source: sasview/temp/tbatch/data_processor.py @ 60ad1d4e

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 60ad1d4e was 2fc8322, checked in by Gervaise Alina <gervyh@…>, 13 years ago

copy tbatch

  • Property mode set to 100644
File size: 5.2 KB
Line 
1"""
2This module implement a class that generates values given some inputs. The User apply a function to a sequence
3of inputs and outputs are generated.
4"""
5import numpy
6
7
8class DataTable(object):
9    """
10    This class is store inputs as a dictionary of key (string) and values list of python objects.
11    It generates outputs given some function and its current inputs.
12    if an output object has an attribute "extract"   function returning attributes names and values
13    relevant to this output then DataTable will map them  accordingly.
14    """
15    def __init__(self, inputs):
16        """
17        """
18        #array of inputs
19        self.__inputs_data = None
20        #array of outputs
21        self.__outputs_data = None
22        #contains combinations of inputs and outputs
23        self__data = None
24        #the selected map function
25        self.__function = map
26        #the number of row in the array
27        self.length = 0
28       
29    def set_inputs(self, inputs):
30        """
31        Checks that inputs is a dictionary.
32        Checks that all values are list of same length.
33        Creates an array of dimension n x m and stores into self.__inputs_data
34        :param inputs: a dictionary of string as keys and values (list)  of same length
35        :example: inputs= {"data":[1, 2], "temperature":[30, 40]}
36                    result = self.set_value(inputs)
37                    assert result == [   ["data" "temperature"]
38                                        [1         30        ]
39                                        [2          40       ]]
40        """
41       
42    def get_inputs(self):
43        """
44        return array of inputs
45        """
46    def get_outputs(self):
47        """
48        return array of output value
49        """
50    def get_value(self):
51        """
52        Return current saved inputs and outputs
53        """
54        return self.__data
55   
56    def _mapply(self, arguments):
57        """
58        Receive a list of arguments where the fist item in the list is a function pointer
59        and the rest of items are argument to the function
60        :param arguments: arguments[0] is a function pointer
61                            arguments[1:] is possible parameters of that function
62        """
63        return apply(arguments[0], arguments[1:])
64   
65    def _compute(self, instance, func_name, *args):
66        """
67        Receive an instance of a class , a function name  and some possible arguments for the function
68        Generate result from that function
69        """
70        return getattr(instance, func)(*args)
71   
72    def compute(self,instances, func_names):
73        """
74        compute a series of values , the set the value of self.__outputs_data and self.__data
75        :param instances: list of instance of object
76        :param func_names: name of the function to use for mapping
77       
78        """
79       
80    def _extract_output(self, output):
81        """
82        receive an output which is a python object request extract_output function
83        in order to extract additional information about the output. If the output does
84        not have extract_output has attribute, the output is return as it is else
85        a dictionary of output attribute names is return as well as their corresponding
86        values
87        :example:  class OutPut:
88                        a = 2
89                        b = 3
90                        out = OutPut()
91                    result = self.extract_output(out)
92                    assert result == {"a":2, "b":3}
93        """
94       
95    def select_map_function(self, mapper="default"):
96        """
97        given a key word defined [mapper] a map function is used to map object
98        available map functions are: built-in python map , processing map etc...
99        """
100 
101class DataProcessor(object):
102    """
103    Implement a singleton of DataTable
104    """
105    __data_table = DataTable()
106   
107    def set_inputs(self, inputs):
108        self.__data_table.set_inputs(inputs)
109       
110    def select_map_function(self, mapper="default"):
111        self.__data_table.select_map_function(mapper)
112       
113    def compute(self,instance, func_name):
114        return self.__data_table.compute(instance, func_name)
115       
116    def get_inputs(self):
117        """
118        return array of inputs
119        """
120        return self.__data_table.get_inputs()
121   
122    def get_outputs(self):
123        """
124        return array of output value
125        """
126        return self.__data_table.get_outputs()
127   
128    def get_value(self):
129        """
130        Return current saved inputs and outputs
131        """
132        return self.__data_table.get_value()
133   
134     
135 
136 
137if __name__ == "__main__":
138    a = numpy.array([['c','d']]) 
139    c = numpy.array([2,3]) 
140    d = numpy.array([4,5]) 
141    m = numpy.column_stack([c, d])
142    print numpy.concatenate((a, m))
143    # the way set_value will work
144    my_dict = {"c":[2,3], "d":[4, 5]}
145    if my_dict:
146        length = len(my_dict.values()[0])
147        index = []
148        for item in my_dict.values():
149            assert len(item) == length
150        data = numpy.concatenate((numpy.array([my_dict.keys()]), numpy.column_stack( my_dict.values())))
151        print "Data"
152        print data
153        print data[1:]
154        print zip(data[1:1].T)
155       
156       
157       
158       
159   
160   
Note: See TracBrowser for help on using the repository browser.