[ec392464] | 1 | .. invariant_help.rst |
---|
| 2 | |
---|
| 3 | .. This is a port of the original SasView html help file to ReSTructured text |
---|
| 4 | .. by S King, ISIS, during SasView CodeCamp-III in Feb 2015. |
---|
| 5 | |
---|
[b64b87c] | 6 | Invariant Calculation |
---|
| 7 | ===================== |
---|
[ec392464] | 8 | |
---|
[a9dc4eb] | 9 | Description |
---|
| 10 | ----------- |
---|
[ec392464] | 11 | |
---|
[094b9eb] | 12 | The scattering, or Porod, invariant ($Q^*$) is a model-independent quantity that |
---|
[0721c3d] | 13 | can be easily calculated from scattering data. |
---|
[ec392464] | 14 | |
---|
[094b9eb] | 15 | For two phase systems, the scattering invariant is defined as the integral of |
---|
| 16 | the square of the wavevector transfer ($Q$) multiplied by the scattering cross section |
---|
| 17 | over the full range of $Q$ from zero to infinity, that is |
---|
[ec392464] | 18 | |
---|
[094b9eb] | 19 | .. math:: |
---|
[ec392464] | 20 | |
---|
[094b9eb] | 21 | Q^* = \int_0^\infty q^2I(q)\,dq |
---|
[ec392464] | 22 | |
---|
[094b9eb] | 23 | in the case of pinhole geometry. For slit geometry the invariant is given by |
---|
| 24 | |
---|
| 25 | .. math:: |
---|
| 26 | |
---|
| 27 | Q^* = \Delta q_v \int_0^\infty qI(q)\,dq |
---|
| 28 | |
---|
| 29 | where $\Delta q_v$ is the slit height. |
---|
| 30 | |
---|
| 31 | The worth of $Q^*$ is that it can be used to determine the volume fraction and |
---|
| 32 | the specific area of a sample. Whilst these quantities are useful in their own |
---|
[0721c3d] | 33 | right they can also be used in further analysis. |
---|
[ec392464] | 34 | |
---|
[094b9eb] | 35 | The difficulty with using $Q^*$ arises from the fact that experimental data is |
---|
| 36 | never measured over the range $0 \le Q \le \infty$. At best, combining USAS and |
---|
| 37 | WAS data might cover the range $10^{-5} \le Q \le 10$ 1/\ |Ang| . Thus it is usually |
---|
| 38 | necessary to extrapolate the experimental data to low and high $Q$. For this |
---|
[ec392464] | 39 | |
---|
[094b9eb] | 40 | High-\ $Q$ region (>= *Qmax* in data) |
---|
[ec392464] | 41 | |
---|
[094b9eb] | 42 | * The power law function $C/Q^4$ is used where the constant |
---|
| 43 | $C = 2 \pi \Delta\rho S_v$ is to be found by fitting part of data |
---|
| 44 | within the range $Q_{N-m}$ to $Q_N$ (where $m < N$). |
---|
[ec392464] | 45 | |
---|
[094b9eb] | 46 | Low-\ $Q$ region (<= *Qmin* in data) |
---|
[ec392464] | 47 | |
---|
[094b9eb] | 48 | * The Guinier function $I_0 exp(-R_g^2 Q^2/3)$ where $I_0$ |
---|
| 49 | and $R_g$ are obtained by fitting as for the high-\ $Q$ region above. |
---|
[0721c3d] | 50 | Alternatively a power law can be used. |
---|
[ec392464] | 51 | |
---|
[0721c3d] | 52 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[ec392464] | 53 | |
---|
[b64b87c] | 54 | Using invariant analysis |
---|
| 55 | ------------------------ |
---|
[0721c3d] | 56 | |
---|
| 57 | 1) Select *Invariant* from the *Analysis* menu on the SasView toolbar. |
---|
| 58 | |
---|
| 59 | 2) Load some data with the *Data Explorer*. |
---|
| 60 | |
---|
[094b9eb] | 61 | 3) Select a dataset and use the *Send To* button on the *Data Explorer* to load |
---|
[b64b87c] | 62 | the dataset into the *Invariant* panel. |
---|
[0721c3d] | 63 | |
---|
[094b9eb] | 64 | 4) Use the *Customised Input* boxes on the *Invariant* panel to subtract |
---|
| 65 | any background, specify the contrast (i.e. difference in SLDs - this must be |
---|
| 66 | specified for the eventual value of $Q^*$ to be on an absolute scale), or to |
---|
[0721c3d] | 67 | rescale the data. |
---|
[ec392464] | 68 | |
---|
[094b9eb] | 69 | 5) Adjust the extrapolation range as necessary. In most cases the default |
---|
[0721c3d] | 70 | values will suffice. |
---|
[ec392464] | 71 | |
---|
[0721c3d] | 72 | 6) Click the *Compute* button. |
---|
[ec392464] | 73 | |
---|
[094b9eb] | 74 | 7) To include a lower and/or higher $Q$ range, check the relevant *Enable |
---|
[0721c3d] | 75 | Extrapolate* check boxes. |
---|
[094b9eb] | 76 | |
---|
| 77 | If power law extrapolations are chosen, the exponent can be either held |
---|
| 78 | fixed or fitted. The number of points, Npts, to be used for the basis of the |
---|
[0721c3d] | 79 | extrapolation can also be specified. |
---|
[ec392464] | 80 | |
---|
[094b9eb] | 81 | 8) If the value of $Q^*$ calculated with the extrapolated regions is invalid, a |
---|
[b64b87c] | 82 | red warning will appear at the top of the *Invariant* panel. |
---|
[ec392464] | 83 | |
---|
[094b9eb] | 84 | The details of the calculation are available by clicking the *Details* |
---|
[0721c3d] | 85 | button in the middle of the panel. |
---|
[ec392464] | 86 | |
---|
[6aad2e8] | 87 | .. image:: image005.png |
---|
[ec392464] | 88 | |
---|
| 89 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 90 | |
---|
[a9dc4eb] | 91 | Parameters |
---|
| 92 | ---------- |
---|
[ec392464] | 93 | |
---|
| 94 | Volume Fraction |
---|
[a9dc4eb] | 95 | ^^^^^^^^^^^^^^^ |
---|
[ec392464] | 96 | |
---|
[094b9eb] | 97 | The volume fraction $\phi$ is related to $Q^*$ by |
---|
| 98 | |
---|
| 99 | .. math:: |
---|
[0721c3d] | 100 | |
---|
[094b9eb] | 101 | \phi(1 - \phi) = \frac{Q^*}{2\pi^2(\Delta\rho)^2} \equiv A |
---|
[ec392464] | 102 | |
---|
[094b9eb] | 103 | where $\Delta\rho$ is the SLD contrast. |
---|
[ec392464] | 104 | |
---|
[094b9eb] | 105 | .. math:: |
---|
| 106 | |
---|
| 107 | \phi = \frac{1 \pm \sqrt{1 - 4A}}{2} |
---|
[ec392464] | 108 | |
---|
| 109 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 110 | |
---|
| 111 | Specific Surface Area |
---|
[a9dc4eb] | 112 | ^^^^^^^^^^^^^^^^^^^^^ |
---|
[ec392464] | 113 | |
---|
[094b9eb] | 114 | The specific surface area $S_v$ is related to $Q^*$ by |
---|
| 115 | |
---|
| 116 | .. math:: |
---|
[ec392464] | 117 | |
---|
[094b9eb] | 118 | S_v = \frac{2\pi\phi(1-\phi)C_p}{Q^*} = \frac{2\pi A C_p}{Q^*} |
---|
[ec392464] | 119 | |
---|
[094b9eb] | 120 | where $C_p$ is the Porod constant. |
---|
[ec392464] | 121 | |
---|
| 122 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 123 | |
---|
[a9dc4eb] | 124 | Reference |
---|
| 125 | --------- |
---|
[ec392464] | 126 | |
---|
[0721c3d] | 127 | O. Glatter and O. Kratky |
---|
| 128 | Chapter 2 in *Small Angle X-Ray Scattering* |
---|
| 129 | Academic Press, New York, 1982 |
---|
[ec392464] | 130 | |
---|
[484141c] | 131 | http://web.archive.org/web/20110824105537/http://physchem.kfunigraz.ac.at/sm/Service/Glatter_Kratky_SAXS_1982.zip |
---|
[ec392464] | 132 | |
---|
[0721c3d] | 133 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[ec392464] | 134 | |
---|
[a9dc4eb] | 135 | .. note:: This help document was last changed by Steve King, 01May2015 |
---|