Changeset 4b2972c in sasmodels


Ignore:
Timestamp:
Mar 20, 2016 4:41:01 PM (9 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
cf52f9c
Parents:
b85be2d
Message:

remove docs from kernel_iq

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/kernel_iq.c

    r208f0a4 r4b2972c  
    1212*/ 
    1313 
    14 /* 
    15 The environment needs to provide the following #defines: 
    16  
    17    USE_OPENCL is defined if running in opencl 
    18    KERNEL declares a function to be available externally 
    19    KERNEL_NAME is the name of the function being declared 
    20    NPARS is the number of parameters in the kernel 
    21    PARAMETER_DECL is the declaration of the parameters to the kernel. 
    22  
    23        Cylinder: 
    24  
    25            #define PARAMETER_DECL \ 
    26            double length; \ 
    27            double radius; \ 
    28            double sld; \ 
    29            double sld_solvent 
    30  
    31        Note: scale and background are not included 
    32  
    33        Multi-shell cylinder (10 shell max): 
    34  
    35            #define PARAMETER_DECL \ 
    36            double num_shells; \ 
    37            double length; \ 
    38            double radius[10]; \ 
    39            double sld[10]; \ 
    40            double sld_solvent 
    41  
    42    CALL_IQ(q, nq, i, pars) is the declaration of a call to the kernel. 
    43  
    44        Cylinder: 
    45  
    46            #define CALL_IQ(q, nq, i, var) \ 
    47            Iq(q[i], \ 
    48            var.length, \ 
    49            var.radius, \ 
    50            var.sld, \ 
    51            var.sld_solvent) 
    52  
    53        Multi-shell cylinder: 
    54            #define CALL_IQ(q, nq, i, var) \ 
    55            Iq(q[i], \ 
    56            var.num_shells, \ 
    57            var.length, \ 
    58            var.radius, \ 
    59            var.sld, \ 
    60            var.sld_solvent) 
    61  
    62    CALL_VOLUME(var) is similar, but for calling the form volume. 
    63  
    64    INVALID is a test for model parameters in the correct range 
    65  
    66        Cylinder: 
    67  
    68            #define INVALID(var) 0 
    69  
    70        BarBell: 
    71  
    72            #define INVALID(var) (var.bell_radius > var.radius) 
    73  
    74        Model with complicated constraints: 
    75  
    76            inline bool constrained(p1, p2, p3) { return expression; } 
    77            #define INVALID(var) constrained(var.p1, var.p2, var.p3) 
    78  
    79    IQ_FUNC could be Iq or Iqxy 
    80    IQ_PARS could be q[i] or q[2*i],q[2*i+1] 
    81  
    82 Our design supports a limited number of polydispersity loops, wherein 
    83 we need to cycle through the values of the polydispersity, calculate 
    84 the I(q, p) for each combination of parameters, and perform a normalized 
    85 weighted sum across all the weights.  Parameters may be passed to the 
    86 underlying calculation engine as scalars or vectors, but the polydispersity 
    87 calculator treats the parameter set as one long vector. 
    88  
    89 Let's assume we have 6 parameters in the model, with two polydisperse:: 
    90  
    91     0: scale        {scl = constant} 
    92     1: background   {bkg = constant} 
    93     5: length       {l = vector of 30pts} 
    94     4: radius       {r = vector of 10pts} 
    95     3: sld          {s = constant/(radius**2*length)} 
    96     2: sld_solvent  {s2 = constant} 
    97  
    98 This generates the following call to the kernel (where x stands for an 
    99 arbitrary value that is not used by the kernel evaluator): 
    100  
    101     NPARS = 4  // scale and background are in all models 
    102     problem { 
    103         pd_par = {5, 4, x, x}         // parameters *radius* and *length* vary 
    104         pd_length = {30, 10, 0, 0}    // *length* has more, so it is first 
    105         pd_offset = {10, 0, x, x}     // *length* starts at index 10 in weights 
    106         pd_stride = {1, 30, 300, 300} // cumulative product of pd length 
    107         pd_isvol = {1, 1, x, x}       // true if weight is a volume weight 
    108         par_offset = {2, 3, 303, 313}  // parameter offsets 
    109         par_coord = {0, 3, 2, 1} // bitmap of parameter dependencies 
    110         fast_coord_index = {5, 3, x, x} 
    111         fast_coord_count = 2  // two parameters vary with *length* distribution 
    112         theta_var = -1   // no spherical correction 
    113         fast_theta = 0   // spherical correction angle is not pd 1 
    114     } 
    115  
    116     weight = { l0, .., l29, r0, .., r9} 
    117     pars = { scl, bkg, l0, ..., l29, r0, r1, ..., r9, 
    118              s[l0,r0], ... s[l0,r9], s[l1,r0], ... s[l29,r9] , s2} 
    119  
    120     nq = 130 
    121     q = { q0, q1, ..., q130, x, x }  # pad to 8 element boundary 
    122     result = {r1, ..., r130, norm, vol, vol_norm, x, x, x, x, x, x, x} 
    123  
    124  
    125 The polydisperse parameters are stored in as an array of parameter 
    126 indices, one for each polydisperse parameter, stored in pd_par[n]. 
    127 Non-polydisperse parameters do not appear in this array. Each polydisperse 
    128 parameter has a weight vector whose length is stored in pd_length[n], 
    129 The weights are stored in a contiguous vector of weights for all 
    130 parameters, with the starting position for the each parameter stored 
    131 in pd_offset[n].  The values corresponding to the weights are stored 
    132 together in a separate weights[] vector, with offset stored in 
    133 par_offset[pd_par[n]]. Polydisperse parameters should be stored in 
    134 decreasing order of length for highest efficiency. 
    135  
    136 We limit the number of polydisperse dimensions to MAX_PD (currently 4). 
    137 This cuts the size of the structure in half compared to allowing a 
    138 separate polydispersity for each parameter.  This will help a little 
    139 bit for models with large numbers of parameters, such as the onion model. 
    140  
    141 Parameters may be coordinated.  That is, we may have the value of one 
    142 parameter depend on a set of other parameters, some of which may be 
    143 polydisperse.  For example, if sld is inversely proportional to the 
    144 volume of a cylinder, and the length and radius are independently 
    145 polydisperse, then for each combination of length and radius we need a 
    146 separate value for the sld.  The caller must provide a coordination table 
    147 for each parameter containing the value for each parameter given the 
    148 value of the polydisperse parameters v1, v2, etc.  The tables for each 
    149 parameter are arranged contiguously in a vector, with offset[k] giving the 
    150 starting location of parameter k in the vector.  Each parameter defines 
    151 coord[k] as a bit mask indicating which polydispersity parameters the 
    152 parameter depends upon. Usually this is zero, indicating that the parameter 
    153 is independent, but for the cylinder example given, the bits for the 
    154 radius and length polydispersity parameters would both be set, the result 
    155 being a (#radius x #length) table, or maybe a (#length x #radius) table 
    156 if length comes first in the polydispersity table. 
    157  
    158 NB: If we can guarantee that a compiler and OpenCL driver are available, 
    159 we could instead create the coordination function on the fly for each 
    160 parameter, saving memory and transfer time, but requiring a C compiler 
    161 as part of the environment. 
    162  
    163 In ordering the polydisperse parameters by decreasing length we can 
    164 iterate over the longest dispersion weight vector first.  All parameters 
    165 coordinated with this weight vector (the 'fast' parameters), can be 
    166 updated with a simple increment to the next position in the parameter 
    167 value table.  The indices of these parameters is stored in fast_coord_index[], 
    168 with fast_coord_count being the number of fast parameters.  A total 
    169 of NPARS slots is allocated to allow for the case that all parameters 
    170 are coordinated with the fast index, though this will likely be mostly 
    171 empty.  When the fast increment count reaches the end of the weight 
    172 vector, then the index of the second polydisperse parameter must be 
    173 incremented, and all of its coordinated parameters updated.  Because this 
    174 operation is not in the inner loop, a slower algorithm can be used. 
    175  
    176 If there is no polydispersity we pretend that it is polydisperisty with one 
    177 parameter, pd_start=0 and pd_stop=1.  We may or may not short circuit the 
    178 calculation in this case, depending on how much time it saves. 
    179  
    180 The problem details structure can be allocated and sent in as an integer 
    181 array using the read-only flag.  This allows us to copy it once per fit 
    182 along with the weights vector, since features such as the number of 
    183 polydisperity elements per pd parameter or the coordinated won't change 
    184 between function evaluations.  A new parameter vector is sent for 
    185 each I(q) evaluation. 
    186  
    187 To protect against expensive evaluations taking all the GPU resource 
    188 on large fits, the entire polydispersity will not be computed at once. 
    189 Instead, a start and stop location will be sent, indicating where in the 
    190 polydispersity loop the calculation should start and where it should 
    191 stop.  We can do this for arbitrary start/stop points since we have 
    192 unwound the nested loop.  Instead, we use the same technique as array 
    193 index translation, using div and mod to figure out the i,j,k,... 
    194 indices in the virtual nested loop. 
    195  
    196 The results array will be initialized to zero for polydispersity loop 
    197 entry zero, and preserved between calls to [start, stop] so that the 
    198 results accumulate by the time the loop has completed.  Background and 
    199 scale will be applied when the loop reaches the end.  This does require 
    200 that the results array be allocated read-write, which is less efficient 
    201 for the GPU, but it makes the calling sequence much more manageable. 
    202  
    203 Scale and background cannot be coordinated with other polydisperse parameters 
    204  
    205 Oriented objects in 2-D need a spherical correction on the angular variation 
    206 in order to preserve the 'surface area' of the weight distribution. 
    207  
    208 TODO: cutoff 
    209 */ 
    21014 
    21115#define MAX_PD 4  // MAX_PD is the max number of polydisperse parameters 
     
    400204  } 
    401205} 
    402 } 
Note: See TracChangeset for help on using the changeset viewer.