Changeset 2c108a3 in sasmodels for doc/guide/magnetism


Ignore:
Timestamp:
Oct 19, 2017 2:58:57 PM (7 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
6773b02
Parents:
9ee2756
Message:

simplify magnetism code

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/guide/magnetism/magnetism.rst

    r1f058ea r2c108a3  
    3131to the $x'$ axis, the possible spin states after the sample are then 
    3232 
    33 No spin-flips (+ +) and (- -) 
     33Non spin-flip (+ +) and (- -) 
    3434 
    35 Spin-flips    (+ -) and (- +) 
     35Spin-flip    (+ -) and (- +) 
    3636 
    3737.. figure:: 
     
    4141$\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the 
    4242neutrons, the scattering length densities, including the nuclear scattering 
    43 length density ($\beta{_N}$) are 
     43length density $(\beta{_N})$ are 
    4444 
    4545.. math:: 
    4646    \beta_{\pm\pm} =  \beta_N \mp D_M M_{\perp x'} 
    47     \text{ when there are no spin-flips} 
     47    \text{ for non spin-flip states} 
    4848 
    4949and 
     
    5151.. math:: 
    5252    \beta_{\pm\mp} =  -D_M (M_{\perp y'} \pm iM_{\perp z'}) 
    53     \text{ when there are} 
     53    \text{ for spin-flip states} 
    5454 
    5555where 
    5656 
    5757.. math:: 
    58     M_{\perp x'} = M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\ 
    59     M_{\perp y'} = M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\ 
    60     M_{\perp z'} = M_{0z} \\ 
    61     M_{0q_x} = (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ 
    62     M_{0q_y} = (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi 
     58    M_{\perp x'} &= M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\ 
     59    M_{\perp y'} &= M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\ 
     60    M_{\perp z'} &= M_{0z} \\ 
     61    M_{0q_x} &= (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ 
     62    M_{0q_y} &= (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi 
    6363 
    6464Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components 
     
    6666 
    6767.. math:: 
    68     M_{0x} = M_0\cos\theta_M\cos\phi_M \\ 
    69     M_{0y} = M_0\sin\theta_M \\ 
    70     M_{0z} = -M_0\cos\theta_M\sin\phi_M 
     68    M_{0x} &= M_0\cos\theta_M\cos\phi_M \\ 
     69    M_{0y} &= M_0\sin\theta_M \\ 
     70    M_{0z} &= -M_0\cos\theta_M\sin\phi_M 
    7171 
    7272and the magnetization angles $\theta_M$ and $\phi_M$ are defined in 
Note: See TracChangeset for help on using the changeset viewer.