[f32d144] | 1 | """ |
---|
| 2 | Calculation thread for modeling |
---|
| 3 | """ |
---|
[5062bbf] | 4 | |
---|
[bb18ef1] | 5 | import time |
---|
[9a5097c] | 6 | import numpy as np |
---|
[7e7e806] | 7 | import math |
---|
[b699768] | 8 | from sas.sascalc.data_util.calcthread import CalcThread |
---|
[ca4d985] | 9 | from sas.sascalc.fit.MultiplicationModel import MultiplicationModel |
---|
[5062bbf] | 10 | |
---|
[bb18ef1] | 11 | class Calc2D(CalcThread): |
---|
| 12 | """ |
---|
[5062bbf] | 13 | Compute 2D model |
---|
| 14 | This calculation assumes a 2-fold symmetry of the model |
---|
| 15 | where points are computed for one half of the detector |
---|
| 16 | and I(qx, qy) = I(-qx, -qy) is assumed. |
---|
[bb18ef1] | 17 | """ |
---|
[f32d144] | 18 | def __init__(self, data, model, smearer, qmin, qmax, page_id, |
---|
[5ef55d2] | 19 | state=None, |
---|
[62f851f] | 20 | weight=None, |
---|
[f64a4b7] | 21 | fid=None, |
---|
[fa65e99] | 22 | toggle_mode_on=False, |
---|
[7e7e806] | 23 | completefn=None, |
---|
| 24 | updatefn=None, |
---|
[2296316] | 25 | update_chisqr=True, |
---|
[e3f6ef5] | 26 | source='model', |
---|
[7e7e806] | 27 | yieldtime=0.04, |
---|
[934ce649] | 28 | worktime=0.04, |
---|
| 29 | exception_handler=None, |
---|
[bb18ef1] | 30 | ): |
---|
[934ce649] | 31 | CalcThread.__init__(self, completefn, updatefn, yieldtime, worktime, |
---|
| 32 | exception_handler=exception_handler) |
---|
[7e7e806] | 33 | self.qmin = qmin |
---|
| 34 | self.qmax = qmax |
---|
[62f851f] | 35 | self.weight = weight |
---|
[f64a4b7] | 36 | self.fid = fid |
---|
[7e7e806] | 37 | #self.qstep = qstep |
---|
[fa65e99] | 38 | self.toggle_mode_on = toggle_mode_on |
---|
[7e7e806] | 39 | self.data = data |
---|
[66ff250] | 40 | self.page_id = page_id |
---|
[5ef55d2] | 41 | self.state = None |
---|
[1b001a7] | 42 | # the model on to calculate |
---|
[bb18ef1] | 43 | self.model = model |
---|
[7e7e806] | 44 | self.smearer = smearer |
---|
[f32d144] | 45 | self.starttime = 0 |
---|
[2296316] | 46 | self.update_chisqr = update_chisqr |
---|
[e3f6ef5] | 47 | self.source = source |
---|
[2f4b430] | 48 | |
---|
[bb18ef1] | 49 | def compute(self): |
---|
| 50 | """ |
---|
[5062bbf] | 51 | Compute the data given a model function |
---|
[bb18ef1] | 52 | """ |
---|
[1b001a7] | 53 | self.starttime = time.time() |
---|
| 54 | # Determine appropriate q range |
---|
[235f514] | 55 | if self.qmin is None: |
---|
[c77d859] | 56 | self.qmin = 0 |
---|
[235f514] | 57 | if self.qmax is None: |
---|
[7432acb] | 58 | if self.data is not None: |
---|
[7e7e806] | 59 | newx = math.pow(max(math.fabs(self.data.xmax), |
---|
| 60 | math.fabs(self.data.xmin)), 2) |
---|
| 61 | newy = math.pow(max(math.fabs(self.data.ymax), |
---|
| 62 | math.fabs(self.data.ymin)), 2) |
---|
| 63 | self.qmax = math.sqrt(newx + newy) |
---|
[2f4b430] | 64 | |
---|
[7e7e806] | 65 | if self.data is None: |
---|
[f32d144] | 66 | msg = "Compute Calc2D receive data = %s.\n" % str(self.data) |
---|
[7e7e806] | 67 | raise ValueError, msg |
---|
[2f4b430] | 68 | |
---|
[f32d144] | 69 | # Define matrix where data will be plotted |
---|
[9a5097c] | 70 | radius = np.sqrt((self.data.qx_data * self.data.qx_data) + \ |
---|
[7e7e806] | 71 | (self.data.qy_data * self.data.qy_data)) |
---|
[43e685d] | 72 | |
---|
[e575db9] | 73 | # For theory, qmax is based on 1d qmax |
---|
| 74 | # so that must be mulitified by sqrt(2) to get actual max for 2d |
---|
[7e7e806] | 75 | index_model = (self.qmin <= radius) & (radius <= self.qmax) |
---|
| 76 | index_model = index_model & self.data.mask |
---|
[9a5097c] | 77 | index_model = index_model & np.isfinite(self.data.data) |
---|
[2f4b430] | 78 | |
---|
[7e7e806] | 79 | if self.smearer is not None: |
---|
[f72333f] | 80 | # Set smearer w/ data, model and index. |
---|
| 81 | fn = self.smearer |
---|
| 82 | fn.set_model(self.model) |
---|
| 83 | fn.set_index(index_model) |
---|
[f32d144] | 84 | # Calculate smeared Intensity |
---|
[7e7e806] | 85 | #(by Gaussian averaging): DataLoader/smearing2d/Smearer2D() |
---|
[f72333f] | 86 | value = fn.get_value() |
---|
[f32d144] | 87 | else: |
---|
[f72333f] | 88 | # calculation w/o smearing |
---|
[d3911e3] | 89 | value = self.model.evalDistribution([ |
---|
| 90 | self.data.qx_data[index_model], |
---|
| 91 | self.data.qy_data[index_model] |
---|
| 92 | ]) |
---|
[9a5097c] | 93 | output = np.zeros(len(self.data.qx_data)) |
---|
[43e685d] | 94 | # output default is None |
---|
[f32d144] | 95 | # This method is to distinguish between masked |
---|
[7e7e806] | 96 | #point(nan) and data point = 0. |
---|
[f32d144] | 97 | output = output / output |
---|
[43e685d] | 98 | # set value for self.mask==True, else still None to Plottools |
---|
[f32d144] | 99 | output[index_model] = value |
---|
| 100 | elapsed = time.time() - self.starttime |
---|
[6bbeacd4] | 101 | self.complete(image=output, |
---|
[f32d144] | 102 | data=self.data, |
---|
[66ff250] | 103 | page_id=self.page_id, |
---|
[6bbeacd4] | 104 | model=self.model, |
---|
[5ef55d2] | 105 | state=self.state, |
---|
[fa65e99] | 106 | toggle_mode_on=self.toggle_mode_on, |
---|
[6bbeacd4] | 107 | elapsed=elapsed, |
---|
| 108 | index=index_model, |
---|
[f64a4b7] | 109 | fid=self.fid, |
---|
[6bbeacd4] | 110 | qmin=self.qmin, |
---|
| 111 | qmax=self.qmax, |
---|
[62f851f] | 112 | weight=self.weight, |
---|
[7e7e806] | 113 | #qstep=self.qstep, |
---|
[f32d144] | 114 | update_chisqr=self.update_chisqr, |
---|
[e3f6ef5] | 115 | source=self.source) |
---|
[2f4b430] | 116 | |
---|
[bb18ef1] | 117 | |
---|
| 118 | class Calc1D(CalcThread): |
---|
[5062bbf] | 119 | """ |
---|
| 120 | Compute 1D data |
---|
| 121 | """ |
---|
[7e7e806] | 122 | def __init__(self, model, |
---|
[66ff250] | 123 | page_id, |
---|
[7e7e806] | 124 | data, |
---|
[f64a4b7] | 125 | fid=None, |
---|
[bb18ef1] | 126 | qmin=None, |
---|
| 127 | qmax=None, |
---|
[62f851f] | 128 | weight=None, |
---|
[bb18ef1] | 129 | smearer=None, |
---|
[fa65e99] | 130 | toggle_mode_on=False, |
---|
[5ef55d2] | 131 | state=None, |
---|
[f32d144] | 132 | completefn=None, |
---|
[2296316] | 133 | update_chisqr=True, |
---|
[e3f6ef5] | 134 | source='model', |
---|
[7e7e806] | 135 | updatefn=None, |
---|
| 136 | yieldtime=0.01, |
---|
[934ce649] | 137 | worktime=0.01, |
---|
| 138 | exception_handler=None, |
---|
[bb18ef1] | 139 | ): |
---|
[5062bbf] | 140 | """ |
---|
| 141 | """ |
---|
[934ce649] | 142 | CalcThread.__init__(self, completefn, updatefn, yieldtime, worktime, |
---|
| 143 | exception_handler=exception_handler) |
---|
[f64a4b7] | 144 | self.fid = fid |
---|
[fa65e99] | 145 | self.data = data |
---|
| 146 | self.qmin = qmin |
---|
| 147 | self.qmax = qmax |
---|
[bb18ef1] | 148 | self.model = model |
---|
[62f851f] | 149 | self.weight = weight |
---|
[fa65e99] | 150 | self.toggle_mode_on = toggle_mode_on |
---|
[5ef55d2] | 151 | self.state = state |
---|
[66ff250] | 152 | self.page_id = page_id |
---|
[fa65e99] | 153 | self.smearer = smearer |
---|
[bb18ef1] | 154 | self.starttime = 0 |
---|
[2296316] | 155 | self.update_chisqr = update_chisqr |
---|
[e3f6ef5] | 156 | self.source = source |
---|
[da7cacb] | 157 | self.out = None |
---|
| 158 | self.index = None |
---|
[2f4b430] | 159 | |
---|
[bb18ef1] | 160 | def compute(self): |
---|
[c77d859] | 161 | """ |
---|
[f32d144] | 162 | Compute model 1d value given qmin , qmax , x value |
---|
[c77d859] | 163 | """ |
---|
[bb18ef1] | 164 | self.starttime = time.time() |
---|
[9a5097c] | 165 | output = np.zeros((len(self.data.x))) |
---|
[f32d144] | 166 | index = (self.qmin <= self.data.x) & (self.data.x <= self.qmax) |
---|
[2f4b430] | 167 | |
---|
[c807957] | 168 | # If we use a smearer, also return the unsmeared model |
---|
[804fefa] | 169 | unsmeared_output = None |
---|
| 170 | unsmeared_data = None |
---|
| 171 | unsmeared_error = None |
---|
[f32d144] | 172 | ##smearer the ouput of the plot |
---|
[7e7e806] | 173 | if self.smearer is not None: |
---|
[f32d144] | 174 | first_bin, last_bin = self.smearer.get_bin_range(self.qmin, |
---|
[7e7e806] | 175 | self.qmax) |
---|
[a3f125f0] | 176 | mask = self.data.x[first_bin:last_bin+1] |
---|
[9a5097c] | 177 | unsmeared_output = np.zeros((len(self.data.x))) |
---|
[804fefa] | 178 | unsmeared_output[first_bin:last_bin+1] = self.model.evalDistribution(mask) |
---|
[c1c9929] | 179 | self.smearer.model = self.model |
---|
[804fefa] | 180 | output = self.smearer(unsmeared_output, first_bin, last_bin) |
---|
[286c757] | 181 | |
---|
[804fefa] | 182 | # Rescale data to unsmeared model |
---|
[286c757] | 183 | # Check that the arrays are compatible. If we only have a model but no data, |
---|
| 184 | # the length of data.y will be zero. |
---|
[9a5097c] | 185 | if isinstance(self.data.y, np.ndarray) and output.shape == self.data.y.shape: |
---|
| 186 | unsmeared_data = np.zeros((len(self.data.x))) |
---|
| 187 | unsmeared_error = np.zeros((len(self.data.x))) |
---|
[286c757] | 188 | unsmeared_data[first_bin:last_bin+1] = self.data.y[first_bin:last_bin+1]\ |
---|
| 189 | * unsmeared_output[first_bin:last_bin+1]\ |
---|
| 190 | / output[first_bin:last_bin+1] |
---|
| 191 | unsmeared_error[first_bin:last_bin+1] = self.data.dy[first_bin:last_bin+1]\ |
---|
| 192 | * unsmeared_output[first_bin:last_bin+1]\ |
---|
| 193 | / output[first_bin:last_bin+1] |
---|
| 194 | unsmeared_output=unsmeared_output[index] |
---|
| 195 | unsmeared_data=unsmeared_data[index] |
---|
| 196 | unsmeared_error=unsmeared_error |
---|
[e627f19] | 197 | else: |
---|
[7e7e806] | 198 | output[index] = self.model.evalDistribution(self.data.x[index]) |
---|
[2f4b430] | 199 | |
---|
[b0bebdc] | 200 | sq_values = None |
---|
| 201 | pq_values = None |
---|
| 202 | s_model = None |
---|
| 203 | p_model = None |
---|
[ca4d985] | 204 | if isinstance(self.model, MultiplicationModel): |
---|
[b0bebdc] | 205 | s_model = self.model.s_model |
---|
| 206 | p_model = self.model.p_model |
---|
[c1681ea] | 207 | elif hasattr(self.model, "get_composition_models"): |
---|
[b0bebdc] | 208 | p_model, s_model = self.model.get_composition_models() |
---|
| 209 | |
---|
| 210 | if p_model is not None and s_model is not None: |
---|
[9a5097c] | 211 | sq_values = np.zeros((len(self.data.x))) |
---|
| 212 | pq_values = np.zeros((len(self.data.x))) |
---|
[b0bebdc] | 213 | sq_values[index] = s_model.evalDistribution(self.data.x[index]) |
---|
| 214 | pq_values[index] = p_model.evalDistribution(self.data.x[index]) |
---|
[ca4d985] | 215 | |
---|
[5062bbf] | 216 | elapsed = time.time() - self.starttime |
---|
[2f4b430] | 217 | |
---|
[f32d144] | 218 | self.complete(x=self.data.x[index], y=output[index], |
---|
[66ff250] | 219 | page_id=self.page_id, |
---|
[5ef55d2] | 220 | state=self.state, |
---|
[62f851f] | 221 | weight=self.weight, |
---|
[f64a4b7] | 222 | fid=self.fid, |
---|
[fa65e99] | 223 | toggle_mode_on=self.toggle_mode_on, |
---|
[f32d144] | 224 | elapsed=elapsed, index=index, model=self.model, |
---|
| 225 | data=self.data, |
---|
| 226 | update_chisqr=self.update_chisqr, |
---|
[c807957] | 227 | source=self.source, |
---|
[804fefa] | 228 | unsmeared_model=unsmeared_output, |
---|
| 229 | unsmeared_data=unsmeared_data, |
---|
[ca4d985] | 230 | unsmeared_error=unsmeared_error, |
---|
[b0bebdc] | 231 | pq_model=pq_values, |
---|
| 232 | sq_model=sq_values) |
---|
[2f4b430] | 233 | |
---|
[f72333f] | 234 | def results(self): |
---|
| 235 | """ |
---|
[5062bbf] | 236 | Send resuts of the computation |
---|
[f72333f] | 237 | """ |
---|
| 238 | return [self.out, self.index] |
---|
[5062bbf] | 239 | |
---|
| 240 | """ |
---|
| 241 | Example: :: |
---|
[2f4b430] | 242 | |
---|
[5062bbf] | 243 | class CalcCommandline: |
---|
| 244 | def __init__(self, n=20000): |
---|
| 245 | #print thread.get_ident() |
---|
[79492222] | 246 | from sas.models.CylinderModel import CylinderModel |
---|
[2f4b430] | 247 | |
---|
[5062bbf] | 248 | model = CylinderModel() |
---|
[2f4b430] | 249 | |
---|
| 250 | |
---|
[5062bbf] | 251 | print model.runXY([0.01, 0.02]) |
---|
[2f4b430] | 252 | |
---|
[5062bbf] | 253 | qmax = 0.01 |
---|
| 254 | qstep = 0.0001 |
---|
| 255 | self.done = False |
---|
[2f4b430] | 256 | |
---|
[5062bbf] | 257 | x = numpy.arange(-qmax, qmax+qstep*0.01, qstep) |
---|
| 258 | y = numpy.arange(-qmax, qmax+qstep*0.01, qstep) |
---|
[2f4b430] | 259 | |
---|
| 260 | |
---|
[5062bbf] | 261 | calc_thread_2D = Calc2D(x, y, None, model.clone(),None, |
---|
| 262 | -qmax, qmax,qstep, |
---|
| 263 | completefn=self.complete, |
---|
| 264 | updatefn=self.update , |
---|
| 265 | yieldtime=0.0) |
---|
[2f4b430] | 266 | |
---|
[5062bbf] | 267 | calc_thread_2D.queue() |
---|
| 268 | calc_thread_2D.ready(2.5) |
---|
[2f4b430] | 269 | |
---|
[5062bbf] | 270 | while not self.done: |
---|
| 271 | time.sleep(1) |
---|
[2f4b430] | 272 | |
---|
[5062bbf] | 273 | def update(self,output): |
---|
| 274 | print "update" |
---|
[2f4b430] | 275 | |
---|
[5062bbf] | 276 | def complete(self, image, data, model, elapsed, qmin, qmax,index, qstep ): |
---|
| 277 | print "complete" |
---|
| 278 | self.done = True |
---|
[2f4b430] | 279 | |
---|
[5062bbf] | 280 | if __name__ == "__main__": |
---|
| 281 | CalcCommandline() |
---|
[f32d144] | 282 | """ |
---|