1 | """ |
---|
2 | Calculation thread for modeling |
---|
3 | """ |
---|
4 | |
---|
5 | import time |
---|
6 | import numpy as np |
---|
7 | import math |
---|
8 | from sas.sascalc.data_util.calcthread import CalcThread |
---|
9 | from sas.sascalc.fit.MultiplicationModel import MultiplicationModel |
---|
10 | |
---|
11 | class Calc2D(CalcThread): |
---|
12 | """ |
---|
13 | Compute 2D model |
---|
14 | This calculation assumes a 2-fold symmetry of the model |
---|
15 | where points are computed for one half of the detector |
---|
16 | and I(qx, qy) = I(-qx, -qy) is assumed. |
---|
17 | """ |
---|
18 | def __init__(self, data, model, smearer, qmin, qmax, page_id, |
---|
19 | state=None, |
---|
20 | weight=None, |
---|
21 | fid=None, |
---|
22 | toggle_mode_on=False, |
---|
23 | completefn=None, |
---|
24 | updatefn=None, |
---|
25 | update_chisqr=True, |
---|
26 | source='model', |
---|
27 | yieldtime=0.04, |
---|
28 | worktime=0.04, |
---|
29 | exception_handler=None, |
---|
30 | ): |
---|
31 | CalcThread.__init__(self, completefn, updatefn, yieldtime, worktime, |
---|
32 | exception_handler=exception_handler) |
---|
33 | self.qmin = qmin |
---|
34 | self.qmax = qmax |
---|
35 | self.weight = weight |
---|
36 | self.fid = fid |
---|
37 | #self.qstep = qstep |
---|
38 | self.toggle_mode_on = toggle_mode_on |
---|
39 | self.data = data |
---|
40 | self.page_id = page_id |
---|
41 | self.state = None |
---|
42 | # the model on to calculate |
---|
43 | self.model = model |
---|
44 | self.smearer = smearer |
---|
45 | self.starttime = 0 |
---|
46 | self.update_chisqr = update_chisqr |
---|
47 | self.source = source |
---|
48 | |
---|
49 | def compute(self): |
---|
50 | """ |
---|
51 | Compute the data given a model function |
---|
52 | """ |
---|
53 | self.starttime = time.time() |
---|
54 | # Determine appropriate q range |
---|
55 | if self.qmin is None: |
---|
56 | self.qmin = 0 |
---|
57 | if self.qmax is None: |
---|
58 | if self.data is not None: |
---|
59 | newx = max(math.fabs(self.data.xmax), math.fabs(self.data.xmin)) |
---|
60 | newy = max(math.fabs(self.data.ymax), math.fabs(self.data.ymin)) |
---|
61 | self.qmax = math.sqrt(newx**2 + newy**2) |
---|
62 | |
---|
63 | if self.data is None: |
---|
64 | msg = "Compute Calc2D receive data = %s.\n" % str(self.data) |
---|
65 | raise ValueError, msg |
---|
66 | |
---|
67 | # Define matrix where data will be plotted |
---|
68 | radius = np.sqrt(self.data.qx_data**2 + self.data.qy_data**2) |
---|
69 | |
---|
70 | # For theory, qmax is based on 1d qmax |
---|
71 | # so that must be mulitified by sqrt(2) to get actual max for 2d |
---|
72 | index_model = (self.qmin <= radius) & (radius <= self.qmax) |
---|
73 | index_model &= self.data.mask |
---|
74 | index_model &= np.isfinite(self.data.data) |
---|
75 | |
---|
76 | if self.smearer is not None: |
---|
77 | # Set smearer w/ data, model and index. |
---|
78 | fn = self.smearer |
---|
79 | fn.set_model(self.model) |
---|
80 | fn.set_index(index_model) |
---|
81 | # Calculate smeared Intensity |
---|
82 | #(by Gaussian averaging): DataLoader/smearing2d/Smearer2D() |
---|
83 | value = fn.get_value() |
---|
84 | else: |
---|
85 | # calculation w/o smearing |
---|
86 | value = self.model.evalDistribution([ |
---|
87 | self.data.qx_data[index_model], |
---|
88 | self.data.qy_data[index_model] |
---|
89 | ]) |
---|
90 | output = np.zeros(len(self.data.qx_data)) |
---|
91 | # output default is None |
---|
92 | # This method is to distinguish between masked |
---|
93 | #point(nan) and data point = 0. |
---|
94 | output = output / output |
---|
95 | # set value for self.mask==True, else still None to Plottools |
---|
96 | output[index_model] = value |
---|
97 | elapsed = time.time() - self.starttime |
---|
98 | self.complete(image=output, |
---|
99 | data=self.data, |
---|
100 | page_id=self.page_id, |
---|
101 | model=self.model, |
---|
102 | state=self.state, |
---|
103 | toggle_mode_on=self.toggle_mode_on, |
---|
104 | elapsed=elapsed, |
---|
105 | index=index_model, |
---|
106 | fid=self.fid, |
---|
107 | qmin=self.qmin, |
---|
108 | qmax=self.qmax, |
---|
109 | weight=self.weight, |
---|
110 | #qstep=self.qstep, |
---|
111 | update_chisqr=self.update_chisqr, |
---|
112 | source=self.source) |
---|
113 | |
---|
114 | |
---|
115 | class Calc1D(CalcThread): |
---|
116 | """ |
---|
117 | Compute 1D data |
---|
118 | """ |
---|
119 | def __init__(self, model, |
---|
120 | page_id, |
---|
121 | data, |
---|
122 | fid=None, |
---|
123 | qmin=None, |
---|
124 | qmax=None, |
---|
125 | weight=None, |
---|
126 | smearer=None, |
---|
127 | toggle_mode_on=False, |
---|
128 | state=None, |
---|
129 | completefn=None, |
---|
130 | update_chisqr=True, |
---|
131 | source='model', |
---|
132 | updatefn=None, |
---|
133 | yieldtime=0.01, |
---|
134 | worktime=0.01, |
---|
135 | exception_handler=None, |
---|
136 | ): |
---|
137 | """ |
---|
138 | """ |
---|
139 | CalcThread.__init__(self, completefn, updatefn, yieldtime, worktime, |
---|
140 | exception_handler=exception_handler) |
---|
141 | self.fid = fid |
---|
142 | self.data = data |
---|
143 | self.qmin = qmin |
---|
144 | self.qmax = qmax |
---|
145 | self.model = model |
---|
146 | self.weight = weight |
---|
147 | self.toggle_mode_on = toggle_mode_on |
---|
148 | self.state = state |
---|
149 | self.page_id = page_id |
---|
150 | self.smearer = smearer |
---|
151 | self.starttime = 0 |
---|
152 | self.update_chisqr = update_chisqr |
---|
153 | self.source = source |
---|
154 | self.out = None |
---|
155 | self.index = None |
---|
156 | |
---|
157 | def compute(self): |
---|
158 | """ |
---|
159 | Compute model 1d value given qmin , qmax , x value |
---|
160 | """ |
---|
161 | self.starttime = time.time() |
---|
162 | output = np.zeros((len(self.data.x))) |
---|
163 | index = (self.qmin <= self.data.x) & (self.data.x <= self.qmax) |
---|
164 | |
---|
165 | # If we use a smearer, also return the unsmeared model |
---|
166 | unsmeared_output = None |
---|
167 | unsmeared_data = None |
---|
168 | unsmeared_error = None |
---|
169 | ##smearer the ouput of the plot |
---|
170 | if self.smearer is not None: |
---|
171 | first_bin, last_bin = self.smearer.get_bin_range(self.qmin, |
---|
172 | self.qmax) |
---|
173 | mask = self.data.x[first_bin:last_bin+1] |
---|
174 | unsmeared_output = np.zeros((len(self.data.x))) |
---|
175 | unsmeared_output[first_bin:last_bin+1] = self.model.evalDistribution(mask) |
---|
176 | self.smearer.model = self.model |
---|
177 | output = self.smearer(unsmeared_output, first_bin, last_bin) |
---|
178 | |
---|
179 | # Rescale data to unsmeared model |
---|
180 | # Check that the arrays are compatible. If we only have a model but no data, |
---|
181 | # the length of data.y will be zero. |
---|
182 | if isinstance(self.data.y, np.ndarray) and output.shape == self.data.y.shape: |
---|
183 | unsmeared_data = np.zeros((len(self.data.x))) |
---|
184 | unsmeared_error = np.zeros((len(self.data.x))) |
---|
185 | unsmeared_data[first_bin:last_bin+1] = self.data.y[first_bin:last_bin+1]\ |
---|
186 | * unsmeared_output[first_bin:last_bin+1]\ |
---|
187 | / output[first_bin:last_bin+1] |
---|
188 | unsmeared_error[first_bin:last_bin+1] = self.data.dy[first_bin:last_bin+1]\ |
---|
189 | * unsmeared_output[first_bin:last_bin+1]\ |
---|
190 | / output[first_bin:last_bin+1] |
---|
191 | unsmeared_output = unsmeared_output[index] |
---|
192 | unsmeared_data = unsmeared_data[index] |
---|
193 | unsmeared_error = unsmeared_error |
---|
194 | else: |
---|
195 | output[index] = self.model.evalDistribution(self.data.x[index]) |
---|
196 | |
---|
197 | sq_values = None |
---|
198 | pq_values = None |
---|
199 | s_model = None |
---|
200 | p_model = None |
---|
201 | if isinstance(self.model, MultiplicationModel): |
---|
202 | s_model = self.model.s_model |
---|
203 | p_model = self.model.p_model |
---|
204 | elif hasattr(self.model, "get_composition_models"): |
---|
205 | p_model, s_model = self.model.get_composition_models() |
---|
206 | |
---|
207 | if p_model is not None and s_model is not None: |
---|
208 | sq_values = np.zeros((len(self.data.x))) |
---|
209 | pq_values = np.zeros((len(self.data.x))) |
---|
210 | sq_values[index] = s_model.evalDistribution(self.data.x[index]) |
---|
211 | pq_values[index] = p_model.evalDistribution(self.data.x[index]) |
---|
212 | |
---|
213 | elapsed = time.time() - self.starttime |
---|
214 | |
---|
215 | self.complete(x=self.data.x[index], y=output[index], |
---|
216 | page_id=self.page_id, |
---|
217 | state=self.state, |
---|
218 | weight=self.weight, |
---|
219 | fid=self.fid, |
---|
220 | toggle_mode_on=self.toggle_mode_on, |
---|
221 | elapsed=elapsed, index=index, model=self.model, |
---|
222 | data=self.data, |
---|
223 | update_chisqr=self.update_chisqr, |
---|
224 | source=self.source, |
---|
225 | unsmeared_model=unsmeared_output, |
---|
226 | unsmeared_data=unsmeared_data, |
---|
227 | unsmeared_error=unsmeared_error, |
---|
228 | pq_model=pq_values, |
---|
229 | sq_model=sq_values) |
---|
230 | |
---|
231 | def results(self): |
---|
232 | """ |
---|
233 | Send resuts of the computation |
---|
234 | """ |
---|
235 | return [self.out, self.index] |
---|
236 | |
---|
237 | """ |
---|
238 | Example: :: |
---|
239 | |
---|
240 | class CalcCommandline: |
---|
241 | def __init__(self, n=20000): |
---|
242 | #print thread.get_ident() |
---|
243 | from sas.models.CylinderModel import CylinderModel |
---|
244 | |
---|
245 | model = CylinderModel() |
---|
246 | |
---|
247 | |
---|
248 | print model.runXY([0.01, 0.02]) |
---|
249 | |
---|
250 | qmax = 0.01 |
---|
251 | qstep = 0.0001 |
---|
252 | self.done = False |
---|
253 | |
---|
254 | x = numpy.arange(-qmax, qmax+qstep*0.01, qstep) |
---|
255 | y = numpy.arange(-qmax, qmax+qstep*0.01, qstep) |
---|
256 | |
---|
257 | |
---|
258 | calc_thread_2D = Calc2D(x, y, None, model.clone(),None, |
---|
259 | -qmax, qmax,qstep, |
---|
260 | completefn=self.complete, |
---|
261 | updatefn=self.update , |
---|
262 | yieldtime=0.0) |
---|
263 | |
---|
264 | calc_thread_2D.queue() |
---|
265 | calc_thread_2D.ready(2.5) |
---|
266 | |
---|
267 | while not self.done: |
---|
268 | time.sleep(1) |
---|
269 | |
---|
270 | def update(self,output): |
---|
271 | print "update" |
---|
272 | |
---|
273 | def complete(self, image, data, model, elapsed, qmin, qmax,index, qstep ): |
---|
274 | print "complete" |
---|
275 | self.done = True |
---|
276 | |
---|
277 | if __name__ == "__main__": |
---|
278 | CalcCommandline() |
---|
279 | """ |
---|