453 
    65     \begin{eqnarray} 
    66     &q/q_o&&\quad 1&& \ \sqrt{2} && \ \sqrt{3} && \ \sqrt{4} && \ \sqrt{5} \\ 
    67     &\text{Indices}&& (110) && (200) && (211) && (220) && (310) 
    68     \end{eqnarray} 
     54This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above 
     55default values. 
    6956 
    70 **NB: The calculation of $Z(q)$ is a double numerical integral that must 
    71 be carried out with a high density of points to properly capture the sharp 
    72 peaks of the paracrystalline scattering.** So be warned that the calculation 
    73 is SLOW. Go get some coffee. Fitting of any experimental data must be 
    74 resolution smeared for any meaningful fit. This makes a triple integral. 
    75 Very, very slow. Go get lunch! 
    76  
    77 This example dataset is produced using 200 data points, 
    78 *qmin* = 0.001 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above default values. 
    79  
    80 .. image:: img/bcc_1d.jpg 
     57.. image:: img/image170.jpg 
    8158 
    8259*Figure. 1D plot in the linear scale using the default values (w/200 data point).* 
    8360 
    84 The 2D (Anisotropic model) is based on the reference below where $I(q)$ is 
    85 approximated for 1d scattering. Thus the scattering pattern for 2D may not 
    86 be accurate. Note that we are not responsible for any incorrectness of the 2D 
    87 model computation. 
     61The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the 
     62scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model 
     63computation. 
    8864 
    89 .. image:: img/bcc_orientation.gif 
     65.. image:: img/image165.gif 
    9066 
    91 .. image:: img/bcc_2d.jpg 
     67.. image:: img/image171.jpg 
    9268 
    9369*Figure. 2D plot using the default values (w/200X200 pixels).* 
    9470 
    9571REFERENCE 
    96 --------- 
    9772 
    9873Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 
     
    11287    assumed to be isotropic and characterized by a Gaussian distribution. 
    11388    """ 
    114 category="shape:paracrystal" 
    11589 
    11690parameters = [ 
  • sasmodels/models/broad_peak.py

    ra5d0d00 rf734e7d  
    3030    q = \sqrt{q_x^2 + q_y^2} 
    3131 
     32=====================  =========  ============= 
     33Parameter name          Units     Default value 
     34=====================  =========  ============= 
     35lorentz_scale(=C)       None      10 
     36porod_scale  (=A)       None      1e-05 
     37lorentz_length (= |xi| )  |Ang|     50 
     38peak_pos  (=Q0)         |Ang^-1|  0.1 
     39porod_exp  (=n)         None      2 
     40lorentz_exp (=m)        None      3 
     41Background (=B)        |cm^-1|   0.1 
     42==================  ========  ============= 
    3243 
    3344.. image:: img/image175.jpg 
     
    3647 
    3748REFERENCE 
    38 --------- 
    3949 
    4050None. 
     
    6171      lorentz_exp = Lorentzian exponent 
    6272      background = Incoherent background""" 
    63 category="shape-independent" 
    6473 
    6574parameters = [ 
  • sasmodels/models/capped_cylinder.py

    ra5d0d00 ra503bfd  
    130130        solvent_sld: SLD of the solvent. 
    131131""" 
    132 category = "shape:cylinder" 
    133132 
    134133parameters = [ 
  • sasmodels/models/core_shell_cylinder.py

    ra5d0d00 ra503bfd  
    133133        phi: the axis_phi of the cylinder 
    134134""" 
    135 category = "shape:cylinder" 
    136135 
    137136parameters = [ 
  • sasmodels/models/cylinder.py

    ra5d0d00 r43bdddc  
    128128            f(q,alpha)^(2)*sin(alpha)*dalpha + background 
    129129""" 
    130 category = "shape:cylinder" 
    131130 
    132131parameters = [ 
  • sasmodels/models/dab.py

    ra5d0d00 r80768fc  
    4444 
    4545""" 
    46 category = "shape-independent" 
    4746 
    4847parameters = [ 
  • sasmodels/models/ellipsoid.py

    ra5d0d00 ra503bfd  
    136136                Re: equatorial radius of the ellipsoid 
    137137""" 
    138 category = "shape:ellipsoid" 
    139138 
    140139parameters = [ 
  • sasmodels/models/fcc.py

    ra5d0d00 re7b3d7b  
    8787    assumed to be isotropic and characterized by a Gaussian distribution. 
    8888    """ 
    89 category = "shape:paracrystal" 
    9089 
    9190parameters = [ 
  • sasmodels/models/gaussian_peak.py

    ra5d0d00 r6ea6902  
    1616 
    1717REFERENCE 
    18 --------- 
    1918 
    2019None. 
     
    2928    Provide F(q) = scale*exp( -1/2 *[(q-q0)/B]^2 )+ background 
    3029""" 
    31 category = "shape-independent" 
    3230 
    3331parameters = [ 
    3432#   [ "name", "units", default, [lower, upper], "type", 
    3533#     "description" ], 
    36     [ "q0", "1/Ang", 0.05, [-inf,inf], "", 
     34    [ "q0", "Ang^-1", 0.05, [-inf,inf], "", 
    3735      "Peak position" ], 
    38     [ "sigma", "1/Ang", 0.005, [-inf,inf], "", 
     36    [ "sigma", "Ang^-1", 0.005, [-inf,inf], "", 
    3937      "Peak width (standard deviation)" ], 
    4038    ] 
  • sasmodels/models/hardsphere.py

    ra5d0d00 r301e096  
    11# Note: model title and parameter table are inserted automatically 
    2 r"""Calculate the interparticle structure factor for monodisperse 
    3 spherical particles interacting through hard sphere (excluded volume) 
    4 interactions. 
     2r"""This calculates the interparticle structure factor for monodisperse spherical particles interacting through hard 
     3sphere (excluded volume) interactions. 
    54 
    6 The calculation uses the Percus-Yevick closure where the interparticle 
    7 potential is 
     5The calculation uses the Percus-Yevick closure where the interparticle potential is 
    86 
    9 .. math: 
    10  
    11     U(r) = \begin{cases} 
    12     \infty & r < 2R \\ 
    13     0 & r \geq 2R 
    14     \end{cases} 
     7.. image:: img/HardSphere_223.PNG 
    158 
    169where *r* is the distance from the center of the sphere of a radius *R*. 
     
    2013.. math:: 
    2114 
    22     q = \sqrt{q_x^2 + q_y^2} 
     15    Q = \sqrt{Q_x^2 + Q_y^2} 
    2316 
    2417 
    25 .. image:: img/HardSphere_1d.jpg 
     18==============  ========  ============= 
     19Parameter name  Units     Default value 
     20==============  ========  ============= 
     21effect_radius   |Ang|     50.0 
     22volfraction     None      0.2 
     23==============  ========  ============= 
     24 
     25.. image:: img/HardSphere_224.jpg 
    2626 
    2727*Figure. 1D plot using the default values (in linear scale).* 
     
    3939        [Hard sphere structure factor, with Percus-Yevick closure] 
    4040        Interparticle S(Q) for random, non-interacting spheres. 
    41         May be a reasonable approximation for other shapes of 
    42         particles that freely rotate, and for moderately polydisperse 
     41                May be a reasonable approximation for other shapes of 
     42                particles that freely rotate, and for moderately polydisperse 
    4343        systems. Though strictly the maths needs to be modified -  
    44         which sasview does not do yet. 
    45         effect_radius is the hard sphere radius 
    46         volfraction is the volume fraction occupied by the spheres. 
     44                which sasview does not do yet. 
     45                effect_radius is the hard sphere radius 
     46                volfraction is the volume fraction occupied by the spheres. 
    4747""" 
    48 category = "structure-factor" 
    4948 
    5049parameters = [ 
     
    9796Iqxy = """ 
    9897    // never called since no orientation or magnetic parameters. 
    99     return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS); 
     98    return -1.0; 
    10099    """ 
    101100 
  • sasmodels/models/lamellar.py

    ra5d0d00 ra503bfd  
    6161                scale = scale factor 
    6262""" 
    63 category = "shape:lamellae" 
    6463 
    6564parameters = [ 
  • sasmodels/models/lamellarCaille.py

    ra5d0d00 rdc02af0  
    11# Note: model title and parameter table are inserted automatically 
    22r""" 
    3 This model provides the scattering intensity, $I(q) = P(q) S(q)$, for a 
    4 lamellar phase where a random distribution in solution are assumed. 
    5 Here a Caille $S(Q)$ is used for the lamellar stacks. 
     3This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lamellar phase where a random 
     4distribution in solution are assumed. Here a Caille S(Q) is used for the lamellar stacks. 
    65 
    7 The scattering intensity $I(q)$ is 
     6The scattering intensity *I(q)* is 
    87 
    9 .. math: 
    10  
    11     I(q) = 2\pi \frac{P(q)S(q)}{\delta q^2} 
     8.. image:: img/lamellarCaille_139.PNG 
    129 
    1310The form factor is 
    1411 
    15 .. math: 
    16  
    17     P(q) = \frac{2\Delta\rho^2}{q^2}\left(1-\cos q\delta \right) 
     12.. image:: img/lamellarCaille_134.PNG 
    1813 
    1914and the structure factor is 
    2015 
    21 .. math: 
    22  
    23     S(q) = 1 + 2 \sum_1^{N-1}\left(1-\frac{n}{N}\right) 
    24            \cos(qdn)\exp\left(-\frac{2q^2d^2\alpha(n)}{2}\right) 
     16.. image:: img/lamellarCaille_.PNG 
    2517 
    2618where 
    2719 
    28 .. math: 
     20.. image:: img/lamellarCaille_.PNG 
    2921 
    30     \begin{eqnarray} 
    31     \alpha(n) &=& \frac{\eta_{cp}}{4\pi^2} \left(\ln(\pi n)+\gamma_E\right)  \\ 
    32     \gamma_E &=& 0.5772156649 && \text{Euler's constant} \\ 
    33     \eta_{cp} &=& \frac{q_o^2k_B T}{8\pi\sqrt{K\overline{B}}} && \text{Caille constant} 
    34     \end{eqnarray} 
     22Here *d* = (repeat) spacing, |delta| = bilayer thickness, the contrast |drho| = SLD(headgroup) - SLD(solvent), 
     23K = smectic bending elasticity, B = compression modulus, and N = number of lamellar plates (*n_plates*). 
    3524 
    36 Here $d$ = (repeat) spacing, $\delta$ = bilayer thickness, 
    37 the contrast $\Delta\rho$ = SLD(headgroup) - SLD(solvent), 
    38 $K$ = smectic bending elasticity, $B$ = compression modulus, and 
    39 $N$ = number of lamellar plates (*n_plates*). 
     25NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.** 
     26And due to a complication of the model function, users are responsible for making sure that all the assumptions are 
     27handled accurately (see the original reference below for more details). 
    4028 
    41 NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the 
    42 assumptions of the model are incorrect.** And due to a complication of the 
    43 model function, users are responsible for making sure that all the assumptions 
    44 are handled accurately (see the original reference below for more details). 
     29Non-integer numbers of stacks are calculated as a linear combination of results for the next lower and higher values. 
    4530 
    46 Non-integer numbers of stacks are calculated as a linear combination of 
    47 results for the next lower and higher values. 
    48  
    49 The 2D scattering intensity is calculated in the same way as 1D, where the 
    50 $q$ vector is defined as 
     31The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
    5132 
    5233.. math:: 
    5334 
    54     q = \sqrt{q_x^2 + q_y^2} 
     35    Q = \sqrt{Q_x^2 + Q_y^2} 
    5536 
    5637The returned value is in units of |cm^-1|, on absolute scale. 
    5738 
    58 .. image:: img/lamellarCaille_1d.jpg 
     39==============  ========  ============= 
     40Parameter name  Units     Default value 
     41==============  ========  ============= 
     42background      |cm^-1|   0.0 
     43contrast        |Ang^-2|  5e-06 
     44scale           None      1 
     45delta           |Ang|     30 
     46n_plates        None      20 
     47spacing         |Ang|     400 
     48caille          |Ang^-2|  0.1 
     49==============  ========  ============= 
     50 
     51.. image:: img/lamellarPS_142.jpg 
    5952 
    6053*Figure. 1D plot using the default values (w/6000 data point).* 
    6154 
    62 Our model uses the form factor calculations as implemented in a c library 
    63 provided by the NIST Center for Neutron Research (Kline, 2006). 
     55Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research 
     56(Kline, 2006). 
    6457 
    6558REFERENCE 
    66 --------- 
    6759 
    6860F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502 
     
    8375                scale = scale factor 
    8476""" 
    85 category = "shape:lamellae" 
    8677 
    8778parameters = [ 
     
    9485    [ "spacing", "Ang", 400., [0.0,inf], "volume", 
    9586      "d-spacing of Caille S(Q)" ], 
    96     [ "Caille_parameter", "1/Ang^2", 0.1, [0.0,0.8], "", 
     87    [ "Caille_parameter", "Ang^-2", 0.1, [0.0,0.8], "", 
    9788      "Caille parameter" ], 
    9889    [ "sld", "1e-6/Ang^2", 6.3, [-inf,inf], "", 
  • sasmodels/models/lamellarCailleHG.py

    ra5d0d00 rcd55ac3  
    8282                scale = scale factor 
    8383""" 
    84 category = "shape:lamellae" 
    8584 
    8685parameters = [ 
  • sasmodels/models/lamellarFFHG.py

    ra5d0d00 rdc02af0  
    7171                scale = scale factor 
    7272""" 
    73 category = "shape:lamellae" 
    7473 
    7574parameters = [ 
  • sasmodels/models/lamellarPC.py

    ra5d0d00 rf734e7d  
    7171                scale = scale factor 
    7272""" 
    73 category = "shape:lamellae" 
    7473 
    7574parameters = [ 
  • sasmodels/models/parallelepiped.py

    ra5d0d00 rc5b7d07  
    114114            mu = q*B 
    115115""" 
    116 category = "shape:parallelpiped" 
    117116 
    118117parameters = [ 
    119118#   [ "name", "units", default, [lower, upper], "type", 
    120119#     "description" ], 
    121     [ "sld", "1e-6/Ang^2", 4, [-inf,inf], "", 
     120    [ "sld", "6e-6/Ang^2", 4, [-inf,inf], "", 
    122121      "Parallelepiped scattering length density" ], 
    123122    [ "solvent_sld", "1e-6/Ang^2", 1, [-inf,inf], "", 
  • sasmodels/models/sphere.py

    ra5d0d00 ra503bfd  
    7070    solvent_sld: the SLD of the solvent 
    7171""" 
    72 category = "shape:sphere" 
    7372 
    7473parameters = [ 
  • sasmodels/models/spherepy.py

    ra5d0d00 ra503bfd  
    7171    solvent_sld: the SLD of the solvent 
    7272""" 
    73 category = "shape:sphere" 
    7473 
    7574parameters = [ 
  • sasmodels/models/stickyhardsphere.py

    ra5d0d00 r9cb1415  
    7070                parameters used in P(Q). 
    7171""" 
    72 category = "structure-factor" 
    7372 
    7473parameters = [ 
  • sasmodels/models/triaxial_ellipsoid.py

    ra5d0d00 ra503bfd  
    100100        not be correct. 
    101101""" 
    102 category = "shape:ellipsoid" 
    103102 
    104103parameters = [ 
Note: See TracChangeset for help on using the changeset viewer.