Changeset 3b6567f in sasmodels


Ignore:
Timestamp:
Mar 6, 2019 5:55:49 PM (6 years ago)
Author:
Paul Kienzle <pkienzle@…>
Children:
225bf94
Parents:
646eeaa (diff), e589e9a (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge remote-tracking branch 'upstream/beta_approx'

Files:
3 added
16 edited
6 moved

Legend:

Unmodified
Added
Removed
  • README.rst

    re30d645 r2a64722  
    1010is available. 
    1111 
    12 Example 
     12Install 
    1313------- 
     14 
     15The easiest way to use sasmodels is from `SasView <http://www.sasview.org/>`_. 
     16 
     17You can also install sasmodels as a standalone package in python. Use 
     18`miniconda <https://docs.conda.io/en/latest/miniconda.html>`_ 
     19or `anaconda <https://www.anaconda.com/>`_ 
     20to create a python environment with the sasmodels dependencies:: 
     21 
     22    $ conda create -n sasmodels -c conda-forge numpy scipy matplotlib pyopencl 
     23 
     24The option ``-n sasmodels`` names the environment sasmodels, and the option 
     25``-c conda-forge`` selects the conda-forge package channel because pyopencl 
     26is not part of the base anaconda distribution. 
     27 
     28Activate the environment and install sasmodels:: 
     29 
     30    $ conda activate sasmodels 
     31    (sasmodels) $ pip install sasmodels 
     32 
     33Install `bumps <https://github.com/bumps/bumps>`_ if you want to use it to fit 
     34your data:: 
     35 
     36    (sasmodels) $ pip install bumps 
     37 
     38Usage 
     39----- 
     40 
     41Check that the works:: 
     42 
     43    (sasmodels) $ python -m sasmodels.compare cylinder 
     44 
     45To show the orientation explorer:: 
     46 
     47    (sasmodels) $ python -m sasmodels.jitter 
     48 
     49Documentation is available online as part of the SasView 
     50`fitting perspective <http://www.sasview.org/docs/index.html>`_ 
     51as well as separate pages for 
     52`individual models <http://www.sasview.org/docs/user/sasgui/perspectives/fitting/models/index.html>`_. 
     53Programming details for sasmodels are available in the 
     54`developer documentation <http://www.sasview.org/docs/dev/dev.html>`_. 
     55 
     56 
     57Fitting Example 
     58--------------- 
    1459 
    1560The example directory contains a radial+tangential data set for an oriented 
    1661rod-like shape. 
    1762 
    18 The data is loaded by sas.dataloader from the sasview package, so sasview 
    19 is needed to run the example. 
     63To load the example data, you will need the SAS data loader from the sasview 
     64package. This is not yet available on PyPI, so you will need a copy of the 
     65SasView source code to run it.  Create a directory somewhere to hold the 
     66sasview and sasmodels source code, which we will refer to as $SOURCE. 
    2067 
    21 To run the example, you need sasview, sasmodels and bumps.  Assuming these 
    22 repositories are installed side by side, change to the sasmodels/example 
    23 directory and enter:: 
     68Use the following to install sasview, and the sasmodels examples:: 
    2469 
    25     PYTHONPATH=..:../../sasview/src ../../bumps/run.py fit.py \ 
    26         cylinder --preview 
     70    (sasmodels) $ cd $SOURCE 
     71    (sasmodels) $ conda install git 
     72    (sasmodels) $ git clone https://github.com/sasview/sasview.git 
     73    (sasmodels) $ git clone https://github.com/sasview/sasmodels.git 
    2774 
    28 See bumps documentation for instructions on running the fit.  With the 
    29 python packages installed, e.g., into a virtual environment, then the 
    30 python path need not be set, and the command would be:: 
     75Set the path to the sasview source on your python path within the sasmodels 
     76environment.  On Windows, this will be:: 
    3177 
    32     bumps fit.py cylinder --preview 
     78    (sasmodels)> set PYTHONPATH="$SOURCE\sasview\src" 
     79    (sasmodels)> cd $SOURCE/sasmodels/example 
     80    (sasmodels)> python -m bumps.cli fit.py cylinder --preview 
     81 
     82On Mac/Linux with the standard shell this will be:: 
     83 
     84    (sasmodels) $ export PYTHONPATH="$SOURCE/sasview/src" 
     85    (sasmodels) $ cd $SOURCE/sasmodels/example 
     86    (sasmodels) $ bumps fit.py cylinder --preview 
    3387 
    3488The fit.py model accepts up to two arguments.  The first argument is the 
     
    3892both radial and tangential simultaneously, use the word "both". 
    3993 
    40 Notes 
    41 ----- 
    42  
    43 cylinder.c + cylinder.py is the cylinder model with renamed variables and 
    44 sld scaled by 1e6 so the numbers are nicer.  The model name is "cylinder" 
    45  
    46 lamellar.py is an example of a single file model with embedded C code. 
     94See `bumps documentation <https://bumps.readthedocs.io/>`_ for detailed 
     95instructions on running the fit. 
    4796 
    4897|TravisStatus|_ 
  • explore/beta/sasfit_compare.py

    r2a12351b r119073a  
    505505    } 
    506506 
    507     Q, IQ = load_sasfit(data_file('richard_test.txt')) 
    508     Q, IQSD = load_sasfit(data_file('richard_test2.txt')) 
    509     Q, IQBD = load_sasfit(data_file('richard_test3.txt')) 
     507    Q, IQ = load_sasfit(data_file('sasfit_sphere_schulz_IQD.txt')) 
     508    Q, IQSD = load_sasfit(data_file('sasfit_sphere_schulz_IQSD.txt')) 
     509    Q, IQBD = load_sasfit(data_file('sasfit_sphere_schulz_IQBD.txt')) 
    510510    target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) 
    511511    actual = sphere_r(Q, norm="sasfit", **pars) 
     
    526526    } 
    527527 
    528     Q, IQ = load_sasfit(data_file('richard_test4.txt')) 
    529     Q, IQSD = load_sasfit(data_file('richard_test5.txt')) 
    530     Q, IQBD = load_sasfit(data_file('richard_test6.txt')) 
     528    Q, IQ = load_sasfit(data_file('sasfit_ellipsoid_shulz_IQD.txt')) 
     529    Q, IQSD = load_sasfit(data_file('sasfit_ellipsoid_shulz_IQSD.txt')) 
     530    Q, IQBD = load_sasfit(data_file('sasfit_ellipsoid_shulz_IQBD.txt')) 
    531531    target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) 
    532532    actual = ellipsoid_pe(Q, norm="sasfit", **pars) 
  • explore/precision.py

    raa8c6e0 rcd28947  
    207207    return model_info 
    208208 
    209 # Hack to allow second parameter A in two parameter functions 
     209# Hack to allow second parameter A in the gammainc and gammaincc functions. 
     210# Create a 2-D variant of the precision test if we need to handle other two 
     211# parameter functions. 
    210212A = 1 
    211213def parse_extra_pars(): 
     214    """ 
     215    Parse the command line looking for the second parameter "A=..." for the 
     216    gammainc/gammaincc functions. 
     217    """ 
    212218    global A 
    213219 
     
    333339) 
    334340add_function( 
     341    # Note: "a" is given as A=... on the command line via parse_extra_pars 
    335342    name="gammainc(x)", 
    336343    mp_function=lambda x, a=A: mp.gammainc(a, a=0, b=x)/mp.gamma(a), 
     
    339346) 
    340347add_function( 
     348    # Note: "a" is given as A=... on the command line via parse_extra_pars 
    341349    name="gammaincc(x)", 
    342350    mp_function=lambda x, a=A: mp.gammainc(a, a=x, b=mp.inf)/mp.gamma(a), 
  • sasmodels/compare.py

    r07646b6 rc1799d3  
    11521152        'rel_err'   : True, 
    11531153        'explore'   : False, 
    1154         'use_demo'  : True, 
     1154        'use_demo'  : False, 
    11551155        'zero'      : False, 
    11561156        'html'      : False, 
  • sasmodels/direct_model.py

    r5024a56 rc1799d3  
    332332 
    333333        # Need to pull background out of resolution for multiple scattering 
    334         background = pars.get('background', DEFAULT_BACKGROUND) 
     334        default_background = self._model.info.parameters.common_parameters[1].default 
     335        background = pars.get('background', default_background) 
    335336        pars = pars.copy() 
    336337        pars['background'] = 0. 
  • sasmodels/generate.py

    r39a06c9 ra8a1d48  
    703703    """ 
    704704    for code in source: 
    705         m = _FQ_PATTERN.search(code) 
    706         if m is not None: 
     705        if _FQ_PATTERN.search(code) is not None: 
    707706            return True 
    708707    return False 
     
    712711    # type: (List[str]) -> bool 
    713712    """ 
    714     Return True if C source defines "void Fq(". 
     713    Return True if C source defines "double shell_volume(". 
    715714    """ 
    716715    for code in source: 
    717         m = _SHELL_VOLUME_PATTERN.search(code) 
    718         if m is not None: 
     716        if _SHELL_VOLUME_PATTERN.search(code) is not None: 
    719717            return True 
    720718    return False 
     
    10081006        pars = model_info.parameters.kernel_parameters 
    10091007    else: 
    1010         pars = model_info.parameters.COMMON + model_info.parameters.kernel_parameters 
     1008        pars = (model_info.parameters.common_parameters 
     1009                + model_info.parameters.kernel_parameters) 
    10111010    partable = make_partable(pars) 
    10121011    subst = dict(id=model_info.id.replace('_', '-'), 
  • sasmodels/jitter.py

    r1198f90 r7d97437  
    1515    pass 
    1616 
     17import matplotlib as mpl 
    1718import matplotlib.pyplot as plt 
    1819from matplotlib.widgets import Slider 
     
    746747        pass 
    747748 
    748     axcolor = 'lightgoldenrodyellow' 
     749    # CRUFT: use axisbg instead of facecolor for matplotlib<2 
     750    facecolor_prop = 'facecolor' if mpl.__version__ > '2' else 'axisbg' 
     751    props = {facecolor_prop: 'lightgoldenrodyellow'} 
    749752 
    750753    ## add control widgets to plot 
    751     axes_theta = plt.axes([0.1, 0.15, 0.45, 0.04], axisbg=axcolor) 
    752     axes_phi = plt.axes([0.1, 0.1, 0.45, 0.04], axisbg=axcolor) 
    753     axes_psi = plt.axes([0.1, 0.05, 0.45, 0.04], axisbg=axcolor) 
     754    axes_theta = plt.axes([0.1, 0.15, 0.45, 0.04], **props) 
     755    axes_phi = plt.axes([0.1, 0.1, 0.45, 0.04], **props) 
     756    axes_psi = plt.axes([0.1, 0.05, 0.45, 0.04], **props) 
    754757    stheta = Slider(axes_theta, 'Theta', -90, 90, valinit=theta) 
    755758    sphi = Slider(axes_phi, 'Phi', -180, 180, valinit=phi) 
    756759    spsi = Slider(axes_psi, 'Psi', -180, 180, valinit=psi) 
    757760 
    758     axes_dtheta = plt.axes([0.75, 0.15, 0.15, 0.04], axisbg=axcolor) 
    759     axes_dphi = plt.axes([0.75, 0.1, 0.15, 0.04], axisbg=axcolor) 
    760     axes_dpsi = plt.axes([0.75, 0.05, 0.15, 0.04], axisbg=axcolor) 
     761    axes_dtheta = plt.axes([0.75, 0.15, 0.15, 0.04], **props) 
     762    axes_dphi = plt.axes([0.75, 0.1, 0.15, 0.04], **props) 
     763    axes_dpsi = plt.axes([0.75, 0.05, 0.15, 0.04], **props) 
    761764    # Note: using ridiculous definition of rectangle distribution, whose width 
    762765    # in sasmodels is sqrt(3) times the given width.  Divide by sqrt(3) to keep 
  • sasmodels/kernel.py

    re44432d rcd28947  
    133133        nout = 2 if self.info.have_Fq and self.dim == '1d' else 1 
    134134        total_weight = self.result[nout*self.q_input.nq + 0] 
     135        # Note: total_weight = sum(weight > cutoff), with cutoff >= 0, so it 
     136        # is okay to test directly against zero.  If weight is zero then I(q), 
     137        # etc. must also be zero. 
    135138        if total_weight == 0.: 
    136139            total_weight = 1. 
  • sasmodels/kernelcl.py

    rf872fd1 r8064d5e  
    5858import time 
    5959 
     60try: 
     61    from time import perf_counter as clock 
     62except ImportError: # CRUFT: python < 3.3 
     63    import sys 
     64    if sys.platform.count("darwin") > 0: 
     65        from time import time as clock 
     66    else: 
     67        from time import clock 
     68 
    6069import numpy as np  # type: ignore 
    61  
    6270 
    6371# Attempt to setup opencl. This may fail if the pyopencl package is not 
     
    611619        #Call kernel and retrieve results 
    612620        wait_for = None 
    613         last_nap = time.clock() 
     621        last_nap = clock() 
    614622        step = 1000000//self.q_input.nq + 1 
    615623        for start in range(0, call_details.num_eval, step): 
     
    622630                # Allow other processes to run 
    623631                wait_for[0].wait() 
    624                 current_time = time.clock() 
     632                current_time = clock() 
    625633                if current_time - last_nap > 0.5: 
    626634                    time.sleep(0.001) 
  • sasmodels/modelinfo.py

    r765d025 r3b6567f  
    409409      parameters counted as n individual parameters p1, p2, ... 
    410410 
     411    * *common_parameters* is the list of common parameters, with a unique 
     412      copy for each model so that structure factors can have a default 
     413      background of 0.0. 
     414 
    411415    * *call_parameters* is the complete list of parameters to the kernel, 
    412416      including scale and background, with vector parameters recorded as 
     
    421425    parameters don't use vector notation, and instead use p1, p2, ... 
    422426    """ 
    423     # scale and background are implicit parameters 
    424     COMMON = [Parameter(*p) for p in COMMON_PARAMETERS] 
    425  
    426427    def __init__(self, parameters): 
    427428        # type: (List[Parameter]) -> None 
     429 
     430        # scale and background are implicit parameters 
     431        # Need them to be unique to each model in case they have different 
     432        # properties, such as default=0.0 for structure factor backgrounds. 
     433        self.common_parameters = [Parameter(*p) for p in COMMON_PARAMETERS] 
     434 
    428435        self.kernel_parameters = parameters 
    429436        self._set_vector_lengths() 
     
    473480                         if p.polydisperse and p.type not in ('orientation', 'magnetic')) 
    474481        self.pd_2d = set(p.name for p in self.call_parameters if p.polydisperse) 
     482 
     483    def set_zero_background(self): 
     484        """ 
     485        Set the default background to zero for this model.  This is done for 
     486        structure factor models. 
     487        """ 
     488        # type: () -> None 
     489        # Make sure background is the second common parameter. 
     490        assert self.common_parameters[1].id == "background" 
     491        self.common_parameters[1].default = 0.0 
     492        self.defaults = self._get_defaults() 
    475493 
    476494    def check_angles(self): 
     
    572590    def _get_call_parameters(self): 
    573591        # type: () -> List[Parameter] 
    574         full_list = self.COMMON[:] 
     592        full_list = self.common_parameters[:] 
    575593        for p in self.kernel_parameters: 
    576594            if p.length == 1: 
     
    675693 
    676694        # Gather the user parameters in order 
    677         result = control + self.COMMON 
     695        result = control + self.common_parameters 
    678696        for p in self.kernel_parameters: 
    679697            if not is2d and p.type in ('orientation', 'magnetic'): 
     
    775793 
    776794    info = ModelInfo() 
     795 
     796    # Build the parameter table 
    777797    #print("make parameter table", kernel_module.parameters) 
    778798    parameters = make_parameter_table(getattr(kernel_module, 'parameters', [])) 
     799 
     800    # background defaults to zero for structure factor models 
     801    structure_factor = getattr(kernel_module, 'structure_factor', False) 
     802    if structure_factor: 
     803        parameters.set_zero_background() 
     804 
     805    # TODO: remove demo parameters 
     806    # The plots in the docs are generated from the model default values. 
     807    # Sascomp set parameters from the command line, and so doesn't need 
     808    # demo values for testing. 
    779809    demo = expand_pars(parameters, getattr(kernel_module, 'demo', None)) 
     810 
    780811    filename = abspath(kernel_module.__file__).replace('.pyc', '.py') 
    781812    kernel_id = splitext(basename(filename))[0] 
  • sasmodels/models/hardsphere.py

    r304c775 rc1799d3  
    162162    return pars 
    163163 
    164 demo = dict(radius_effective=200, volfraction=0.2, 
    165             radius_effective_pd=0.1, radius_effective_pd_n=40) 
    166164# Q=0.001 is in the Taylor series, low Q part, so add Q=0.1, 
    167165# assuming double precision sasview is correct 
  • sasmodels/models/pearl_necklace.c

    r99658f6 r9b5fd42  
    4040    const double si = sas_sinx_x(q*A_s); 
    4141    const double omsi = 1.0 - si; 
    42     const double pow_si = pow(si, num_pearls); 
     42    const double pow_si = pown(si, num_pearls); 
    4343 
    4444    // form factor for num_pearls 
     
    8181radius_from_volume(double radius, double edge_sep, double thick_string, double fp_num_pearls) 
    8282{ 
    83     const int num_pearls = (int) fp_num_pearls +0.5; 
    8483    const double vol_tot = form_volume(radius, edge_sep, thick_string, fp_num_pearls); 
    8584    return cbrt(vol_tot/M_4PI_3); 
  • sasmodels/resolution.py

    r9e7837a re2592f0  
    445445    q = np.sort(q) 
    446446    if q_min + 2*MINIMUM_RESOLUTION < q[0]: 
    447         n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1] > q[0] else 15 
     447        n_low = int(np.ceil((q[0]-q_min) / (q[1]-q[0]))) if q[1] > q[0] else 15 
    448448        q_low = np.linspace(q_min, q[0], n_low+1)[:-1] 
    449449    else: 
    450450        q_low = [] 
    451451    if q_max - 2*MINIMUM_RESOLUTION > q[-1]: 
    452         n_high = np.ceil((q_max-q[-1]) / (q[-1]-q[-2])) if q[-1] > q[-2] else 15 
     452        n_high = int(np.ceil((q_max-q[-1]) / (q[-1]-q[-2]))) if q[-1] > q[-2] else 15 
    453453        q_high = np.linspace(q[-1], q_max, n_high+1)[1:] 
    454454    else: 
     
    499499            q_min = q[0]*MINIMUM_ABSOLUTE_Q 
    500500        n_low = log_delta_q * (log(q[0])-log(q_min)) 
    501         q_low = np.logspace(log10(q_min), log10(q[0]), np.ceil(n_low)+1)[:-1] 
     501        q_low = np.logspace(log10(q_min), log10(q[0]), int(np.ceil(n_low))+1)[:-1] 
    502502    else: 
    503503        q_low = [] 
    504504    if q_max > q[-1]: 
    505505        n_high = log_delta_q * (log(q_max)-log(q[-1])) 
    506         q_high = np.logspace(log10(q[-1]), log10(q_max), np.ceil(n_high)+1)[1:] 
     506        q_high = np.logspace(log10(q[-1]), log10(q_max), int(np.ceil(n_high))+1)[1:] 
    507507    else: 
    508508        q_high = [] 
  • sasmodels/sasview_model.py

    r5024a56 ra8a1d48  
    382382            hidden.add('scale') 
    383383            hidden.add('background') 
    384             self._model_info.parameters.defaults['background'] = 0. 
    385384 
    386385        # Update the parameter lists to exclude any hidden parameters 
     
    695694            return self._calculate_Iq(qx, qy) 
    696695 
    697     def _calculate_Iq(self, qx, qy=None, Fq=False, effective_radius_type=1): 
     696    def _calculate_Iq(self, qx, qy=None): 
    698697        if self._model is None: 
    699698            self._model = core.build_model(self._model_info) 
     
    715714        #print("values", values) 
    716715        #print("is_mag", is_magnetic) 
    717         if Fq: 
    718             result = calculator.Fq(call_details, values, cutoff=self.cutoff, 
    719                                    magnetic=is_magnetic, 
    720                                    effective_radius_type=effective_radius_type) 
    721716        result = calculator(call_details, values, cutoff=self.cutoff, 
    722717                            magnetic=is_magnetic) 
     
    736731        Calculate the effective radius for P(q)*S(q) 
    737732 
     733        *mode* is the R_eff type, which defaults to 1 to match the ER 
     734        calculation for sasview models from version 3.x. 
     735 
    738736        :return: the value of the effective radius 
    739737        """ 
    740         Fq = self._calculate_Iq([0.1], True, mode) 
    741         return Fq[2] 
     738        # ER and VR are only needed for old multiplication models, based on 
     739        # sas.sascalc.fit.MultiplicationModel.  Fail for now.  If we want to 
     740        # continue supporting them then add some test cases so that the code 
     741        # is exercised.  We can access ER/VR using the kernel Fq function by 
     742        # extending _calculate_Iq so that it calls: 
     743        #    if er_mode > 0: 
     744        #        res = calculator.Fq(call_details, values, cutoff=self.cutoff, 
     745        #                            magnetic=False, effective_radius_type=mode) 
     746        #        R_eff, form_shell_ratio = res[2], res[4] 
     747        #        return R_eff, form_shell_ratio 
     748        # Then use the following in calculate_ER: 
     749        #    ER, VR = self._calculate_Iq(q=[0.1], er_mode=mode) 
     750        #    return ER 
     751        # Similarly, for calculate_VR: 
     752        #    ER, VR = self._calculate_Iq(q=[0.1], er_mode=1) 
     753        #    return VR 
     754        # Obviously a combined calculate_ER_VR method would be better, but 
     755        # we only need them to support very old models, so ignore the 2x 
     756        # performance hit. 
     757        raise NotImplementedError("ER function is no longer available.") 
    742758 
    743759    def calculate_VR(self): 
     
    748764        :return: the value of the form:shell volume ratio 
    749765        """ 
    750         Fq = self._calculate_Iq([0.1], True, mode) 
    751         return Fq[4] 
     766        # See comments in calculate_ER. 
     767        raise NotImplementedError("VR function is no longer available.") 
    752768 
    753769    def set_dispersion(self, parameter, dispersion): 
     
    914930    CylinderModel().evalDistribution([0.1, 0.1]) 
    915931 
     932def test_structure_factor_background(): 
     933    # type: () -> None 
     934    """ 
     935    Check that sasview model and direct model match, with background=0. 
     936    """ 
     937    from .data import empty_data1D 
     938    from .core import load_model_info, build_model 
     939    from .direct_model import DirectModel 
     940 
     941    model_name = "hardsphere" 
     942    q = [0.0] 
     943 
     944    sasview_model = _make_standard_model(model_name)() 
     945    sasview_value = sasview_model.evalDistribution(np.array(q))[0] 
     946 
     947    data = empty_data1D(q) 
     948    model_info = load_model_info(model_name) 
     949    model = build_model(model_info) 
     950    direct_model = DirectModel(data, model) 
     951    direct_value_zero_background = direct_model(background=0.0) 
     952 
     953    assert sasview_value == direct_value_zero_background 
     954 
     955    # Additionally check that direct value background defaults to zero 
     956    direct_value_default = direct_model() 
     957    assert sasview_value == direct_value_default 
     958 
     959 
    916960def magnetic_demo(): 
    917961    Model = _make_standard_model('sphere') 
     
    934978    #print("rpa:", test_rpa()) 
    935979    #test_empty_distribution() 
     980    #test_structure_factor_background() 
  • sasmodels/weights.py

    r3d58247 re2592f0  
    2323    default = dict(npts=35, width=0, nsigmas=3) 
    2424    def __init__(self, npts=None, width=None, nsigmas=None): 
    25         self.npts = self.default['npts'] if npts is None else npts 
     25        self.npts = self.default['npts'] if npts is None else int(npts) 
    2626        self.width = self.default['width'] if width is None else width 
    2727        self.nsigmas = self.default['nsigmas'] if nsigmas is None else nsigmas 
  • .gitignore

    re9ed2de r6ceca44  
    88*.so 
    99*.obj 
     10*.o 
    1011/doc/_build/ 
    1112/doc/api/ 
     
    1920/.pydevproject 
    2021/.idea 
     22.vscode 
    2123/sasmodels.egg-info/ 
    2224/example/Fit_*/ 
Note: See TracChangeset for help on using the changeset viewer.