[da53353] | 1 | .. pd_help.rst |
---|
| 2 | |
---|
| 3 | .. This is a port of the original SasView html help file to ReSTructured text |
---|
| 4 | .. by S King, ISIS, during SasView CodeCamp-III in Feb 2015. |
---|
| 5 | |
---|
[6aad2e8] | 6 | .. |inlineimage004| image:: sm_image004.png |
---|
| 7 | .. |inlineimage005| image:: sm_image005.png |
---|
| 8 | .. |inlineimage008| image:: sm_image008.png |
---|
| 9 | .. |inlineimage009| image:: sm_image009.png |
---|
| 10 | .. |inlineimage010| image:: sm_image010.png |
---|
| 11 | .. |inlineimage011| image:: sm_image011.png |
---|
| 12 | .. |inlineimage012| image:: sm_image012.png |
---|
| 13 | .. |inlineimage018| image:: sm_image018.png |
---|
| 14 | .. |inlineimage019| image:: sm_image019.png |
---|
[da53353] | 15 | |
---|
| 16 | |
---|
| 17 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 18 | |
---|
| 19 | Polydispersity Distributions |
---|
| 20 | ---------------------------- |
---|
| 21 | |
---|
[f256d9b] | 22 | With some models SasView can calculate the average form factor for a population |
---|
| 23 | of particles that exhibit size and/or orientational polydispersity. The resultant |
---|
| 24 | form factor is normalized by the average particle volume such that |
---|
[da53353] | 25 | |
---|
[5ed76f8] | 26 | .. math:: |
---|
[da53353] | 27 | |
---|
[5ed76f8] | 28 | P(q) = \text{scale} \langle F^*F rangle V + \text{background} |
---|
| 29 | |
---|
| 30 | where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an average |
---|
| 31 | over the size distribution. |
---|
[da53353] | 32 | |
---|
[f256d9b] | 33 | Users should note that this computation is very intensive. Applying polydispersion |
---|
| 34 | to multiple parameters at the same time, or increasing the number of *Npts* values |
---|
| 35 | in the fit, will require patience! However, the calculations are generally more |
---|
| 36 | robust with more data points or more angles. |
---|
[da53353] | 37 | |
---|
[f256d9b] | 38 | SasView uses the term *PD* for a size distribution (and not to be confused with a |
---|
| 39 | molecular weight distributions in polymer science) and the term *Sigma* for an |
---|
| 40 | angular distribution. |
---|
| 41 | |
---|
| 42 | The following five distribution functions are provided: |
---|
[da53353] | 43 | |
---|
[a0637de] | 44 | * *Rectangular Distribution* |
---|
| 45 | * *Gaussian Distribution* |
---|
| 46 | * *Lognormal Distribution* |
---|
| 47 | * *Schulz Distribution* |
---|
[f256d9b] | 48 | * *Array Distribution* |
---|
[da53353] | 49 | |
---|
[a910c788] | 50 | These are all implemented in SasView as *number-average* distributions. |
---|
| 51 | |
---|
[a0637de] | 52 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 53 | |
---|
| 54 | Rectangular Distribution |
---|
[892a2cc] | 55 | ^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
[da53353] | 56 | |
---|
[f256d9b] | 57 | The Rectangular Distribution is defined as |
---|
| 58 | |
---|
[da53353] | 59 | .. image:: pd_image001.png |
---|
| 60 | |
---|
[5ed76f8] | 61 | where $x_{mean}$ is the mean of the distribution, $w$ is the half-width, and $Norm$ |
---|
| 62 | is a normalization factor which is determined during the numerical calculation. |
---|
[f256d9b] | 63 | |
---|
[5ed76f8] | 64 | Note that the standard deviation and the half width $w$ are different! |
---|
[da53353] | 65 | |
---|
| 66 | The standard deviation is |
---|
| 67 | |
---|
| 68 | .. image:: pd_image002.png |
---|
| 69 | |
---|
[f256d9b] | 70 | whilst the polydispersity is |
---|
[da53353] | 71 | |
---|
| 72 | .. image:: pd_image003.png |
---|
| 73 | |
---|
| 74 | .. image:: pd_image004.jpg |
---|
| 75 | |
---|
[a0637de] | 76 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 77 | |
---|
| 78 | Gaussian Distribution |
---|
[892a2cc] | 79 | ^^^^^^^^^^^^^^^^^^^^^ |
---|
[da53353] | 80 | |
---|
[f256d9b] | 81 | The Gaussian Distribution is defined as |
---|
| 82 | |
---|
[da53353] | 83 | .. image:: pd_image005.png |
---|
| 84 | |
---|
[5ed76f8] | 85 | where $x_{mean}$ is the mean of the distribution and $Norm$ is a normalization factor |
---|
[da53353] | 86 | which is determined during the numerical calculation. |
---|
| 87 | |
---|
[f256d9b] | 88 | The polydispersity is |
---|
[da53353] | 89 | |
---|
| 90 | .. image:: pd_image003.png |
---|
| 91 | |
---|
[f256d9b] | 92 | |
---|
[da53353] | 93 | .. image:: pd_image006.jpg |
---|
| 94 | |
---|
[a0637de] | 95 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 96 | |
---|
| 97 | Lognormal Distribution |
---|
[892a2cc] | 98 | ^^^^^^^^^^^^^^^^^^^^^^ |
---|
[da53353] | 99 | |
---|
[f256d9b] | 100 | The Lognormal Distribution is defined as |
---|
| 101 | |
---|
[da53353] | 102 | .. image:: pd_image007.png |
---|
| 103 | |
---|
[5ed76f8] | 104 | where $\mu=\ln(x_{med})$, $x_{med}$ is the median value of the distribution, and |
---|
| 105 | $Norm$ is a normalization factor which will be determined during the numerical |
---|
[f256d9b] | 106 | calculation. |
---|
| 107 | |
---|
| 108 | The median value for the distribution will be the value given for the respective |
---|
[b64b87c] | 109 | size parameter in the *FitPage*, for example, radius = 60. |
---|
[da53353] | 110 | |
---|
[5ed76f8] | 111 | The polydispersity is given by $\sigma$ |
---|
[da53353] | 112 | |
---|
| 113 | .. image:: pd_image008.png |
---|
| 114 | |
---|
| 115 | For the angular distribution |
---|
| 116 | |
---|
| 117 | .. image:: pd_image009.png |
---|
| 118 | |
---|
[5ed76f8] | 119 | The mean value is given by $x_{mean} =\exp(\mu + p^2 /2)$. The peak value |
---|
| 120 | is given by $x_{peak} =\exp(\mu-p^2)$. |
---|
[da53353] | 121 | |
---|
| 122 | .. image:: pd_image010.jpg |
---|
| 123 | |
---|
[5ed76f8] | 124 | This distribution function spreads more, and the peak shifts to the left, as $p$ |
---|
[f256d9b] | 125 | increases, requiring higher values of Nsigmas and Npts. |
---|
[da53353] | 126 | |
---|
[a0637de] | 127 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[da53353] | 128 | |
---|
| 129 | Schulz Distribution |
---|
[892a2cc] | 130 | ^^^^^^^^^^^^^^^^^^^ |
---|
[da53353] | 131 | |
---|
[f256d9b] | 132 | The Schulz distribution is defined as |
---|
| 133 | |
---|
[da53353] | 134 | .. image:: pd_image011.png |
---|
| 135 | |
---|
[5ed76f8] | 136 | where $x_{mean}$ is the mean of the distribution and $Norm$ is a normalization factor |
---|
| 137 | which is determined during the numerical calculation, and $z$ is a measure of the |
---|
[f256d9b] | 138 | width of the distribution such that |
---|
[da53353] | 139 | |
---|
[5ed76f8] | 140 | .. math:: |
---|
| 141 | |
---|
| 142 | z = (1-p^2 ) / p^2 |
---|
[da53353] | 143 | |
---|
[f256d9b] | 144 | The polydispersity is |
---|
[da53353] | 145 | |
---|
| 146 | .. image:: pd_image012.png |
---|
| 147 | |
---|
[f256d9b] | 148 | Note that larger values of PD might need larger values of Npts and Nsigmas. |
---|
| 149 | For example, at PD=0.7 and radius=60 |Ang|, Npts>=160 and Nsigmas>=15 at least. |
---|
[da53353] | 150 | |
---|
| 151 | .. image:: pd_image013.jpg |
---|
| 152 | |
---|
[f256d9b] | 153 | For further information on the Schulz distribution see: |
---|
| 154 | M Kotlarchyk & S-H Chen, *J Chem Phys*, (1983), 79, 2461. |
---|
| 155 | |
---|
[da53353] | 156 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[f256d9b] | 157 | |
---|
| 158 | Array Distribution |
---|
| 159 | ^^^^^^^^^^^^^^^^^^ |
---|
| 160 | |
---|
| 161 | This user-definable distribution should be given as as a simple ASCII text file |
---|
[5ed76f8] | 162 | where the array is defined by two columns of numbers: $x$ and $f(x)$. The $f(x)$ |
---|
[f256d9b] | 163 | will be normalized by SasView during the computation. |
---|
| 164 | |
---|
| 165 | Example of what an array distribution file should look like: |
---|
| 166 | |
---|
| 167 | ==== ===== |
---|
| 168 | 30 0.1 |
---|
| 169 | 32 0.3 |
---|
| 170 | 35 0.4 |
---|
| 171 | 36 0.5 |
---|
| 172 | 37 0.6 |
---|
| 173 | 39 0.7 |
---|
| 174 | 41 0.9 |
---|
| 175 | ==== ===== |
---|
| 176 | |
---|
| 177 | SasView only uses these array values during the computation, therefore any mean |
---|
[5ed76f8] | 178 | value of the parameter represented by $x$ present in the *FitPage* |
---|
[f256d9b] | 179 | will be ignored. |
---|
| 180 | |
---|
| 181 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 182 | |
---|
| 183 | Note about DLS polydispersity |
---|
| 184 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
| 185 | |
---|
| 186 | Many commercial Dynamic Light Scattering (DLS) instruments produce a size |
---|
[5ed76f8] | 187 | polydispersity parameter, sometimes even given the symbol $p$! This parameter is |
---|
[f256d9b] | 188 | defined as the relative standard deviation coefficient of variation of the size |
---|
| 189 | distribution and is NOT the same as the polydispersity parameters in the Lognormal |
---|
| 190 | and Schulz distributions above (though they all related) except when the DLS |
---|
| 191 | polydispersity parameter is <0.13. |
---|
| 192 | |
---|
| 193 | For more information see: |
---|
| 194 | S King, C Washington & R Heenan, *Phys Chem Chem Phys*, (2005), 7, 143 |
---|
| 195 | |
---|
| 196 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 197 | |
---|
| 198 | .. note:: This help document was last changed by Steve King, 01May2015 |
---|