Changes in / [7f79cba:3f9db6e] in sasmodels
- Files:
-
- 3 deleted
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/plugin.rst
r0a9fcab r3048ec6 543 543 M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: 544 544 $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ 545 exp, log, pow(x,y), expm1, log1p, sqrt, cbrt:546 Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ ln 1 + x$,547 $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x)548 are accurate across all $x$, including $x$very close to zero.545 exp, log, pow(x,y), expm1, sqrt: 546 Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\sqrt{x}$. 547 The function expm1(x) is accurate across all $x$, including $x$ 548 very close to zero. 549 549 sin, cos, tan, asin, acos, atan: 550 550 Trigonometry functions and inverses, operating on radians. … … 557 557 atan(y/x) would return a value in quadrant I. Similarly for 558 558 quadrants II and IV when $x$ and $y$ have opposite sign. 559 f abs(x), fmin(x,y), fmax(x,y), trunc, rint:559 fmin(x,y), fmax(x,y), trunc, rint: 560 560 Floating point functions. rint(x) returns the nearest integer. 561 561 NAN: 562 562 NaN, Not a Number, $0/0$. Use isnan(x) to test for NaN. Note that 563 563 you cannot use :code:`x == NAN` to test for NaN values since that 564 will always return false. NAN does not equal NAN! The alternative, 565 :code:`x != x` may fail if the compiler optimizes the test away. 564 will always return false. NAN does not equal NAN! 566 565 INFINITY: 567 566 $\infty, 1/0$. Use isinf(x) to test for infinity, or isfinite(x) … … 735 734 Similar arrays are available in :code:`gauss20.c` for 20-point 736 735 quadrature and in :code:`gauss150.c` for 150-point quadrature. 737 The macros :code:`GAUSS_N`, :code:`GAUSS_Z` and :code:`GAUSS_W` are738 defined so that you can change the order of the integration by739 selecting an different source without touching the C code.740 736 741 737 :code:`source = ["lib/gauss76.c", ...]` -
sasmodels/generate.py
rdb03406 r2d81cfe 709 709 _add_source(source, code, path) 710 710 711 if model_info.c_code:712 source.append(model_info.c_code)713 714 711 # Make parameters for q, qx, qy so that we can use them in declarations 715 712 q, qx, qy = [Parameter(name=v) for v in ('q', 'qx', 'qy')] -
sasmodels/modelinfo.py
rdb03406 r2d81cfe 12 12 from os.path import abspath, basename, splitext 13 13 import inspect 14 import logging15 14 16 15 import numpy as np # type: ignore 17 18 from . import autoc19 16 20 17 # Optional typing … … 35 32 TestCondition = Tuple[ParameterSetUser, TestInput, TestValue] 36 33 # pylint: enable=unused-import 37 38 logger = logging.getLogger(__name__)39 34 40 35 # If MAX_PD changes, need to change the loop macros in kernel_iq.c … … 794 789 info.structure_factor = getattr(kernel_module, 'structure_factor', False) 795 790 info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y']) 796 info.c_code = getattr(kernel_module, 'c_code', None)797 791 info.source = getattr(kernel_module, 'source', []) 798 792 # TODO: check the structure of the tests … … 818 812 819 813 _find_source_lines(info, kernel_module) 820 try:821 autoc.convert(info, kernel_module)822 except Exception as exc:823 raise824 logger.warn(str(exc))825 814 826 815 return info … … 946 935 #: See :attr:`ER` for details on the parameters. 947 936 VR = None # type: Optional[Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]]] 948 #: Arbitrary C code containing supporting functions, etc., to be inserted949 #: after everything in source. This can include Iq and Iqxy functions with950 #: the full function signature, including all parameters.951 c_code = None952 937 #: Returns the form volume for python-based models. Form volume is needed 953 938 #: for volume normalization in the polydispersity integral. If no -
sasmodels/special.py
r2db9fe4 re65c3ba 3 3 ................. 4 4 5 This following standard C99 math functions are available: 5 The C code follows the C99 standard, with the usual math functions, 6 as defined in 7 `OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_. 8 This includes the following: 6 9 7 10 M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: 8 11 $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ 9 12 10 exp, log, pow(x,y), expm1, log1p, sqrt, cbrt:11 Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ ln 1 + x$,12 $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x)13 are accurate across all $x$, including $x$very close to zero.13 exp, log, pow(x,y), expm1, sqrt: 14 Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\sqrt{x}$. 15 The function expm1(x) is accurate across all $x$, including $x$ 16 very close to zero. 14 17 15 18 sin, cos, tan, asin, acos, atan: … … 26 29 quadrants II and IV when $x$ and $y$ have opposite sign. 27 30 28 f abs(x), fmin(x,y), fmax(x,y), trunc, rint:31 fmin(x,y), fmax(x,y), trunc, rint: 29 32 Floating point functions. rint(x) returns the nearest integer. 30 33 … … 32 35 NaN, Not a Number, $0/0$. Use isnan(x) to test for NaN. Note that 33 36 you cannot use :code:`x == NAN` to test for NaN values since that 34 will always return false. NAN does not equal NAN! The alternative, 35 :code:`x != x` may fail if the compiler optimizes the test away. 37 will always return false. NAN does not equal NAN! 36 38 37 39 INFINITY: … … 87 89 for forcing a constant to stay double precision. 88 90 89 The following special functions and scattering calculations are defined. 91 The following special functions and scattering calculations are defined in 92 `sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_. 90 93 These functions have been tuned to be fast and numerically stable down 91 94 to $q=0$ even in single precision. In some cases they work around bugs … … 181 184 182 185 183 gauss76.n, gauss76.z[i], gauss76.w[i]:186 Gauss76Z[i], Gauss76Wt[i]: 184 187 Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively, 185 188 computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$. 186 When translating the model to C, include 'lib/gauss76.c' in the source 187 and use :code:`GAUSS_N`, :code:`GAUSS_Z`, and :code:`GAUSS_W`. 188 189 Similar arrays are available in :code:`gauss20` for 20-point quadrature 190 and :code:`gauss150.c` for 150-point quadrature. By using 191 :code:`import gauss76 as gauss` it is easy to change the number of 192 points in the integration. 189 190 Similar arrays are available in :code:`gauss20.c` for 20-point 191 quadrature and in :code:`gauss150.c` for 150-point quadrature. 192 193 193 """ 194 194 # pylint: disable=unused-import … … 200 200 201 201 # C99 standard math library functions 202 from numpy import exp, log, power as pow, expm1, log1p, sqrt, cbrt202 from numpy import exp, log, power as pow, expm1, sqrt 203 203 from numpy import sin, cos, tan, arcsin as asin, arccos as acos, arctan as atan 204 204 from numpy import sinh, cosh, tanh, arcsinh as asinh, arccosh as acosh, arctanh as atanh 205 205 from numpy import arctan2 as atan2 206 from numpy import fabs, fmin, fmax, trunc, rint 207 from numpy import pi, nan, inf 206 from numpy import fmin, fmax, trunc, rint 207 from numpy import NAN, inf as INFINITY 208 208 209 from scipy.special import gamma as sas_gamma 209 210 from scipy.special import erf as sas_erf … … 217 218 # C99 standard math constants 218 219 M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E = np.pi, np.pi/2, np.pi/4, np.sqrt(0.5), np.e 219 NAN = nan220 INFINITY = inf221 220 222 221 # non-standard constants … … 227 226 """return sin(x), cos(x)""" 228 227 return sin(x), cos(x) 229 sincos = SINCOS230 228 231 229 def square(x): … … 296 294 297 295 # Gaussians 298 class Gauss: 299 def __init__(self, w, z): 300 self.n = len(w) 301 self.w = w 302 self.z = z 303 304 gauss20 = Gauss( 305 w=np.array([ 306 .0176140071391521, 307 .0406014298003869, 308 .0626720483341091, 309 .0832767415767047, 310 .10193011981724, 311 .118194531961518, 312 .131688638449177, 313 .142096109318382, 314 .149172986472604, 315 .152753387130726, 316 .152753387130726, 317 .149172986472604, 318 .142096109318382, 319 .131688638449177, 320 .118194531961518, 321 .10193011981724, 322 .0832767415767047, 323 .0626720483341091, 324 .0406014298003869, 325 .0176140071391521 326 ]), 327 z=np.array([ 328 -.993128599185095, 329 -.963971927277914, 330 -.912234428251326, 331 -.839116971822219, 332 -.746331906460151, 333 -.636053680726515, 334 -.510867001950827, 335 -.37370608871542, 336 -.227785851141645, 337 -.076526521133497, 338 .0765265211334973, 339 .227785851141645, 340 .37370608871542, 341 .510867001950827, 342 .636053680726515, 343 .746331906460151, 344 .839116971822219, 345 .912234428251326, 346 .963971927277914, 347 .993128599185095 348 ]) 349 ) 350 351 gauss76 = Gauss( 352 w=np.array([ 353 .00126779163408536, #0 354 .00294910295364247, 355 .00462793522803742, 356 .00629918049732845, 357 .00795984747723973, 358 .00960710541471375, 359 .0112381685696677, 360 .0128502838475101, 361 .0144407317482767, 362 .0160068299122486, 363 .0175459372914742, #10 364 .0190554584671906, 365 .020532847967908, 366 .0219756145344162, 367 .0233813253070112, 368 .0247476099206597, 369 .026072164497986, 370 .0273527555318275, 371 .028587223650054, 372 .029773487255905, 373 .0309095460374916, #20 374 .0319934843404216, 375 .0330234743977917, 376 .0339977794120564, 377 .0349147564835508, 378 .0357728593807139, 379 .0365706411473296, 380 .0373067565423816, 381 .0379799643084053, 382 .0385891292645067, 383 .0391332242205184, #30 384 .0396113317090621, 385 .0400226455325968, 386 .040366472122844, 387 .0406422317102947, 388 .0408494593018285, 389 .040987805464794, 390 .0410570369162294, 391 .0410570369162294, 392 .040987805464794, 393 .0408494593018285, #40 394 .0406422317102947, 395 .040366472122844, 396 .0400226455325968, 397 .0396113317090621, 398 .0391332242205184, 399 .0385891292645067, 400 .0379799643084053, 401 .0373067565423816, 402 .0365706411473296, 403 .0357728593807139, #50 404 .0349147564835508, 405 .0339977794120564, 406 .0330234743977917, 407 .0319934843404216, 408 .0309095460374916, 409 .029773487255905, 410 .028587223650054, 411 .0273527555318275, 412 .026072164497986, 413 .0247476099206597, #60 414 .0233813253070112, 415 .0219756145344162, 416 .020532847967908, 417 .0190554584671906, 418 .0175459372914742, 419 .0160068299122486, 420 .0144407317482767, 421 .0128502838475101, 422 .0112381685696677, 423 .00960710541471375, #70 424 .00795984747723973, 425 .00629918049732845, 426 .00462793522803742, 427 .00294910295364247, 428 .00126779163408536 #75 (indexed from 0) 429 ]), 430 z=np.array([ 431 -.999505948362153, #0 432 -.997397786355355, 433 -.993608772723527, 434 -.988144453359837, 435 -.981013938975656, 436 -.972229228520377, 437 -.961805126758768, 438 -.949759207710896, 439 -.936111781934811, 440 -.92088586125215, 441 -.904107119545567, #10 442 -.885803849292083, 443 -.866006913771982, 444 -.844749694983342, 445 -.822068037328975, 446 -.7980001871612, 447 -.77258672828181, 448 -.74587051350361, 449 -.717896592387704, 450 -.688712135277641, 451 -.658366353758143, #20 452 -.626910417672267, 453 -.594397368836793, 454 -.560882031601237, 455 -.526420920401243, 456 -.491072144462194, 457 -.454895309813726, 458 -.417951418780327, 459 -.380302767117504, 460 -.342012838966962, 461 -.303146199807908, #30 462 -.263768387584994, 463 -.223945802196474, 464 -.183745593528914, 465 -.143235548227268, 466 -.102483975391227, 467 -.0615595913906112, 468 -.0205314039939986, 469 .0205314039939986, 470 .0615595913906112, 471 .102483975391227, #40 472 .143235548227268, 473 .183745593528914, 474 .223945802196474, 475 .263768387584994, 476 .303146199807908, 477 .342012838966962, 478 .380302767117504, 479 .417951418780327, 480 .454895309813726, 481 .491072144462194, #50 482 .526420920401243, 483 .560882031601237, 484 .594397368836793, 485 .626910417672267, 486 .658366353758143, 487 .688712135277641, 488 .717896592387704, 489 .74587051350361, 490 .77258672828181, 491 .7980001871612, #60 492 .822068037328975, 493 .844749694983342, 494 .866006913771982, 495 .885803849292083, 496 .904107119545567, 497 .92088586125215, 498 .936111781934811, 499 .949759207710896, 500 .961805126758768, 501 .972229228520377, #70 502 .981013938975656, 503 .988144453359837, 504 .993608772723527, 505 .997397786355355, 506 .999505948362153 #75 507 ]) 508 ) 509 510 gauss150 = Gauss( 511 z=np.array([ 512 -0.9998723404457334, 513 -0.9993274305065947, 514 -0.9983473449340834, 515 -0.9969322929775997, 516 -0.9950828645255290, 517 -0.9927998590434373, 518 -0.9900842691660192, 519 -0.9869372772712794, 520 -0.9833602541697529, 521 -0.9793547582425894, 522 -0.9749225346595943, 523 -0.9700655145738374, 524 -0.9647858142586956, 525 -0.9590857341746905, 526 -0.9529677579610971, 527 -0.9464345513503147, 528 -0.9394889610042837, 529 -0.9321340132728527, 530 -0.9243729128743136, 531 -0.9162090414984952, 532 -0.9076459563329236, 533 -0.8986873885126239, 534 -0.8893372414942055, 535 -0.8795995893549102, 536 -0.8694786750173527, 537 -0.8589789084007133, 538 -0.8481048644991847, 539 -0.8368612813885015, 540 -0.8252530581614230, 541 -0.8132852527930605, 542 -0.8009630799369827, 543 -0.7882919086530552, 544 -0.7752772600680049, 545 -0.7619248049697269, 546 -0.7482403613363824, 547 -0.7342298918013638, 548 -0.7198995010552305, 549 -0.7052554331857488, 550 -0.6903040689571928, 551 -0.6750519230300931, 552 -0.6595056411226444, 553 -0.6436719971150083, 554 -0.6275578900977726, 555 -0.6111703413658551, 556 -0.5945164913591590, 557 -0.5776035965513142, 558 -0.5604390262878617, 559 -0.5430302595752546, 560 -0.5253848818220803, 561 -0.5075105815339176, 562 -0.4894151469632753, 563 -0.4711064627160663, 564 -0.4525925063160997, 565 -0.4338813447290861, 566 -0.4149811308476706, 567 -0.3959000999390257, 568 -0.3766465660565522, 569 -0.3572289184172501, 570 -0.3376556177463400, 571 -0.3179351925907259, 572 -0.2980762356029071, 573 -0.2780873997969574, 574 -0.2579773947782034, 575 -0.2377549829482451, 576 -0.2174289756869712, 577 -0.1970082295132342, 578 -0.1765016422258567, 579 -0.1559181490266516, 580 -0.1352667186271445, 581 -0.1145563493406956, 582 -0.0937960651617229, 583 -0.0729949118337358, 584 -0.0521619529078925, 585 -0.0313062657937972, 586 -0.0104369378042598, 587 0.0104369378042598, 588 0.0313062657937972, 589 0.0521619529078925, 590 0.0729949118337358, 591 0.0937960651617229, 592 0.1145563493406956, 593 0.1352667186271445, 594 0.1559181490266516, 595 0.1765016422258567, 596 0.1970082295132342, 597 0.2174289756869712, 598 0.2377549829482451, 599 0.2579773947782034, 600 0.2780873997969574, 601 0.2980762356029071, 602 0.3179351925907259, 603 0.3376556177463400, 604 0.3572289184172501, 605 0.3766465660565522, 606 0.3959000999390257, 607 0.4149811308476706, 608 0.4338813447290861, 609 0.4525925063160997, 610 0.4711064627160663, 611 0.4894151469632753, 612 0.5075105815339176, 613 0.5253848818220803, 614 0.5430302595752546, 615 0.5604390262878617, 616 0.5776035965513142, 617 0.5945164913591590, 618 0.6111703413658551, 619 0.6275578900977726, 620 0.6436719971150083, 621 0.6595056411226444, 622 0.6750519230300931, 623 0.6903040689571928, 624 0.7052554331857488, 625 0.7198995010552305, 626 0.7342298918013638, 627 0.7482403613363824, 628 0.7619248049697269, 629 0.7752772600680049, 630 0.7882919086530552, 631 0.8009630799369827, 632 0.8132852527930605, 633 0.8252530581614230, 634 0.8368612813885015, 635 0.8481048644991847, 636 0.8589789084007133, 637 0.8694786750173527, 638 0.8795995893549102, 639 0.8893372414942055, 640 0.8986873885126239, 641 0.9076459563329236, 642 0.9162090414984952, 643 0.9243729128743136, 644 0.9321340132728527, 645 0.9394889610042837, 646 0.9464345513503147, 647 0.9529677579610971, 648 0.9590857341746905, 649 0.9647858142586956, 650 0.9700655145738374, 651 0.9749225346595943, 652 0.9793547582425894, 653 0.9833602541697529, 654 0.9869372772712794, 655 0.9900842691660192, 656 0.9927998590434373, 657 0.9950828645255290, 658 0.9969322929775997, 659 0.9983473449340834, 660 0.9993274305065947, 661 0.9998723404457334 662 ]), 663 w=np.array([ 664 0.0003276086705538, 665 0.0007624720924706, 666 0.0011976474864367, 667 0.0016323569986067, 668 0.0020663664924131, 669 0.0024994789888943, 670 0.0029315036836558, 671 0.0033622516236779, 672 0.0037915348363451, 673 0.0042191661429919, 674 0.0046449591497966, 675 0.0050687282939456, 676 0.0054902889094487, 677 0.0059094573005900, 678 0.0063260508184704, 679 0.0067398879387430, 680 0.0071507883396855, 681 0.0075585729801782, 682 0.0079630641773633, 683 0.0083640856838475, 684 0.0087614627643580, 685 0.0091550222717888, 686 0.0095445927225849, 687 0.0099300043714212, 688 0.0103110892851360, 689 0.0106876814158841, 690 0.0110596166734735, 691 0.0114267329968529, 692 0.0117888704247183, 693 0.0121458711652067, 694 0.0124975796646449, 695 0.0128438426753249, 696 0.0131845093222756, 697 0.0135194311690004, 698 0.0138484622795371, 699 0.0141714592928592, 700 0.0144882814685445, 701 0.0147987907597169, 702 0.0151028518701744, 703 0.0154003323133401, 704 0.0156911024699895, 705 0.0159750356447283, 706 0.0162520081211971, 707 0.0165218992159766, 708 0.0167845913311726, 709 0.0170399700056559, 710 0.0172879239649355, 711 0.0175283451696437, 712 0.0177611288626114, 713 0.0179861736145128, 714 0.0182033813680609, 715 0.0184126574807331, 716 0.0186139107660094, 717 0.0188070535331042, 718 0.0189920016251754, 719 0.0191686744559934, 720 0.0193369950450545, 721 0.0194968900511231, 722 0.0196482898041878, 723 0.0197911283358190, 724 0.0199253434079123, 725 0.0200508765398072, 726 0.0201676730337687, 727 0.0202756819988200, 728 0.0203748563729175, 729 0.0204651529434560, 730 0.0205465323660984, 731 0.0206189591819181, 732 0.0206824018328499, 733 0.0207368326754401, 734 0.0207822279928917, 735 0.0208185680053983, 736 0.0208458368787627, 737 0.0208640227312962, 738 0.0208731176389954, 739 0.0208731176389954, 740 0.0208640227312962, 741 0.0208458368787627, 742 0.0208185680053983, 743 0.0207822279928917, 744 0.0207368326754401, 745 0.0206824018328499, 746 0.0206189591819181, 747 0.0205465323660984, 748 0.0204651529434560, 749 0.0203748563729175, 750 0.0202756819988200, 751 0.0201676730337687, 752 0.0200508765398072, 753 0.0199253434079123, 754 0.0197911283358190, 755 0.0196482898041878, 756 0.0194968900511231, 757 0.0193369950450545, 758 0.0191686744559934, 759 0.0189920016251754, 760 0.0188070535331042, 761 0.0186139107660094, 762 0.0184126574807331, 763 0.0182033813680609, 764 0.0179861736145128, 765 0.0177611288626114, 766 0.0175283451696437, 767 0.0172879239649355, 768 0.0170399700056559, 769 0.0167845913311726, 770 0.0165218992159766, 771 0.0162520081211971, 772 0.0159750356447283, 773 0.0156911024699895, 774 0.0154003323133401, 775 0.0151028518701744, 776 0.0147987907597169, 777 0.0144882814685445, 778 0.0141714592928592, 779 0.0138484622795371, 780 0.0135194311690004, 781 0.0131845093222756, 782 0.0128438426753249, 783 0.0124975796646449, 784 0.0121458711652067, 785 0.0117888704247183, 786 0.0114267329968529, 787 0.0110596166734735, 788 0.0106876814158841, 789 0.0103110892851360, 790 0.0099300043714212, 791 0.0095445927225849, 792 0.0091550222717888, 793 0.0087614627643580, 794 0.0083640856838475, 795 0.0079630641773633, 796 0.0075585729801782, 797 0.0071507883396855, 798 0.0067398879387430, 799 0.0063260508184704, 800 0.0059094573005900, 801 0.0054902889094487, 802 0.0050687282939456, 803 0.0046449591497966, 804 0.0042191661429919, 805 0.0037915348363451, 806 0.0033622516236779, 807 0.0029315036836558, 808 0.0024994789888943, 809 0.0020663664924131, 810 0.0016323569986067, 811 0.0011976474864367, 812 0.0007624720924706, 813 0.0003276086705538 814 ]) 815 ) 296 297 Gauss20Wt = np.array([ 298 .0176140071391521, 299 .0406014298003869, 300 .0626720483341091, 301 .0832767415767047, 302 .10193011981724, 303 .118194531961518, 304 .131688638449177, 305 .142096109318382, 306 .149172986472604, 307 .152753387130726, 308 .152753387130726, 309 .149172986472604, 310 .142096109318382, 311 .131688638449177, 312 .118194531961518, 313 .10193011981724, 314 .0832767415767047, 315 .0626720483341091, 316 .0406014298003869, 317 .0176140071391521 318 ]) 319 320 Gauss20Z = np.array([ 321 -.993128599185095, 322 -.963971927277914, 323 -.912234428251326, 324 -.839116971822219, 325 -.746331906460151, 326 -.636053680726515, 327 -.510867001950827, 328 -.37370608871542, 329 -.227785851141645, 330 -.076526521133497, 331 .0765265211334973, 332 .227785851141645, 333 .37370608871542, 334 .510867001950827, 335 .636053680726515, 336 .746331906460151, 337 .839116971822219, 338 .912234428251326, 339 .963971927277914, 340 .993128599185095 341 ]) 342 343 Gauss76Wt = np.array([ 344 .00126779163408536, #0 345 .00294910295364247, 346 .00462793522803742, 347 .00629918049732845, 348 .00795984747723973, 349 .00960710541471375, 350 .0112381685696677, 351 .0128502838475101, 352 .0144407317482767, 353 .0160068299122486, 354 .0175459372914742, #10 355 .0190554584671906, 356 .020532847967908, 357 .0219756145344162, 358 .0233813253070112, 359 .0247476099206597, 360 .026072164497986, 361 .0273527555318275, 362 .028587223650054, 363 .029773487255905, 364 .0309095460374916, #20 365 .0319934843404216, 366 .0330234743977917, 367 .0339977794120564, 368 .0349147564835508, 369 .0357728593807139, 370 .0365706411473296, 371 .0373067565423816, 372 .0379799643084053, 373 .0385891292645067, 374 .0391332242205184, #30 375 .0396113317090621, 376 .0400226455325968, 377 .040366472122844, 378 .0406422317102947, 379 .0408494593018285, 380 .040987805464794, 381 .0410570369162294, 382 .0410570369162294, 383 .040987805464794, 384 .0408494593018285, #40 385 .0406422317102947, 386 .040366472122844, 387 .0400226455325968, 388 .0396113317090621, 389 .0391332242205184, 390 .0385891292645067, 391 .0379799643084053, 392 .0373067565423816, 393 .0365706411473296, 394 .0357728593807139, #50 395 .0349147564835508, 396 .0339977794120564, 397 .0330234743977917, 398 .0319934843404216, 399 .0309095460374916, 400 .029773487255905, 401 .028587223650054, 402 .0273527555318275, 403 .026072164497986, 404 .0247476099206597, #60 405 .0233813253070112, 406 .0219756145344162, 407 .020532847967908, 408 .0190554584671906, 409 .0175459372914742, 410 .0160068299122486, 411 .0144407317482767, 412 .0128502838475101, 413 .0112381685696677, 414 .00960710541471375, #70 415 .00795984747723973, 416 .00629918049732845, 417 .00462793522803742, 418 .00294910295364247, 419 .00126779163408536 #75 (indexed from 0) 420 ]) 421 422 Gauss76Z = np.array([ 423 -.999505948362153, #0 424 -.997397786355355, 425 -.993608772723527, 426 -.988144453359837, 427 -.981013938975656, 428 -.972229228520377, 429 -.961805126758768, 430 -.949759207710896, 431 -.936111781934811, 432 -.92088586125215, 433 -.904107119545567, #10 434 -.885803849292083, 435 -.866006913771982, 436 -.844749694983342, 437 -.822068037328975, 438 -.7980001871612, 439 -.77258672828181, 440 -.74587051350361, 441 -.717896592387704, 442 -.688712135277641, 443 -.658366353758143, #20 444 -.626910417672267, 445 -.594397368836793, 446 -.560882031601237, 447 -.526420920401243, 448 -.491072144462194, 449 -.454895309813726, 450 -.417951418780327, 451 -.380302767117504, 452 -.342012838966962, 453 -.303146199807908, #30 454 -.263768387584994, 455 -.223945802196474, 456 -.183745593528914, 457 -.143235548227268, 458 -.102483975391227, 459 -.0615595913906112, 460 -.0205314039939986, 461 .0205314039939986, 462 .0615595913906112, 463 .102483975391227, #40 464 .143235548227268, 465 .183745593528914, 466 .223945802196474, 467 .263768387584994, 468 .303146199807908, 469 .342012838966962, 470 .380302767117504, 471 .417951418780327, 472 .454895309813726, 473 .491072144462194, #50 474 .526420920401243, 475 .560882031601237, 476 .594397368836793, 477 .626910417672267, 478 .658366353758143, 479 .688712135277641, 480 .717896592387704, 481 .74587051350361, 482 .77258672828181, 483 .7980001871612, #60 484 .822068037328975, 485 .844749694983342, 486 .866006913771982, 487 .885803849292083, 488 .904107119545567, 489 .92088586125215, 490 .936111781934811, 491 .949759207710896, 492 .961805126758768, 493 .972229228520377, #70 494 .981013938975656, 495 .988144453359837, 496 .993608772723527, 497 .997397786355355, 498 .999505948362153 #75 499 ]) 500 501 Gauss150Z = np.array([ 502 -0.9998723404457334, 503 -0.9993274305065947, 504 -0.9983473449340834, 505 -0.9969322929775997, 506 -0.9950828645255290, 507 -0.9927998590434373, 508 -0.9900842691660192, 509 -0.9869372772712794, 510 -0.9833602541697529, 511 -0.9793547582425894, 512 -0.9749225346595943, 513 -0.9700655145738374, 514 -0.9647858142586956, 515 -0.9590857341746905, 516 -0.9529677579610971, 517 -0.9464345513503147, 518 -0.9394889610042837, 519 -0.9321340132728527, 520 -0.9243729128743136, 521 -0.9162090414984952, 522 -0.9076459563329236, 523 -0.8986873885126239, 524 -0.8893372414942055, 525 -0.8795995893549102, 526 -0.8694786750173527, 527 -0.8589789084007133, 528 -0.8481048644991847, 529 -0.8368612813885015, 530 -0.8252530581614230, 531 -0.8132852527930605, 532 -0.8009630799369827, 533 -0.7882919086530552, 534 -0.7752772600680049, 535 -0.7619248049697269, 536 -0.7482403613363824, 537 -0.7342298918013638, 538 -0.7198995010552305, 539 -0.7052554331857488, 540 -0.6903040689571928, 541 -0.6750519230300931, 542 -0.6595056411226444, 543 -0.6436719971150083, 544 -0.6275578900977726, 545 -0.6111703413658551, 546 -0.5945164913591590, 547 -0.5776035965513142, 548 -0.5604390262878617, 549 -0.5430302595752546, 550 -0.5253848818220803, 551 -0.5075105815339176, 552 -0.4894151469632753, 553 -0.4711064627160663, 554 -0.4525925063160997, 555 -0.4338813447290861, 556 -0.4149811308476706, 557 -0.3959000999390257, 558 -0.3766465660565522, 559 -0.3572289184172501, 560 -0.3376556177463400, 561 -0.3179351925907259, 562 -0.2980762356029071, 563 -0.2780873997969574, 564 -0.2579773947782034, 565 -0.2377549829482451, 566 -0.2174289756869712, 567 -0.1970082295132342, 568 -0.1765016422258567, 569 -0.1559181490266516, 570 -0.1352667186271445, 571 -0.1145563493406956, 572 -0.0937960651617229, 573 -0.0729949118337358, 574 -0.0521619529078925, 575 -0.0313062657937972, 576 -0.0104369378042598, 577 0.0104369378042598, 578 0.0313062657937972, 579 0.0521619529078925, 580 0.0729949118337358, 581 0.0937960651617229, 582 0.1145563493406956, 583 0.1352667186271445, 584 0.1559181490266516, 585 0.1765016422258567, 586 0.1970082295132342, 587 0.2174289756869712, 588 0.2377549829482451, 589 0.2579773947782034, 590 0.2780873997969574, 591 0.2980762356029071, 592 0.3179351925907259, 593 0.3376556177463400, 594 0.3572289184172501, 595 0.3766465660565522, 596 0.3959000999390257, 597 0.4149811308476706, 598 0.4338813447290861, 599 0.4525925063160997, 600 0.4711064627160663, 601 0.4894151469632753, 602 0.5075105815339176, 603 0.5253848818220803, 604 0.5430302595752546, 605 0.5604390262878617, 606 0.5776035965513142, 607 0.5945164913591590, 608 0.6111703413658551, 609 0.6275578900977726, 610 0.6436719971150083, 611 0.6595056411226444, 612 0.6750519230300931, 613 0.6903040689571928, 614 0.7052554331857488, 615 0.7198995010552305, 616 0.7342298918013638, 617 0.7482403613363824, 618 0.7619248049697269, 619 0.7752772600680049, 620 0.7882919086530552, 621 0.8009630799369827, 622 0.8132852527930605, 623 0.8252530581614230, 624 0.8368612813885015, 625 0.8481048644991847, 626 0.8589789084007133, 627 0.8694786750173527, 628 0.8795995893549102, 629 0.8893372414942055, 630 0.8986873885126239, 631 0.9076459563329236, 632 0.9162090414984952, 633 0.9243729128743136, 634 0.9321340132728527, 635 0.9394889610042837, 636 0.9464345513503147, 637 0.9529677579610971, 638 0.9590857341746905, 639 0.9647858142586956, 640 0.9700655145738374, 641 0.9749225346595943, 642 0.9793547582425894, 643 0.9833602541697529, 644 0.9869372772712794, 645 0.9900842691660192, 646 0.9927998590434373, 647 0.9950828645255290, 648 0.9969322929775997, 649 0.9983473449340834, 650 0.9993274305065947, 651 0.9998723404457334 652 ]) 653 654 Gauss150Wt = np.array([ 655 0.0003276086705538, 656 0.0007624720924706, 657 0.0011976474864367, 658 0.0016323569986067, 659 0.0020663664924131, 660 0.0024994789888943, 661 0.0029315036836558, 662 0.0033622516236779, 663 0.0037915348363451, 664 0.0042191661429919, 665 0.0046449591497966, 666 0.0050687282939456, 667 0.0054902889094487, 668 0.0059094573005900, 669 0.0063260508184704, 670 0.0067398879387430, 671 0.0071507883396855, 672 0.0075585729801782, 673 0.0079630641773633, 674 0.0083640856838475, 675 0.0087614627643580, 676 0.0091550222717888, 677 0.0095445927225849, 678 0.0099300043714212, 679 0.0103110892851360, 680 0.0106876814158841, 681 0.0110596166734735, 682 0.0114267329968529, 683 0.0117888704247183, 684 0.0121458711652067, 685 0.0124975796646449, 686 0.0128438426753249, 687 0.0131845093222756, 688 0.0135194311690004, 689 0.0138484622795371, 690 0.0141714592928592, 691 0.0144882814685445, 692 0.0147987907597169, 693 0.0151028518701744, 694 0.0154003323133401, 695 0.0156911024699895, 696 0.0159750356447283, 697 0.0162520081211971, 698 0.0165218992159766, 699 0.0167845913311726, 700 0.0170399700056559, 701 0.0172879239649355, 702 0.0175283451696437, 703 0.0177611288626114, 704 0.0179861736145128, 705 0.0182033813680609, 706 0.0184126574807331, 707 0.0186139107660094, 708 0.0188070535331042, 709 0.0189920016251754, 710 0.0191686744559934, 711 0.0193369950450545, 712 0.0194968900511231, 713 0.0196482898041878, 714 0.0197911283358190, 715 0.0199253434079123, 716 0.0200508765398072, 717 0.0201676730337687, 718 0.0202756819988200, 719 0.0203748563729175, 720 0.0204651529434560, 721 0.0205465323660984, 722 0.0206189591819181, 723 0.0206824018328499, 724 0.0207368326754401, 725 0.0207822279928917, 726 0.0208185680053983, 727 0.0208458368787627, 728 0.0208640227312962, 729 0.0208731176389954, 730 0.0208731176389954, 731 0.0208640227312962, 732 0.0208458368787627, 733 0.0208185680053983, 734 0.0207822279928917, 735 0.0207368326754401, 736 0.0206824018328499, 737 0.0206189591819181, 738 0.0205465323660984, 739 0.0204651529434560, 740 0.0203748563729175, 741 0.0202756819988200, 742 0.0201676730337687, 743 0.0200508765398072, 744 0.0199253434079123, 745 0.0197911283358190, 746 0.0196482898041878, 747 0.0194968900511231, 748 0.0193369950450545, 749 0.0191686744559934, 750 0.0189920016251754, 751 0.0188070535331042, 752 0.0186139107660094, 753 0.0184126574807331, 754 0.0182033813680609, 755 0.0179861736145128, 756 0.0177611288626114, 757 0.0175283451696437, 758 0.0172879239649355, 759 0.0170399700056559, 760 0.0167845913311726, 761 0.0165218992159766, 762 0.0162520081211971, 763 0.0159750356447283, 764 0.0156911024699895, 765 0.0154003323133401, 766 0.0151028518701744, 767 0.0147987907597169, 768 0.0144882814685445, 769 0.0141714592928592, 770 0.0138484622795371, 771 0.0135194311690004, 772 0.0131845093222756, 773 0.0128438426753249, 774 0.0124975796646449, 775 0.0121458711652067, 776 0.0117888704247183, 777 0.0114267329968529, 778 0.0110596166734735, 779 0.0106876814158841, 780 0.0103110892851360, 781 0.0099300043714212, 782 0.0095445927225849, 783 0.0091550222717888, 784 0.0087614627643580, 785 0.0083640856838475, 786 0.0079630641773633, 787 0.0075585729801782, 788 0.0071507883396855, 789 0.0067398879387430, 790 0.0063260508184704, 791 0.0059094573005900, 792 0.0054902889094487, 793 0.0050687282939456, 794 0.0046449591497966, 795 0.0042191661429919, 796 0.0037915348363451, 797 0.0033622516236779, 798 0.0029315036836558, 799 0.0024994789888943, 800 0.0020663664924131, 801 0.0016323569986067, 802 0.0011976474864367, 803 0.0007624720924706, 804 0.0003276086705538 805 ])
Note: See TracChangeset
for help on using the changeset viewer.