source: sasmodels/sasmodels/models/_cylpy.py @ 765d025

Last change on this file since 765d025 was 765d025, checked in by Paul Kienzle <pkienzle@…>, 5 years ago

Merge remote-tracking branch 'upstream/beta_approx'

  • Property mode set to 100644
File size: 7.6 KB
Line 
1# cylinder model
2# Note: model title and parameter table are inserted automatically
3r"""
4
5For information about polarised and magnetic scattering, see
6the :ref:`magnetism` documentation.
7
8Definition
9----------
10
11The output of the 2D scattering intensity function for oriented cylinders is
12given by (Guinier, 1955)
13
14.. math::
15
16    P(q,\alpha) = \frac{\text{scale}}{V} F^2(q,\alpha).sin(\alpha) + \text{background}
17
18where
19
20.. math::
21
22    F(q,\alpha) = 2 (\Delta \rho) V
23           \frac{\sin \left(\tfrac12 qL\cos\alpha \right)}
24                {\tfrac12 qL \cos \alpha}
25           \frac{J_1 \left(q R \sin \alpha\right)}{q R \sin \alpha}
26
27and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V =\pi R^2L$
28is the volume of the cylinder, $L$ is the length of the cylinder, $R$ is the
29radius of the cylinder, and $\Delta\rho$ (contrast) is the scattering length
30density difference between the scatterer and the solvent. $J_1$ is the
31first order Bessel function.
32
33For randomly oriented particles:
34
35.. math::
36
37    F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha}=\int_{0}^{1}{F^2(q,u)du}
38
39
40Numerical integration is simplified by a change of variable to $u = cos(\alpha)$ with
41$sin(\alpha)=\sqrt{1-u^2}$.
42
43The output of the 1D scattering intensity function for randomly oriented
44cylinders is thus given by
45
46.. math::
47
48    P(q) = \frac{\text{scale}}{V}
49        \int_0^{\pi/2} F^2(q,\alpha) \sin \alpha\ d\alpha + \text{background}
50
51
52NB: The 2nd virial coefficient of the cylinder is calculated based on the
53radius and length values, and used as the effective radius for $S(q)$
54when $P(q) \cdot S(q)$ is applied.
55
56For 2d scattering from oriented cylinders, we define the direction of the
57axis of the cylinder using two angles $\theta$ (note this is not the
58same as the scattering angle used in q) and $\phi$. Those angles
59are defined in :numref:`cylinder-angle-definition` , for further details see :ref:`orientation` .
60
61.. _cylinder-angle-definition:
62
63.. figure:: img/cylinder_angle_definition.png
64
65    Angles $\theta$ and $\phi$ orient the cylinder relative
66    to the beam line coordinates, where the beam is along the $z$ axis. Rotation $\theta$, initially
67    in the $xz$ plane, is carried out first, then rotation $\phi$ about the $z$ axis. Orientation distributions
68    are described as rotations about two perpendicular axes $\delta_1$ and $\delta_2$
69    in the frame of the cylinder itself, which when $\theta = \phi = 0$ are parallel to the $Y$ and $X$ axes.
70
71.. figure:: img/cylinder_angle_projection.png
72
73    Examples for oriented cylinders.
74
75The $\theta$ and $\phi$ parameters to orient the cylinder only appear in the model when fitting 2d data.
76
77Validation
78----------
79
80Validation of the code was done by comparing the output of the 1D model
81to the output of the software provided by the NIST (Kline, 2006).
82The implementation of the intensity for fully oriented cylinders was done
83by averaging over a uniform distribution of orientations using
84
85.. math::
86
87    P(q) = \int_0^{\pi/2} d\phi
88        \int_0^\pi p(\theta) P_0(q,\theta) \sin \theta\ d\theta
89
90
91where $p(\theta,\phi) = 1$ is the probability distribution for the orientation
92and $P_0(q,\theta)$ is the scattering intensity for the fully oriented
93system, and then comparing to the 1D result.
94
95References
96----------
97
98J. S. Pedersen, Adv. Colloid Interface Sci. 70, 171-210 (1997).
99G. Fournet, Bull. Soc. Fr. Mineral. Cristallogr. 74, 39-113 (1951).
100"""
101
102import numpy as np  # type: ignore
103from sasmodels.special import sas_2J1x_x, sas_sinx_x, pi, inf, sincos, square, gauss76 as gauss
104from sasmodels.special import sin, cos
105
106name = "cylinder"
107title = "Right circular cylinder with uniform scattering length density."
108description = """
109     f(q,alpha) = 2*(sld - sld_solvent)*V*sin(qLcos(alpha)/2))
110                /[qLcos(alpha)/2]*J1(qRsin(alpha))/[qRsin(alpha)]
111
112            P(q,alpha)= scale/V*f(q,alpha)^(2)+background
113            V: Volume of the cylinder
114            R: Radius of the cylinder
115            L: Length of the cylinder
116            J1: The bessel function
117            alpha: angle between the axis of the
118            cylinder and the q-vector for 1D
119            :the ouput is P(q)=scale/V*integral
120            from pi/2 to zero of...
121            f(q,alpha)^(2)*sin(alpha)*dalpha + background
122"""
123category = "shape:cylinder"
124
125#             [ "name", "units", default, [lower, upper], "type", "description"],
126parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
127               "Cylinder scattering length density"],
128              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
129               "Solvent scattering length density"],
130              ["radius", "Ang", 20, [0, inf], "volume",
131               "Cylinder radius"],
132              ["length", "Ang", 400, [0, inf], "volume",
133               "Cylinder length"],
134              ["theta", "degrees", 60, [-360, 360], "orientation",
135               "cylinder axis to beam angle"],
136              ["phi", "degrees", 60, [-360, 360], "orientation",
137               "rotation about beam"],
138             ]
139
140py2c = True
141
142# TODO: "#define INVALID (expr)" is not supported
143def invalid(v):
144    return v.radius < 0 or v.length < 0
145
146def form_volume(radius, length):
147    return pi*radius**2*length
148
149def fq(qab, qc, radius, length):
150    return sas_2J1x_x(qab*radius) * sas_sinx_x(qc*0.5*length)
151
152def orient_avg_1D(q, radius, length):
153    # translate a point in [-1,1] to a point in [0, pi/2]
154    zm = pi/4
155    zb = pi/4
156
157    total = 0.0
158    for i in range(gauss.n):
159        theta = gauss.z[i]*zm + zb
160        # TODO: should be using u-substitution of cos(theta) over [0, 1]
161        #sin_theta, cos_theta = sincos(theta)
162        sin_theta = sin(theta)
163        cos_theta = cos(theta)
164        form = fq(q*sin_theta, q*cos_theta, radius, length)
165        total += gauss.w[i] * form * form * sin_theta
166
167    # translate dx in [-1,1] to dx in [lower,upper]
168    return total*zm
169
170def Iq(q, sld, solvent_sld, radius, length):
171    s = (sld - solvent_sld) * form_volume(radius, length)
172    return 1.0e-4 * s * s * orient_avg_1D(q, radius, length)
173
174def Iqac(qab, qc, sld, solvent_sld, radius, length):
175    s = (sld-solvent_sld) * form_volume(radius, length)
176    form = fq(qab, qc, radius, length)
177    return 1.0e-4 * square(s * form)
178
179def effective_radius(mode, radius, length):
180    mode = int(mode)
181    if mode == 1:
182        ddd = 0.75 * radius * (2 * radius * length + (length + radius) * (length + pi * radius))
183        return 0.5 * (ddd) ** (1. / 3.)
184    else:
185        return 0.
186
187def random():
188    volume = 10**np.random.uniform(5, 12)
189    length = 10**np.random.uniform(-2, 2)*volume**0.333
190    radius = np.sqrt(volume/length/np.pi)
191    pars = dict(
192        #scale=1,
193        #background=0,
194        length=length,
195        radius=radius,
196    )
197    return pars
198
199
200# parameters for demo
201demo = dict(scale=1, background=0,
202            sld=6, sld_solvent=1,
203            radius=20, length=300,
204            theta=60, phi=60,
205            radius_pd=.2, radius_pd_n=9,
206            length_pd=.2, length_pd_n=10,
207            theta_pd=10, theta_pd_n=5,
208            phi_pd=10, phi_pd_n=5)
209
210qx, qy = 0.2 * cos(2.5), 0.2 * sin(2.5)
211# After redefinition of angles, find new tests values.  Was 10 10 in old coords
212tests = [
213    [{}, 0.2, 0.042761386790780453],
214    [{}, [0.2], [0.042761386790780453]],
215    #  new coords
216    [{'theta':80.1534480601659, 'phi':10.1510817110481}, (qx, qy), 0.03514647218513852],
217    [{'theta':80.1534480601659, 'phi':10.1510817110481}, [(qx, qy)], [0.03514647218513852]],
218    # old coords
219    #[{'theta':10.0, 'phi':10.0}, (qx, qy), 0.03514647218513852],
220    #[{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.03514647218513852]],
221]
222del qx, qy  # not necessary to delete, but cleaner
223# ADDED by:  RKH  ON: 18Mar2016 renamed sld's etc
Note: See TracBrowser for help on using the repository browser.