Changeset 5745f0b in sasmodels


Ignore:
Timestamp:
Mar 20, 2016 10:37:16 AM (9 years ago)
Author:
ajj
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
3415f4f
Parents:
91d7ec4
Message:

raspberry documentation

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/raspberry.py

    ra2d8a67 r5745f0b  
    2828.. math:: 
    2929 
    30     \Psi_L = \Int_0^{R_L}(4\piR^2_L)\frac{sin(qR_L)}{qR_L}dR_L = \frac{3[sin(qR_L)-qR_Lcos(qR_L)]}{(qR_L)^2} 
     30    \Psi_L = \int_0^{R_L}(4\pi R^2_L)\frac{sin(qR_L)}{qR_L}dR_L = \frac{3[sin(qR_L)-qR_Lcos(qR_L)]}{(qR_L)^2} 
    3131 
    3232.. math:: 
    3333 
    34     \Psi_S = \Int_0^{R_S}(4\piR^2_S)\frac{sin(qR_S)}{qR_S}dR_S = \frac{3[sin(qR_S)-qR_Lcos(qR_S)]}{(qR_S)^2} 
     34    \Psi_S = \int_0^{R_S}(4\pi R^2_S)\frac{sin(qR_S)}{qR_S}dR_S = \frac{3[sin(qR_S)-qR_Lcos(qR_S)]}{(qR_S)^2} 
    3535 
    3636The cross term between the large droplet and small particles is given by: 
    3737 
    3838.. math:: 
    39     S_{LS} = \Psi_L\Psi_S\frac{sin(q(R_L+\deltaR_S))}{q(R_L+\deltaR_S)} 
     39    S_{LS} = \Psi_L\Psi_S\frac{sin(q(R_L+\delta R_S))}{q(R_L+\delta\ R_S)} 
    4040 
    4141and the self term between small particles is given by: 
    4242 
    4343.. math:: 
    44     S_{SS} = \Psi_S^2\bigl[\frac{sin(q(R_L+\deltaR_S))}{q(R_L+\deltaR_S)}\bigr]^2 
     44    S_{SS} = \Psi_S^2\bigl[\frac{sin(q(R_L+\delta R_S))}{q(R_L+\delta\ R_S)}\bigr]^2 
    4545 
    4646The number of small particles per large droplet, $N_p$, is given by: 
     
    4848.. math:: 
    4949 
    50     N_p = \frac{\phi_S\phi_{surface}V_L}{\phi_L\V_S} 
     50    N_p = \frac{\phi_S\phi_{surface}V_L}{\phi_L V_S} 
    5151 
    5252where $\phi_S$ is the volume fraction of small particles in the sample, $\phi_{surface}$ is the 
     
    7979 
    8080.. math:: 
    81     \Chi = \frac{4\phi_L\phi_{surface}(R_L+\delta\R_S)}{\phi_LR_S} 
     81    \chi = \frac{4\phi_L\phi_{surface}(R_L+\delta R_S)}{\phi_LR_S} 
    8282 
    8383 
     
    9797from numpy import pi, inf 
    9898 
    99 name = "raspberry_surface_fraction" 
     99name = "raspberry" 
    100100title = "Calculates the form factor, *P(q)*, for a 'Raspberry-like' structure \ 
    101101where there are smaller spheres at the surface of a larger sphere, such as the \ 
Note: See TracChangeset for help on using the changeset viewer.