source: sasview/src/sas/sasgui/perspectives/fitting/media/pd_help.rst @ 1fa4f736

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalcmagnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 1fa4f736 was 5ed76f8, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

docs: use latex in equations rather than unicode + rst markup

  • Property mode set to 100644
File size: 5.9 KB
RevLine 
[da53353]1.. pd_help.rst
2
3.. This is a port of the original SasView html help file to ReSTructured text
4.. by S King, ISIS, during SasView CodeCamp-III in Feb 2015.
5
[6aad2e8]6.. |inlineimage004| image:: sm_image004.png
7.. |inlineimage005| image:: sm_image005.png
8.. |inlineimage008| image:: sm_image008.png
9.. |inlineimage009| image:: sm_image009.png
10.. |inlineimage010| image:: sm_image010.png
11.. |inlineimage011| image:: sm_image011.png
12.. |inlineimage012| image:: sm_image012.png
13.. |inlineimage018| image:: sm_image018.png
14.. |inlineimage019| image:: sm_image019.png
[da53353]15
16
17.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
18
19Polydispersity Distributions
20----------------------------
21
[f256d9b]22With some models SasView can calculate the average form factor for a population
23of particles that exhibit size and/or orientational polydispersity. The resultant
24form factor is normalized by the average particle volume such that
[da53353]25
[5ed76f8]26.. math::
[da53353]27
[5ed76f8]28    P(q) = \text{scale} \langle F^*F rangle V + \text{background}
29
30where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an average
31over the size distribution.
[da53353]32
[f256d9b]33Users should note that this computation is very intensive. Applying polydispersion
34to multiple parameters at the same time, or increasing the number of *Npts* values
35in the fit, will require patience! However, the calculations are generally more
36robust with more data points or more angles.
[da53353]37
[f256d9b]38SasView uses the term *PD* for a size distribution (and not to be confused with a
39molecular weight distributions in polymer science) and the term *Sigma* for an
40angular distribution.
41
42The following five distribution functions are provided:
[da53353]43
[a0637de]44*  *Rectangular Distribution*
45*  *Gaussian Distribution*
46*  *Lognormal Distribution*
47*  *Schulz Distribution*
[f256d9b]48*  *Array Distribution*
[da53353]49
[a910c788]50These are all implemented in SasView as *number-average* distributions.
51
[a0637de]52.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[da53353]53
54Rectangular Distribution
[892a2cc]55^^^^^^^^^^^^^^^^^^^^^^^^
[da53353]56
[f256d9b]57The Rectangular Distribution is defined as
58
[da53353]59.. image:: pd_image001.png
60
[5ed76f8]61where $x_{mean}$ is the mean of the distribution, $w$ is the half-width, and $Norm$
62is a normalization factor which is determined during the numerical calculation.
[f256d9b]63
[5ed76f8]64Note that the standard deviation and the half width $w$ are different!
[da53353]65
66The standard deviation is
67
68.. image:: pd_image002.png
69
[f256d9b]70whilst the polydispersity is
[da53353]71
72.. image:: pd_image003.png
73
74.. image:: pd_image004.jpg
75
[a0637de]76.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[da53353]77
78Gaussian Distribution
[892a2cc]79^^^^^^^^^^^^^^^^^^^^^
[da53353]80
[f256d9b]81The Gaussian Distribution is defined as
82
[da53353]83.. image:: pd_image005.png
84
[5ed76f8]85where $x_{mean}$ is the mean of the distribution and $Norm$ is a normalization factor
[da53353]86which is determined during the numerical calculation.
87
[f256d9b]88The polydispersity is
[da53353]89
90.. image:: pd_image003.png
91
[f256d9b]92
[da53353]93.. image:: pd_image006.jpg
94
[a0637de]95.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[da53353]96
97Lognormal Distribution
[892a2cc]98^^^^^^^^^^^^^^^^^^^^^^
[da53353]99
[f256d9b]100The Lognormal Distribution is defined as
101
[da53353]102.. image:: pd_image007.png
103
[5ed76f8]104where $\mu=\ln(x_{med})$, $x_{med}$ is the median value of the distribution, and
105$Norm$ is a normalization factor which will be determined during the numerical
[f256d9b]106calculation.
107
108The median value for the distribution will be the value given for the respective
[b64b87c]109size parameter in the *FitPage*, for example, radius = 60.
[da53353]110
[5ed76f8]111The polydispersity is given by $\sigma$
[da53353]112
113.. image:: pd_image008.png
114
115For the angular distribution
116
117.. image:: pd_image009.png
118
[5ed76f8]119The mean value is given by $x_{mean} =\exp(\mu + p^2 /2)$. The peak value
120is given by $x_{peak} =\exp(\mu-p^2)$.
[da53353]121
122.. image:: pd_image010.jpg
123
[5ed76f8]124This distribution function spreads more, and the peak shifts to the left, as $p$
[f256d9b]125increases, requiring higher values of Nsigmas and Npts.
[da53353]126
[a0637de]127.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[da53353]128
129Schulz Distribution
[892a2cc]130^^^^^^^^^^^^^^^^^^^
[da53353]131
[f256d9b]132The Schulz distribution is defined as
133
[da53353]134.. image:: pd_image011.png
135
[5ed76f8]136where $x_{mean}$ is the mean of the distribution and $Norm$ is a normalization factor
137which is determined during the numerical calculation, and $z$ is a measure of the
[f256d9b]138width of the distribution such that
[da53353]139
[5ed76f8]140.. math::
141
142    z = (1-p^2 ) / p^2
[da53353]143
[f256d9b]144The polydispersity is
[da53353]145
146.. image:: pd_image012.png
147
[f256d9b]148Note that larger values of PD might need larger values of Npts and Nsigmas.
149For example, at PD=0.7 and radius=60 |Ang|, Npts>=160 and Nsigmas>=15 at least.
[da53353]150
151.. image:: pd_image013.jpg
152
[f256d9b]153For further information on the Schulz distribution see:
154M Kotlarchyk & S-H Chen, *J Chem Phys*, (1983), 79, 2461.
155
[da53353]156.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
[f256d9b]157
158Array Distribution
159^^^^^^^^^^^^^^^^^^
160
161This user-definable distribution should be given as as a simple ASCII text file
[5ed76f8]162where the array is defined by two columns of numbers: $x$ and $f(x)$. The $f(x)$
[f256d9b]163will be normalized by SasView during the computation.
164
165Example of what an array distribution file should look like:
166
167====  =====
168 30    0.1
169 32    0.3
170 35    0.4
171 36    0.5
172 37    0.6
173 39    0.7
174 41    0.9
175====  =====
176
177SasView only uses these array values during the computation, therefore any mean
[5ed76f8]178value of the parameter represented by $x$ present in the *FitPage*
[f256d9b]179will be ignored.
180
181.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
182
183Note about DLS polydispersity
184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
185
186Many commercial Dynamic Light Scattering (DLS) instruments produce a size
[5ed76f8]187polydispersity parameter, sometimes even given the symbol $p$! This parameter is
[f256d9b]188defined as the relative standard deviation coefficient of variation of the size
189distribution and is NOT the same as the polydispersity parameters in the Lognormal
190and Schulz distributions above (though they all related) except when the DLS
191polydispersity parameter is <0.13.
192
193For more information see:
194S King, C Washington & R Heenan, *Phys Chem Chem Phys*, (2005), 7, 143
195
196.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
197
198.. note::  This help document was last changed by Steve King, 01May2015
Note: See TracBrowser for help on using the repository browser.