Changeset 3c44c34 in sasmodels for doc/guide


Ignore:
Timestamp:
Jan 12, 2018 9:46:11 AM (7 years ago)
Author:
dirk
Branches:
master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
3d58247
Parents:
1ceb951 (diff), 4c08e69 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'boltzmann' of https://github.com/SasView/sasmodels into boltzmann

Location:
doc/guide
Files:
3 added
4 edited

Legend:

Unmodified
Added
Removed
  • doc/guide/index.rst

    rc0d7ab3 rda5536f  
    1313   resolution.rst 
    1414   magnetism/magnetism.rst 
     15   orientation/orientation.rst 
    1516   sesans/sans_to_sesans.rst 
    1617   sesans/sesans_fitting.rst 
  • doc/guide/magnetism/magnetism.rst

    r1f058ea r4f5afc9  
    55 
    66Models which define a scattering length density parameter can be evaluated 
    7  as magnetic models. In general, the scattering length density (SLD = 
    8  $\beta$) in each region where the SLD is uniform, is a combination of the 
    9  nuclear and magnetic SLDs and, for polarised neutrons, also depends on the 
    10  spin states of the neutrons. 
     7as magnetic models. In general, the scattering length density (SLD = 
     8$\beta$) in each region where the SLD is uniform, is a combination of the 
     9nuclear and magnetic SLDs and, for polarised neutrons, also depends on the 
     10spin states of the neutrons. 
    1111 
    1212For magnetic scattering, only the magnetization component $\mathbf{M_\perp}$ 
    1313perpendicular to the scattering vector $\mathbf{Q}$ contributes to the magnetic 
    1414scattering length. 
    15  
    1615 
    1716.. figure:: 
     
    2827is the Pauli spin. 
    2928 
    30 Assuming that incident neutrons are polarized parallel (+) and anti-parallel (-) 
    31 to the $x'$ axis, the possible spin states after the sample are then 
     29Assuming that incident neutrons are polarized parallel $(+)$ and anti-parallel 
     30$(-)$ to the $x'$ axis, the possible spin states after the sample are then: 
    3231 
    33 No spin-flips (+ +) and (- -) 
     32* Non spin-flip $(+ +)$ and $(- -)$ 
    3433 
    35 Spin-flips    (+ -) and (- +) 
     34* Spin-flip $(+ -)$ and $(- +)$ 
     35 
     36Each measurement is an incoherent mixture of these spin states based on the 
     37fraction of $+$ neutrons before ($u_i$) and after ($u_f$) the sample, 
     38with weighting: 
     39 
     40.. math:: 
     41    -- &= ((1-u_i)(1-u_f))^{1/4} \\ 
     42    -+ &= ((1-u_i)(u_f))^{1/4} \\ 
     43    +- &= ((u_i)(1-u_f))^{1/4} \\ 
     44    ++ &= ((u_i)(u_f))^{1/4} 
     45 
     46Ideally the experiment would measure the pure spin states independently and 
     47perform a simultaneous analysis of the four states, tying all the model 
     48parameters together except $u_i$ and $u_f$. 
    3649 
    3750.. figure:: 
     
    4154$\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the 
    4255neutrons, the scattering length densities, including the nuclear scattering 
    43 length density ($\beta{_N}$) are 
     56length density $(\beta{_N})$ are 
    4457 
    4558.. math:: 
    4659    \beta_{\pm\pm} =  \beta_N \mp D_M M_{\perp x'} 
    47     \text{ when there are no spin-flips} 
     60    \text{ for non spin-flip states} 
    4861 
    4962and 
     
    5164.. math:: 
    5265    \beta_{\pm\mp} =  -D_M (M_{\perp y'} \pm iM_{\perp z'}) 
    53     \text{ when there are} 
     66    \text{ for spin-flip states} 
    5467 
    5568where 
    5669 
    5770.. math:: 
    58     M_{\perp x'} = M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\ 
    59     M_{\perp y'} = M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\ 
    60     M_{\perp z'} = M_{0z} \\ 
    61     M_{0q_x} = (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ 
    62     M_{0q_y} = (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi 
     71    M_{\perp x'} &= M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\ 
     72    M_{\perp y'} &= M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\ 
     73    M_{\perp z'} &= M_{0z} \\ 
     74    M_{0q_x} &= (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ 
     75    M_{0q_y} &= (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi 
    6376 
    6477Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components 
     
    6679 
    6780.. math:: 
    68     M_{0x} = M_0\cos\theta_M\cos\phi_M \\ 
    69     M_{0y} = M_0\sin\theta_M \\ 
    70     M_{0z} = -M_0\cos\theta_M\sin\phi_M 
     81    M_{0x} &= M_0\cos\theta_M\cos\phi_M \\ 
     82    M_{0y} &= M_0\sin\theta_M \\ 
     83    M_{0z} &= -M_0\cos\theta_M\sin\phi_M 
    7184 
    7285and the magnetization angles $\theta_M$ and $\phi_M$ are defined in 
     
    7689 
    7790===========   ================================================================ 
    78  M0_sld        = $D_M M_0$ 
    79  Up_theta      = $\theta_\mathrm{up}$ 
    80  M_theta       = $\theta_M$ 
    81  M_phi         = $\phi_M$ 
    82  Up_frac_i     = (spin up)/(spin up + spin down) neutrons *before* the sample 
    83  Up_frac_f     = (spin up)/(spin up + spin down) neutrons *after* the sample 
     91 M0:sld      $D_M M_0$ 
     92 mtheta:sld   $\theta_M$ 
     93 mphi:sld     $\phi_M$ 
     94 up:angle     $\theta_\mathrm{up}$ 
     95 up:frac_i    $u_i$ = (spin up)/(spin up + spin down) *before* the sample 
     96 up:frac_f    $u_f$ = (spin up)/(spin up + spin down) *after* the sample 
    8497===========   ================================================================ 
    8598 
    8699.. note:: 
    87     The values of the 'Up_frac_i' and 'Up_frac_f' must be in the range 0 to 1. 
     100    The values of the 'up:frac_i' and 'up:frac_f' must be in the range 0 to 1. 
    88101 
    89102*Document History* 
    90103 
    91104| 2015-05-02 Steve King 
    92 | 2017-05-08 Paul Kienzle 
     105| 2017-11-15 Paul Kienzle 
  • doc/guide/pd/polydispersity.rst

    r75e4319 r22279a4  
    66.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    77 
     8.. _polydispersityhelp: 
     9 
    810Polydispersity Distributions 
    911---------------------------- 
    1012 
    11 With some models in sasmodels we can calculate the average form factor for a 
     13With some models in sasmodels we can calculate the average intensity for a 
    1214population of particles that exhibit size and/or orientational 
    13 polydispersity. The resultant form factor is normalized by the average 
     15polydispersity. The resultant intensity is normalized by the average 
    1416particle volume such that 
    1517 
     
    4042calculations are generally more robust with more data points or more angles. 
    4143 
    42 The following six distribution functions are provided: 
     44The following distribution functions are provided: 
    4345 
    4446*  *Rectangular Distribution* 
  • doc/guide/resolution.rst

    r1f058ea r0db85af  
    209209$x'_0 = x_0 \cos(\theta) + y_0 \sin(\theta)$ and 
    210210$y'_0 = -x_0 \sin(\theta) + y_0 \cos(\theta)$. 
    211 Note that the rotation angle is zero for a $x$\ -\ $y$ symmetric 
     211Note that the rotation angle is zero for a $x$-$y$ symmetric 
    212212elliptical Gaussian distribution. The $A$ is a normalization factor. 
    213213 
     
    233233 
    234234Since the weighting factor on each of the bins is known, it is convenient to 
    235 transform $x'$\ -\ $y'$ back to $x$\ -\ $y$ coordinates (by rotating it 
     235transform $x'$-$y'$ back to $x$-$y$ coordinates (by rotating it 
    236236by $-\theta$ around the $z$\ -axis). 
    237237 
     
    254254    y'_0 &= 0 
    255255 
    256 while for a $x$\ -\ $y$ symmetric smear 
     256while for a $x$-$y$ symmetric smear 
    257257 
    258258.. math:: 
Note: See TracChangeset for help on using the changeset viewer.