- Timestamp:
- Jan 12, 2018 9:46:11 AM (7 years ago)
- Branches:
- master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- 3d58247
- Parents:
- 1ceb951 (diff), 4c08e69 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Location:
- doc/guide
- Files:
-
- 3 added
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/index.rst
rc0d7ab3 rda5536f 13 13 resolution.rst 14 14 magnetism/magnetism.rst 15 orientation/orientation.rst 15 16 sesans/sans_to_sesans.rst 16 17 sesans/sesans_fitting.rst -
doc/guide/magnetism/magnetism.rst
r1f058ea r4f5afc9 5 5 6 6 Models which define a scattering length density parameter can be evaluated 7 8 9 10 7 as magnetic models. In general, the scattering length density (SLD = 8 $\beta$) in each region where the SLD is uniform, is a combination of the 9 nuclear and magnetic SLDs and, for polarised neutrons, also depends on the 10 spin states of the neutrons. 11 11 12 12 For magnetic scattering, only the magnetization component $\mathbf{M_\perp}$ 13 13 perpendicular to the scattering vector $\mathbf{Q}$ contributes to the magnetic 14 14 scattering length. 15 16 15 17 16 .. figure:: … … 28 27 is the Pauli spin. 29 28 30 Assuming that incident neutrons are polarized parallel (+) and anti-parallel (-)31 to the $x'$ axis, the possible spin states after the sample are then 29 Assuming that incident neutrons are polarized parallel $(+)$ and anti-parallel 30 $(-)$ to the $x'$ axis, the possible spin states after the sample are then: 32 31 33 No spin-flips (+ +) and (- -) 32 * Non spin-flip $(+ +)$ and $(- -)$ 34 33 35 Spin-flips (+ -) and (- +) 34 * Spin-flip $(+ -)$ and $(- +)$ 35 36 Each measurement is an incoherent mixture of these spin states based on the 37 fraction of $+$ neutrons before ($u_i$) and after ($u_f$) the sample, 38 with weighting: 39 40 .. math:: 41 -- &= ((1-u_i)(1-u_f))^{1/4} \\ 42 -+ &= ((1-u_i)(u_f))^{1/4} \\ 43 +- &= ((u_i)(1-u_f))^{1/4} \\ 44 ++ &= ((u_i)(u_f))^{1/4} 45 46 Ideally the experiment would measure the pure spin states independently and 47 perform a simultaneous analysis of the four states, tying all the model 48 parameters together except $u_i$ and $u_f$. 36 49 37 50 .. figure:: … … 41 54 $\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the 42 55 neutrons, the scattering length densities, including the nuclear scattering 43 length density ($\beta{_N}$)are56 length density $(\beta{_N})$ are 44 57 45 58 .. math:: 46 59 \beta_{\pm\pm} = \beta_N \mp D_M M_{\perp x'} 47 \text{ when there are no spin-flips}60 \text{ for non spin-flip states} 48 61 49 62 and … … 51 64 .. math:: 52 65 \beta_{\pm\mp} = -D_M (M_{\perp y'} \pm iM_{\perp z'}) 53 \text{ when there are}66 \text{ for spin-flip states} 54 67 55 68 where 56 69 57 70 .. math:: 58 M_{\perp x'} = M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\59 M_{\perp y'} = M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\60 M_{\perp z'} = M_{0z} \\61 M_{0q_x} = (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\62 M_{0q_y} = (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi71 M_{\perp x'} &= M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\ 72 M_{\perp y'} &= M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\ 73 M_{\perp z'} &= M_{0z} \\ 74 M_{0q_x} &= (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ 75 M_{0q_y} &= (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi 63 76 64 77 Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components … … 66 79 67 80 .. math:: 68 M_{0x} = M_0\cos\theta_M\cos\phi_M \\69 M_{0y} = M_0\sin\theta_M \\70 M_{0z} = -M_0\cos\theta_M\sin\phi_M81 M_{0x} &= M_0\cos\theta_M\cos\phi_M \\ 82 M_{0y} &= M_0\sin\theta_M \\ 83 M_{0z} &= -M_0\cos\theta_M\sin\phi_M 71 84 72 85 and the magnetization angles $\theta_M$ and $\phi_M$ are defined in … … 76 89 77 90 =========== ================================================================ 78 M0 _sld =$D_M M_0$79 Up_theta = $\theta_\mathrm{up}$80 M_theta = $\theta_M$81 M_phi = $\phi_M$82 Up_frac_i = (spin up)/(spin up + spin down) neutrons*before* the sample83 Up_frac_f = (spin up)/(spin up + spin down) neutrons*after* the sample91 M0:sld $D_M M_0$ 92 mtheta:sld $\theta_M$ 93 mphi:sld $\phi_M$ 94 up:angle $\theta_\mathrm{up}$ 95 up:frac_i $u_i$ = (spin up)/(spin up + spin down) *before* the sample 96 up:frac_f $u_f$ = (spin up)/(spin up + spin down) *after* the sample 84 97 =========== ================================================================ 85 98 86 99 .. note:: 87 The values of the ' Up_frac_i' and 'Up_frac_f' must be in the range 0 to 1.100 The values of the 'up:frac_i' and 'up:frac_f' must be in the range 0 to 1. 88 101 89 102 *Document History* 90 103 91 104 | 2015-05-02 Steve King 92 | 2017- 05-08Paul Kienzle105 | 2017-11-15 Paul Kienzle -
doc/guide/pd/polydispersity.rst
r75e4319 r22279a4 6 6 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 7 7 8 .. _polydispersityhelp: 9 8 10 Polydispersity Distributions 9 11 ---------------------------- 10 12 11 With some models in sasmodels we can calculate the average form factorfor a13 With some models in sasmodels we can calculate the average intensity for a 12 14 population of particles that exhibit size and/or orientational 13 polydispersity. The resultant form factoris normalized by the average15 polydispersity. The resultant intensity is normalized by the average 14 16 particle volume such that 15 17 … … 40 42 calculations are generally more robust with more data points or more angles. 41 43 42 The following sixdistribution functions are provided:44 The following distribution functions are provided: 43 45 44 46 * *Rectangular Distribution* -
doc/guide/resolution.rst
r1f058ea r0db85af 209 209 $x'_0 = x_0 \cos(\theta) + y_0 \sin(\theta)$ and 210 210 $y'_0 = -x_0 \sin(\theta) + y_0 \cos(\theta)$. 211 Note that the rotation angle is zero for a $x$ \ -\$y$ symmetric211 Note that the rotation angle is zero for a $x$-$y$ symmetric 212 212 elliptical Gaussian distribution. The $A$ is a normalization factor. 213 213 … … 233 233 234 234 Since the weighting factor on each of the bins is known, it is convenient to 235 transform $x'$ \ -\ $y'$ back to $x$\ -\$y$ coordinates (by rotating it235 transform $x'$-$y'$ back to $x$-$y$ coordinates (by rotating it 236 236 by $-\theta$ around the $z$\ -axis). 237 237 … … 254 254 y'_0 &= 0 255 255 256 while for a $x$ \ -\$y$ symmetric smear256 while for a $x$-$y$ symmetric smear 257 257 258 258 .. math::
Note: See TracChangeset
for help on using the changeset viewer.