Changeset 033c14c in sasview for src/sas/sascalc/corfunc/corfunc_calculator.py
- Timestamp:
- Jul 11, 2016 4:36:55 AM (8 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- cdd1c3b
- Parents:
- 5a54aa4
- git-author:
- Lewis O'Driscoll <lewis.o'driscoll@…> (07/08/16 09:08:15)
- git-committer:
- Lewis O'Driscoll <lewis.o'driscoll@…> (07/11/16 04:36:55)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sascalc/corfunc/corfunc_calculator.py
r9454a27 r033c14c 13 13 class CorfuncCalculator(object): 14 14 15 # Helper class16 class _Struct:17 def __init__(self, **entries):18 self.__dict__.update(entries)19 20 15 class _Interpolator(object): 21 16 """ … … 147 142 return transform 148 143 144 def extract_parameters(self, transformed_data): 145 """ 146 Extract the interesting measurements from a correlation function 147 :param transformed_data: Fourier transformation of the 148 extrapolated data 149 """ 150 # Calculate indexes of maxima and minima 151 x = transformed_data.x 152 y = transformed_data.y 153 maxs = argrelextrema(y, np.greater)[0] 154 mins = argrelextrema(y, np.less)[0] 155 156 # If there are no maxima, return None 157 if len(maxs) == 0: 158 return None 159 160 GammaMin = y[mins[0]] # The value at the first minimum 161 162 ddy = (y[:-2]+y[2:]-2*y[1:-1])/(x[2:]-x[:-2])**2 # 2nd derivative of y 163 dy = (y[2:]-y[:-2])/(x[2:]-x[:-2]) # 1st derivative of y 164 # Find where the second derivative goes to zero 165 zeros = argrelextrema(np.abs(ddy), np.less)[0] 166 # locate the first inflection point 167 linear_point = zeros[0] 168 linear_point = int(mins[0]/10) 169 170 # Try to calculate slope around linear_point using 80 data points 171 lower = linear_point - 40 172 upper = linear_point + 40 173 174 # If too few data points to the left, use linear_point*2 data points 175 if lower < 0: 176 lower = 0 177 upper = linear_point * 2 178 # If too few to right, use 2*(dy.size - linear_point) data points 179 elif upper > len(dy): 180 upper = len(dy) 181 width = len(dy) - linear_point 182 lower = 2*linear_point - dy.size 183 184 m = np.mean(dy[lower:upper]) # Linear slope 185 b = y[1:-1][linear_point]-m*x[1:-1][linear_point] # Linear intercept 186 187 Lc = (GammaMin-b)/m # Hard block thickness 188 189 # Find the data points where the graph is linear to within 1% 190 mask = np.where(np.abs((y-(m*x+b))/y) < 0.01)[0] 191 if len(mask) == 0: # Return garbage for bad fits 192 return garbage 193 dtr = x[mask[0]] # Beginning of Linear Section 194 d0 = x[mask[-1]] # End of Linear Section 195 GammaMax = y[mask[-1]] 196 A = -GammaMin/GammaMax # Normalized depth of minimum 197 198 params = { 199 'max': x[maxs[0]], 200 'dtr': dtr, 201 'Lc': Lc, 202 'd0': d0, 203 'A': A, 204 'Lc/max': Lc/x[maxs[0]] 205 } 206 207 for key, val in params.iteritems(): 208 params[key] = self._round_sig_figs(val, 6) 209 210 return params 211 212 149 213 def _porod(self, q, K, sigma, bg): 150 214 """Equation for the Porod region of the data""" … … 191 255 192 256 return s2 257 258 def _round_sig_figs(self, x, sigfigs): 259 """ 260 Round a number to a given number of significant figures. 261 262 :param x: The value to round 263 :param sigfigs: How many significant figures to round to 264 :return rounded_str: x rounded to the given number of significant 265 figures, as a string 266 """ 267 # Index of first significant digit 268 significant_digit = -int(np.floor(np.log10(np.abs(x)))) 269 # Number of digits required for correct number of sig figs 270 digits = significant_digit + (sigfigs - 1) 271 rounded = np.round(x, decimals=digits) 272 rounded_str = "{1:.{0}f}".format(sigfigs -1 + significant_digit, 273 rounded) 274 return rounded_str
Note: See TracChangeset
for help on using the changeset viewer.