- Timestamp:
- Oct 19, 2017 2:58:57 PM (7 years ago)
- Branches:
- master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- 6773b02
- Parents:
- 9ee2756
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/magnetism/magnetism.rst
r1f058ea r2c108a3 31 31 to the $x'$ axis, the possible spin states after the sample are then 32 32 33 No spin-flips(+ +) and (- -)33 Non spin-flip (+ +) and (- -) 34 34 35 Spin-flip s(+ -) and (- +)35 Spin-flip (+ -) and (- +) 36 36 37 37 .. figure:: … … 41 41 $\phi$ and $\theta_{up}$, respectively, then, depending on the spin state of the 42 42 neutrons, the scattering length densities, including the nuclear scattering 43 length density ($\beta{_N}$)are43 length density $(\beta{_N})$ are 44 44 45 45 .. math:: 46 46 \beta_{\pm\pm} = \beta_N \mp D_M M_{\perp x'} 47 \text{ when there are no spin-flips}47 \text{ for non spin-flip states} 48 48 49 49 and … … 51 51 .. math:: 52 52 \beta_{\pm\mp} = -D_M (M_{\perp y'} \pm iM_{\perp z'}) 53 \text{ when there are}53 \text{ for spin-flip states} 54 54 55 55 where 56 56 57 57 .. math:: 58 M_{\perp x'} = M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\59 M_{\perp y'} = M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\60 M_{\perp z'} = M_{0z} \\61 M_{0q_x} = (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\62 M_{0q_y} = (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi58 M_{\perp x'} &= M_{0q_x}\cos(\theta_{up})+M_{0q_y}\sin(\theta_{up}) \\ 59 M_{\perp y'} &= M_{0q_y}\cos(\theta_{up})-M_{0q_x}\sin(\theta_{up}) \\ 60 M_{\perp z'} &= M_{0z} \\ 61 M_{0q_x} &= (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ 62 M_{0q_y} &= (M_{0y}\sin\phi - M_{0x}\cos\phi)\sin\phi 63 63 64 64 Here, $M_{0x}$, $M_{0x}$, $M_{0z}$ are the x, y and z components … … 66 66 67 67 .. math:: 68 M_{0x} = M_0\cos\theta_M\cos\phi_M \\69 M_{0y} = M_0\sin\theta_M \\70 M_{0z} = -M_0\cos\theta_M\sin\phi_M68 M_{0x} &= M_0\cos\theta_M\cos\phi_M \\ 69 M_{0y} &= M_0\sin\theta_M \\ 70 M_{0z} &= -M_0\cos\theta_M\sin\phi_M 71 71 72 72 and the magnetization angles $\theta_M$ and $\phi_M$ are defined in
Note: See TracChangeset
for help on using the changeset viewer.