[a1b8fee] | 1 | from __future__ import print_function |
---|
[51f14603] | 2 | |
---|
| 3 | import copy |
---|
| 4 | #import logging |
---|
| 5 | import sys |
---|
| 6 | import math |
---|
[9a5097c] | 7 | import numpy as np |
---|
[6fe5100] | 8 | |
---|
[b699768] | 9 | from sas.sascalc.dataloader.data_info import Data1D |
---|
| 10 | from sas.sascalc.dataloader.data_info import Data2D |
---|
[6fe5100] | 11 | _SMALLVALUE = 1.0e-10 |
---|
| 12 | |
---|
| 13 | class FitHandler(object): |
---|
[51f14603] | 14 | """ |
---|
[6fe5100] | 15 | Abstract interface for fit thread handler. |
---|
| 16 | |
---|
| 17 | The methods in this class are called by the optimizer as the fit |
---|
| 18 | progresses. |
---|
| 19 | |
---|
| 20 | Note that it is up to the optimizer to call the fit handler correctly, |
---|
| 21 | reporting all status changes and maintaining the 'done' flag. |
---|
[51f14603] | 22 | """ |
---|
[6fe5100] | 23 | done = False |
---|
| 24 | """True when the fit job is complete""" |
---|
| 25 | result = None |
---|
| 26 | """The current best result of the fit""" |
---|
| 27 | |
---|
| 28 | def improvement(self): |
---|
[51f14603] | 29 | """ |
---|
[6fe5100] | 30 | Called when a result is observed which is better than previous |
---|
| 31 | results from the fit. |
---|
| 32 | |
---|
| 33 | result is a FitResult object, with parameters, #calls and fitness. |
---|
[51f14603] | 34 | """ |
---|
[6fe5100] | 35 | def error(self, msg): |
---|
[51f14603] | 36 | """ |
---|
[6fe5100] | 37 | Model had an error; print traceback |
---|
[51f14603] | 38 | """ |
---|
[6fe5100] | 39 | def progress(self, current, expected): |
---|
[51f14603] | 40 | """ |
---|
[6fe5100] | 41 | Called each cycle of the fit, reporting the current and the |
---|
| 42 | expected amount of work. The meaning of these values is |
---|
| 43 | optimizer dependent, but they can be converted into a percent |
---|
| 44 | complete using (100*current)//expected. |
---|
| 45 | |
---|
| 46 | Progress is updated each iteration of the fit, whatever that |
---|
| 47 | means for the particular optimization algorithm. It is called |
---|
| 48 | after any calls to improvement for the iteration so that the |
---|
| 49 | update handler can control I/O bandwidth by suppressing |
---|
| 50 | intermediate improvements until the fit is complete. |
---|
[51f14603] | 51 | """ |
---|
[6fe5100] | 52 | def finalize(self): |
---|
[51f14603] | 53 | """ |
---|
[6fe5100] | 54 | Fit is complete; best results are reported |
---|
[51f14603] | 55 | """ |
---|
[6fe5100] | 56 | def abort(self): |
---|
[51f14603] | 57 | """ |
---|
[6fe5100] | 58 | Fit was aborted. |
---|
[51f14603] | 59 | """ |
---|
[6fe5100] | 60 | |
---|
[95d58d3] | 61 | # TODO: not sure how these are used, but they are needed for running the fit |
---|
| 62 | def update_fit(self, last=False): pass |
---|
| 63 | def set_result(self, result=None): self.result = result |
---|
| 64 | |
---|
[6fe5100] | 65 | class Model: |
---|
[51f14603] | 66 | """ |
---|
[fd5ac0d] | 67 | Fit wrapper for SAS models. |
---|
[51f14603] | 68 | """ |
---|
[fd5ac0d] | 69 | def __init__(self, sas_model, sas_data=None, **kw): |
---|
[51f14603] | 70 | """ |
---|
[386ffe1] | 71 | :param sas_model: the sas model to wrap for fitting |
---|
[6fe5100] | 72 | |
---|
[51f14603] | 73 | """ |
---|
[fd5ac0d] | 74 | self.model = sas_model |
---|
| 75 | self.name = sas_model.name |
---|
| 76 | self.data = sas_data |
---|
[6fe5100] | 77 | |
---|
[51f14603] | 78 | def get_params(self, fitparams): |
---|
| 79 | """ |
---|
| 80 | return a list of value of paramter to fit |
---|
[6fe5100] | 81 | |
---|
[51f14603] | 82 | :param fitparams: list of paramaters name to fit |
---|
[6fe5100] | 83 | |
---|
[51f14603] | 84 | """ |
---|
[6fe5100] | 85 | return [self.model.getParam(k) for k in fitparams] |
---|
| 86 | |
---|
[51f14603] | 87 | def set_params(self, paramlist, params): |
---|
| 88 | """ |
---|
| 89 | Set value for parameters to fit |
---|
[6fe5100] | 90 | |
---|
[51f14603] | 91 | :param params: list of value for parameters to fit |
---|
[6fe5100] | 92 | |
---|
[51f14603] | 93 | """ |
---|
[6fe5100] | 94 | for k,v in zip(paramlist, params): |
---|
| 95 | self.model.setParam(k,v) |
---|
| 96 | |
---|
| 97 | def set(self, **kw): |
---|
| 98 | self.set_params(*zip(*kw.items())) |
---|
| 99 | |
---|
[51f14603] | 100 | def eval(self, x): |
---|
| 101 | """ |
---|
[386ffe1] | 102 | Override eval method of model. |
---|
[6fe5100] | 103 | |
---|
[51f14603] | 104 | :param x: the x value used to compute a function |
---|
| 105 | """ |
---|
| 106 | try: |
---|
| 107 | return self.model.evalDistribution(x) |
---|
| 108 | except: |
---|
| 109 | raise |
---|
[6fe5100] | 110 | |
---|
[51f14603] | 111 | def eval_derivs(self, x, pars=[]): |
---|
| 112 | """ |
---|
| 113 | Evaluate the model and derivatives wrt pars at x. |
---|
| 114 | |
---|
| 115 | pars is a list of the names of the parameters for which derivatives |
---|
| 116 | are desired. |
---|
| 117 | |
---|
| 118 | This method needs to be specialized in the model to evaluate the |
---|
| 119 | model function. Alternatively, the model can implement is own |
---|
| 120 | version of residuals which calculates the residuals directly |
---|
| 121 | instead of calling eval. |
---|
| 122 | """ |
---|
[6fe5100] | 123 | raise NotImplementedError('no derivatives available') |
---|
| 124 | |
---|
| 125 | def __call__(self, x): |
---|
| 126 | return self.eval(x) |
---|
[51f14603] | 127 | |
---|
| 128 | class FitData1D(Data1D): |
---|
| 129 | """ |
---|
[fd5ac0d] | 130 | Wrapper class for SAS data |
---|
[51f14603] | 131 | FitData1D inherits from DataLoader.data_info.Data1D. Implements |
---|
| 132 | a way to get residuals from data. |
---|
| 133 | """ |
---|
| 134 | def __init__(self, x, y, dx=None, dy=None, smearer=None, data=None): |
---|
| 135 | """ |
---|
| 136 | :param smearer: is an object of class QSmearer or SlitSmearer |
---|
| 137 | that will smear the theory data (slit smearing or resolution |
---|
| 138 | smearing) when set. |
---|
[50fcb09] | 139 | |
---|
[51f14603] | 140 | The proper way to set the smearing object would be to |
---|
| 141 | do the following: :: |
---|
[50fcb09] | 142 | |
---|
| 143 | from sas.sascalc.fit.qsmearing import smear_selection |
---|
[51f14603] | 144 | smearer = smear_selection(some_data) |
---|
| 145 | fitdata1d = FitData1D( x= [1,3,..,], |
---|
| 146 | y= [3,4,..,8], |
---|
| 147 | dx=None, |
---|
| 148 | dy=[1,2...], smearer= smearer) |
---|
[50fcb09] | 149 | |
---|
[51f14603] | 150 | :Note: that some_data _HAS_ to be of |
---|
| 151 | class DataLoader.data_info.Data1D |
---|
| 152 | Setting it back to None will turn smearing off. |
---|
[50fcb09] | 153 | |
---|
[51f14603] | 154 | """ |
---|
| 155 | Data1D.__init__(self, x=x, y=y, dx=dx, dy=dy) |
---|
[6fe5100] | 156 | self.num_points = len(x) |
---|
[fd5ac0d] | 157 | self.sas_data = data |
---|
[51f14603] | 158 | self.smearer = smearer |
---|
| 159 | self._first_unsmeared_bin = None |
---|
| 160 | self._last_unsmeared_bin = None |
---|
| 161 | # Check error bar; if no error bar found, set it constant(=1) |
---|
| 162 | # TODO: Should provide an option for users to set it like percent, |
---|
| 163 | # constant, or dy data |
---|
[9f7fbd9] | 164 | if dy is None or dy == [] or dy.all() == 0: |
---|
[9a5097c] | 165 | self.dy = np.ones(len(y)) |
---|
[51f14603] | 166 | else: |
---|
[9a5097c] | 167 | self.dy = np.asarray(dy).copy() |
---|
[51f14603] | 168 | |
---|
| 169 | ## Min Q-value |
---|
| 170 | #Skip the Q=0 point, especially when y(q=0)=None at x[0]. |
---|
| 171 | if min(self.x) == 0.0 and self.x[0] == 0 and\ |
---|
[9a5097c] | 172 | not np.isfinite(self.y[0]): |
---|
[51f14603] | 173 | self.qmin = min(self.x[self.x != 0]) |
---|
| 174 | else: |
---|
| 175 | self.qmin = min(self.x) |
---|
| 176 | ## Max Q-value |
---|
| 177 | self.qmax = max(self.x) |
---|
[50fcb09] | 178 | |
---|
[51f14603] | 179 | # Range used for input to smearing |
---|
| 180 | self._qmin_unsmeared = self.qmin |
---|
| 181 | self._qmax_unsmeared = self.qmax |
---|
| 182 | # Identify the bin range for the unsmeared and smeared spaces |
---|
| 183 | self.idx = (self.x >= self.qmin) & (self.x <= self.qmax) |
---|
| 184 | self.idx_unsmeared = (self.x >= self._qmin_unsmeared) \ |
---|
| 185 | & (self.x <= self._qmax_unsmeared) |
---|
[50fcb09] | 186 | |
---|
[51f14603] | 187 | def set_fit_range(self, qmin=None, qmax=None): |
---|
| 188 | """ to set the fit range""" |
---|
| 189 | # Skip Q=0 point, (especially for y(q=0)=None at x[0]). |
---|
| 190 | # ToDo: Find better way to do it. |
---|
[9a5097c] | 191 | if qmin == 0.0 and not np.isfinite(self.y[qmin]): |
---|
[51f14603] | 192 | self.qmin = min(self.x[self.x != 0]) |
---|
[7432acb] | 193 | elif qmin is not None: |
---|
[51f14603] | 194 | self.qmin = qmin |
---|
[7432acb] | 195 | if qmax is not None: |
---|
[51f14603] | 196 | self.qmax = qmax |
---|
| 197 | # Determine the range needed in unsmeared-Q to cover |
---|
| 198 | # the smeared Q range |
---|
| 199 | self._qmin_unsmeared = self.qmin |
---|
| 200 | self._qmax_unsmeared = self.qmax |
---|
[50fcb09] | 201 | |
---|
[51f14603] | 202 | self._first_unsmeared_bin = 0 |
---|
| 203 | self._last_unsmeared_bin = len(self.x) - 1 |
---|
[50fcb09] | 204 | |
---|
[7432acb] | 205 | if self.smearer is not None: |
---|
[51f14603] | 206 | self._first_unsmeared_bin, self._last_unsmeared_bin = \ |
---|
| 207 | self.smearer.get_bin_range(self.qmin, self.qmax) |
---|
| 208 | self._qmin_unsmeared = self.x[self._first_unsmeared_bin] |
---|
| 209 | self._qmax_unsmeared = self.x[self._last_unsmeared_bin] |
---|
[50fcb09] | 210 | |
---|
[51f14603] | 211 | # Identify the bin range for the unsmeared and smeared spaces |
---|
| 212 | self.idx = (self.x >= self.qmin) & (self.x <= self.qmax) |
---|
| 213 | ## zero error can not participate for fitting |
---|
| 214 | self.idx = self.idx & (self.dy != 0) |
---|
| 215 | self.idx_unsmeared = (self.x >= self._qmin_unsmeared) \ |
---|
| 216 | & (self.x <= self._qmax_unsmeared) |
---|
| 217 | |
---|
| 218 | def get_fit_range(self): |
---|
| 219 | """ |
---|
| 220 | Return the range of data.x to fit |
---|
| 221 | """ |
---|
| 222 | return self.qmin, self.qmax |
---|
[95d58d3] | 223 | |
---|
| 224 | def size(self): |
---|
| 225 | """ |
---|
| 226 | Number of measurement points in data set after masking, etc. |
---|
| 227 | """ |
---|
| 228 | return len(self.x) |
---|
| 229 | |
---|
[51f14603] | 230 | def residuals(self, fn): |
---|
| 231 | """ |
---|
| 232 | Compute residuals. |
---|
[50fcb09] | 233 | |
---|
[51f14603] | 234 | If self.smearer has been set, use if to smear |
---|
| 235 | the data before computing chi squared. |
---|
[50fcb09] | 236 | |
---|
[51f14603] | 237 | :param fn: function that return model value |
---|
[50fcb09] | 238 | |
---|
[51f14603] | 239 | :return: residuals |
---|
| 240 | """ |
---|
| 241 | # Compute theory data f(x) |
---|
[9a5097c] | 242 | fx = np.zeros(len(self.x)) |
---|
[51f14603] | 243 | fx[self.idx_unsmeared] = fn(self.x[self.idx_unsmeared]) |
---|
[50fcb09] | 244 | |
---|
[51f14603] | 245 | ## Smear theory data |
---|
| 246 | if self.smearer is not None: |
---|
| 247 | fx = self.smearer(fx, self._first_unsmeared_bin, |
---|
| 248 | self._last_unsmeared_bin) |
---|
| 249 | ## Sanity check |
---|
[9a5097c] | 250 | if np.size(self.dy) != np.size(fx): |
---|
[51f14603] | 251 | msg = "FitData1D: invalid error array " |
---|
[9a5097c] | 252 | msg += "%d <> %d" % (np.shape(self.dy), np.size(fx)) |
---|
[574adc7] | 253 | raise RuntimeError(msg) |
---|
[51f14603] | 254 | return (self.y[self.idx] - fx[self.idx]) / self.dy[self.idx], fx[self.idx] |
---|
[50fcb09] | 255 | |
---|
[51f14603] | 256 | def residuals_deriv(self, model, pars=[]): |
---|
| 257 | """ |
---|
| 258 | :return: residuals derivatives . |
---|
[50fcb09] | 259 | |
---|
| 260 | :note: in this case just return empty array |
---|
[51f14603] | 261 | """ |
---|
| 262 | return [] |
---|
[9f7fbd9] | 263 | |
---|
| 264 | |
---|
[51f14603] | 265 | class FitData2D(Data2D): |
---|
| 266 | """ |
---|
[fd5ac0d] | 267 | Wrapper class for SAS data |
---|
[51f14603] | 268 | """ |
---|
[fd5ac0d] | 269 | def __init__(self, sas_data2d, data=None, err_data=None): |
---|
[51f14603] | 270 | Data2D.__init__(self, data=data, err_data=err_data) |
---|
[79492222] | 271 | # Data can be initialized with a sas plottable or with vectors. |
---|
[51f14603] | 272 | self.res_err_image = [] |
---|
[95d58d3] | 273 | self.num_points = 0 # will be set by set_data |
---|
[51f14603] | 274 | self.idx = [] |
---|
| 275 | self.qmin = None |
---|
| 276 | self.qmax = None |
---|
| 277 | self.smearer = None |
---|
| 278 | self.radius = 0 |
---|
| 279 | self.res_err_data = [] |
---|
[fd5ac0d] | 280 | self.sas_data = sas_data2d |
---|
| 281 | self.set_data(sas_data2d) |
---|
[51f14603] | 282 | |
---|
[fd5ac0d] | 283 | def set_data(self, sas_data2d, qmin=None, qmax=None): |
---|
[51f14603] | 284 | """ |
---|
| 285 | Determine the correct qx_data and qy_data within range to fit |
---|
| 286 | """ |
---|
[fd5ac0d] | 287 | self.data = sas_data2d.data |
---|
| 288 | self.err_data = sas_data2d.err_data |
---|
| 289 | self.qx_data = sas_data2d.qx_data |
---|
| 290 | self.qy_data = sas_data2d.qy_data |
---|
| 291 | self.mask = sas_data2d.mask |
---|
[51f14603] | 292 | |
---|
[fd5ac0d] | 293 | x_max = max(math.fabs(sas_data2d.xmin), math.fabs(sas_data2d.xmax)) |
---|
| 294 | y_max = max(math.fabs(sas_data2d.ymin), math.fabs(sas_data2d.ymax)) |
---|
[50fcb09] | 295 | |
---|
[51f14603] | 296 | ## fitting range |
---|
[235f514] | 297 | if qmin is None: |
---|
[51f14603] | 298 | self.qmin = 1e-16 |
---|
[235f514] | 299 | if qmax is None: |
---|
[51f14603] | 300 | self.qmax = math.sqrt(x_max * x_max + y_max * y_max) |
---|
| 301 | ## new error image for fitting purpose |
---|
[235f514] | 302 | if self.err_data is None or self.err_data == []: |
---|
[9a5097c] | 303 | self.res_err_data = np.ones(len(self.data)) |
---|
[51f14603] | 304 | else: |
---|
| 305 | self.res_err_data = copy.deepcopy(self.err_data) |
---|
| 306 | #self.res_err_data[self.res_err_data==0]=1 |
---|
[50fcb09] | 307 | |
---|
[9a5097c] | 308 | self.radius = np.sqrt(self.qx_data**2 + self.qy_data**2) |
---|
[50fcb09] | 309 | |
---|
[51f14603] | 310 | # Note: mask = True: for MASK while mask = False for NOT to mask |
---|
| 311 | self.idx = ((self.qmin <= self.radius) &\ |
---|
| 312 | (self.radius <= self.qmax)) |
---|
| 313 | self.idx = (self.idx) & (self.mask) |
---|
[9a5097c] | 314 | self.idx = (self.idx) & (np.isfinite(self.data)) |
---|
| 315 | self.num_points = np.sum(self.idx) |
---|
[51f14603] | 316 | |
---|
| 317 | def set_smearer(self, smearer): |
---|
| 318 | """ |
---|
| 319 | Set smearer |
---|
| 320 | """ |
---|
[235f514] | 321 | if smearer is None: |
---|
[51f14603] | 322 | return |
---|
| 323 | self.smearer = smearer |
---|
| 324 | self.smearer.set_index(self.idx) |
---|
| 325 | self.smearer.get_data() |
---|
| 326 | |
---|
| 327 | def set_fit_range(self, qmin=None, qmax=None): |
---|
| 328 | """ |
---|
| 329 | To set the fit range |
---|
| 330 | """ |
---|
| 331 | if qmin == 0.0: |
---|
| 332 | self.qmin = 1e-16 |
---|
[7432acb] | 333 | elif qmin is not None: |
---|
[51f14603] | 334 | self.qmin = qmin |
---|
[7432acb] | 335 | if qmax is not None: |
---|
[51f14603] | 336 | self.qmax = qmax |
---|
[9a5097c] | 337 | self.radius = np.sqrt(self.qx_data**2 + self.qy_data**2) |
---|
[51f14603] | 338 | self.idx = ((self.qmin <= self.radius) &\ |
---|
| 339 | (self.radius <= self.qmax)) |
---|
| 340 | self.idx = (self.idx) & (self.mask) |
---|
[9a5097c] | 341 | self.idx = (self.idx) & (np.isfinite(self.data)) |
---|
[51f14603] | 342 | self.idx = (self.idx) & (self.res_err_data != 0) |
---|
| 343 | |
---|
| 344 | def get_fit_range(self): |
---|
| 345 | """ |
---|
| 346 | return the range of data.x to fit |
---|
| 347 | """ |
---|
| 348 | return self.qmin, self.qmax |
---|
[95d58d3] | 349 | |
---|
| 350 | def size(self): |
---|
| 351 | """ |
---|
| 352 | Number of measurement points in data set after masking, etc. |
---|
| 353 | """ |
---|
[9a5097c] | 354 | return np.sum(self.idx) |
---|
[95d58d3] | 355 | |
---|
[51f14603] | 356 | def residuals(self, fn): |
---|
| 357 | """ |
---|
| 358 | return the residuals |
---|
| 359 | """ |
---|
[7432acb] | 360 | if self.smearer is not None: |
---|
[51f14603] | 361 | fn.set_index(self.idx) |
---|
| 362 | # Get necessary data from self.data and set the data for smearing |
---|
| 363 | fn.get_data() |
---|
| 364 | |
---|
| 365 | gn = fn.get_value() |
---|
| 366 | else: |
---|
| 367 | gn = fn([self.qx_data[self.idx], |
---|
| 368 | self.qy_data[self.idx]]) |
---|
| 369 | # use only the data point within ROI range |
---|
| 370 | res = (self.data[self.idx] - gn) / self.res_err_data[self.idx] |
---|
| 371 | |
---|
| 372 | return res, gn |
---|
[50fcb09] | 373 | |
---|
[51f14603] | 374 | def residuals_deriv(self, model, pars=[]): |
---|
| 375 | """ |
---|
| 376 | :return: residuals derivatives . |
---|
[50fcb09] | 377 | |
---|
[51f14603] | 378 | :note: in this case just return empty array |
---|
[50fcb09] | 379 | |
---|
[51f14603] | 380 | """ |
---|
| 381 | return [] |
---|
[50fcb09] | 382 | |
---|
| 383 | |
---|
[51f14603] | 384 | class FitAbort(Exception): |
---|
| 385 | """ |
---|
| 386 | Exception raise to stop the fit |
---|
| 387 | """ |
---|
| 388 | #pass |
---|
| 389 | #print"Creating fit abort Exception" |
---|
| 390 | |
---|
| 391 | |
---|
| 392 | |
---|
| 393 | class FitEngine: |
---|
| 394 | def __init__(self): |
---|
| 395 | """ |
---|
[386ffe1] | 396 | Base class for the fit engine |
---|
[51f14603] | 397 | """ |
---|
| 398 | #Dictionnary of fitArrange element (fit problems) |
---|
| 399 | self.fit_arrange_dict = {} |
---|
| 400 | self.fitter_id = None |
---|
[50fcb09] | 401 | |
---|
[51f14603] | 402 | def set_model(self, model, id, pars=[], constraints=[], data=None): |
---|
| 403 | """ |
---|
| 404 | set a model on a given in the fit engine. |
---|
[50fcb09] | 405 | |
---|
| 406 | :param model: sas.models type |
---|
[51f14603] | 407 | :param id: is the key of the fitArrange dictionary where model is saved as a value |
---|
[50fcb09] | 408 | :param pars: the list of parameters to fit |
---|
| 409 | :param constraints: list of |
---|
[51f14603] | 410 | tuple (name of parameter, value of parameters) |
---|
| 411 | the value of parameter must be a string to constraint 2 different |
---|
| 412 | parameters. |
---|
[50fcb09] | 413 | Example: |
---|
[51f14603] | 414 | we want to fit 2 model M1 and M2 both have parameters A and B. |
---|
| 415 | constraints can be ``constraints = [(M1.A, M2.B+2), (M1.B= M2.A *5),...,]`` |
---|
[50fcb09] | 416 | |
---|
| 417 | |
---|
[51f14603] | 418 | :note: pars must contains only name of existing model's parameters |
---|
[50fcb09] | 419 | |
---|
[51f14603] | 420 | """ |
---|
[8d074d9] | 421 | if not pars: |
---|
| 422 | raise ValueError("no fitting parameters") |
---|
| 423 | |
---|
| 424 | if model is None: |
---|
| 425 | raise ValueError("no model to fit") |
---|
| 426 | |
---|
[51f14603] | 427 | if not issubclass(model.__class__, Model): |
---|
[95d58d3] | 428 | model = Model(model, data) |
---|
| 429 | |
---|
| 430 | sasmodel = model.model |
---|
[8d074d9] | 431 | available_parameters = sasmodel.getParamList() |
---|
| 432 | for p in pars: |
---|
| 433 | if p not in available_parameters: |
---|
| 434 | raise ValueError("parameter %s not available in model %s; use one of [%s] instead" |
---|
| 435 | %(p, sasmodel.name, ", ".join(available_parameters))) |
---|
| 436 | |
---|
| 437 | if id not in self.fit_arrange_dict: |
---|
| 438 | self.fit_arrange_dict[id] = FitArrange() |
---|
| 439 | |
---|
| 440 | self.fit_arrange_dict[id].set_model(model) |
---|
| 441 | self.fit_arrange_dict[id].pars = pars |
---|
| 442 | self.fit_arrange_dict[id].vals = [sasmodel.getParam(name) for name in pars] |
---|
| 443 | self.fit_arrange_dict[id].constraints = constraints |
---|
| 444 | |
---|
[51f14603] | 445 | def set_data(self, data, id, smearer=None, qmin=None, qmax=None): |
---|
| 446 | """ |
---|
| 447 | Receives plottable, creates a list of data to fit,set data |
---|
| 448 | in a FitArrange object and adds that object in a dictionary |
---|
| 449 | with key id. |
---|
[50fcb09] | 450 | |
---|
[51f14603] | 451 | :param data: data added |
---|
| 452 | :param id: unique key corresponding to a fitArrange object with data |
---|
| 453 | """ |
---|
| 454 | if data.__class__.__name__ == 'Data2D': |
---|
[fd5ac0d] | 455 | fitdata = FitData2D(sas_data2d=data, data=data.data, |
---|
[51f14603] | 456 | err_data=data.err_data) |
---|
| 457 | else: |
---|
| 458 | fitdata = FitData1D(x=data.x, y=data.y, |
---|
| 459 | dx=data.dx, dy=data.dy, smearer=smearer) |
---|
[fd5ac0d] | 460 | fitdata.sas_data = data |
---|
[50fcb09] | 461 | |
---|
[51f14603] | 462 | fitdata.set_fit_range(qmin=qmin, qmax=qmax) |
---|
| 463 | #A fitArrange is already created but contains model only at id |
---|
| 464 | if id in self.fit_arrange_dict: |
---|
| 465 | self.fit_arrange_dict[id].add_data(fitdata) |
---|
| 466 | else: |
---|
| 467 | #no fitArrange object has been create with this id |
---|
| 468 | fitproblem = FitArrange() |
---|
| 469 | fitproblem.add_data(fitdata) |
---|
| 470 | self.fit_arrange_dict[id] = fitproblem |
---|
[50fcb09] | 471 | |
---|
[51f14603] | 472 | def get_model(self, id): |
---|
| 473 | """ |
---|
| 474 | :param id: id is key in the dictionary containing the model to return |
---|
[50fcb09] | 475 | |
---|
[51f14603] | 476 | :return: a model at this id or None if no FitArrange element was |
---|
| 477 | created with this id |
---|
| 478 | """ |
---|
| 479 | if id in self.fit_arrange_dict: |
---|
| 480 | return self.fit_arrange_dict[id].get_model() |
---|
| 481 | else: |
---|
| 482 | return None |
---|
[50fcb09] | 483 | |
---|
[51f14603] | 484 | def remove_fit_problem(self, id): |
---|
| 485 | """remove fitarrange in id""" |
---|
| 486 | if id in self.fit_arrange_dict: |
---|
| 487 | del self.fit_arrange_dict[id] |
---|
[50fcb09] | 488 | |
---|
[51f14603] | 489 | def select_problem_for_fit(self, id, value): |
---|
| 490 | """ |
---|
| 491 | select a couple of model and data at the id position in dictionary |
---|
| 492 | and set in self.selected value to value |
---|
[50fcb09] | 493 | |
---|
[51f14603] | 494 | :param value: the value to allow fitting. |
---|
| 495 | can only have the value one or zero |
---|
| 496 | """ |
---|
| 497 | if id in self.fit_arrange_dict: |
---|
| 498 | self.fit_arrange_dict[id].set_to_fit(value) |
---|
[50fcb09] | 499 | |
---|
[51f14603] | 500 | def get_problem_to_fit(self, id): |
---|
| 501 | """ |
---|
| 502 | return the self.selected value of the fit problem of id |
---|
[50fcb09] | 503 | |
---|
[51f14603] | 504 | :param id: the id of the problem |
---|
| 505 | """ |
---|
| 506 | if id in self.fit_arrange_dict: |
---|
| 507 | self.fit_arrange_dict[id].get_to_fit() |
---|
[50fcb09] | 508 | |
---|
| 509 | |
---|
[51f14603] | 510 | class FitArrange: |
---|
| 511 | def __init__(self): |
---|
| 512 | """ |
---|
| 513 | Class FitArrange contains a set of data for a given model |
---|
| 514 | to perform the Fit.FitArrange must contain exactly one model |
---|
| 515 | and at least one data for the fit to be performed. |
---|
[50fcb09] | 516 | |
---|
[51f14603] | 517 | model: the model selected by the user |
---|
| 518 | Ldata: a list of data what the user wants to fit |
---|
[50fcb09] | 519 | |
---|
[51f14603] | 520 | """ |
---|
| 521 | self.model = None |
---|
| 522 | self.data_list = [] |
---|
| 523 | self.pars = [] |
---|
| 524 | self.vals = [] |
---|
| 525 | self.selected = 0 |
---|
[8d074d9] | 526 | |
---|
[51f14603] | 527 | def set_model(self, model): |
---|
| 528 | """ |
---|
| 529 | set_model save a copy of the model |
---|
[50fcb09] | 530 | |
---|
[51f14603] | 531 | :param model: the model being set |
---|
| 532 | """ |
---|
| 533 | self.model = model |
---|
[50fcb09] | 534 | |
---|
[51f14603] | 535 | def add_data(self, data): |
---|
| 536 | """ |
---|
| 537 | add_data fill a self.data_list with data to fit |
---|
[50fcb09] | 538 | |
---|
[51f14603] | 539 | :param data: Data to add in the list |
---|
| 540 | """ |
---|
| 541 | if not data in self.data_list: |
---|
| 542 | self.data_list.append(data) |
---|
[50fcb09] | 543 | |
---|
[51f14603] | 544 | def get_model(self): |
---|
| 545 | """ |
---|
| 546 | :return: saved model |
---|
| 547 | """ |
---|
| 548 | return self.model |
---|
[50fcb09] | 549 | |
---|
[51f14603] | 550 | def get_data(self): |
---|
| 551 | """ |
---|
| 552 | :return: list of data data_list |
---|
| 553 | """ |
---|
| 554 | return self.data_list[0] |
---|
[50fcb09] | 555 | |
---|
[51f14603] | 556 | def remove_data(self, data): |
---|
| 557 | """ |
---|
| 558 | Remove one element from the list |
---|
[50fcb09] | 559 | |
---|
[51f14603] | 560 | :param data: Data to remove from data_list |
---|
| 561 | """ |
---|
| 562 | if data in self.data_list: |
---|
| 563 | self.data_list.remove(data) |
---|
[50fcb09] | 564 | |
---|
[51f14603] | 565 | def set_to_fit(self, value=0): |
---|
| 566 | """ |
---|
| 567 | set self.selected to 0 or 1 for other values raise an exception |
---|
[50fcb09] | 568 | |
---|
[51f14603] | 569 | :param value: integer between 0 or 1 |
---|
| 570 | """ |
---|
| 571 | self.selected = value |
---|
[50fcb09] | 572 | |
---|
[51f14603] | 573 | def get_to_fit(self): |
---|
| 574 | """ |
---|
| 575 | return self.selected value |
---|
| 576 | """ |
---|
| 577 | return self.selected |
---|
[8d074d9] | 578 | |
---|
[51f14603] | 579 | class FResult(object): |
---|
| 580 | """ |
---|
| 581 | Storing fit result |
---|
| 582 | """ |
---|
| 583 | def __init__(self, model=None, param_list=None, data=None): |
---|
| 584 | self.calls = None |
---|
| 585 | self.fitness = None |
---|
| 586 | self.chisqr = None |
---|
| 587 | self.pvec = [] |
---|
| 588 | self.cov = [] |
---|
| 589 | self.info = None |
---|
| 590 | self.mesg = None |
---|
| 591 | self.success = None |
---|
| 592 | self.stderr = None |
---|
| 593 | self.residuals = [] |
---|
| 594 | self.index = [] |
---|
| 595 | self.model = model |
---|
| 596 | self.data = data |
---|
| 597 | self.theory = [] |
---|
| 598 | self.param_list = param_list |
---|
| 599 | self.iterations = 0 |
---|
| 600 | self.inputs = [] |
---|
| 601 | self.fitter_id = None |
---|
| 602 | if self.model is not None and self.data is not None: |
---|
| 603 | self.inputs = [(self.model, self.data)] |
---|
[50fcb09] | 604 | |
---|
[51f14603] | 605 | def set_model(self, model): |
---|
| 606 | """ |
---|
| 607 | """ |
---|
| 608 | self.model = model |
---|
[50fcb09] | 609 | |
---|
[51f14603] | 610 | def set_fitness(self, fitness): |
---|
| 611 | """ |
---|
| 612 | """ |
---|
| 613 | self.fitness = fitness |
---|
[50fcb09] | 614 | |
---|
[51f14603] | 615 | def __str__(self): |
---|
| 616 | """ |
---|
| 617 | """ |
---|
[235f514] | 618 | if self.pvec is None and self.model is None and self.param_list is None: |
---|
[51f14603] | 619 | return "No results" |
---|
[6fe5100] | 620 | |
---|
[95d58d3] | 621 | sasmodel = self.model.model |
---|
| 622 | pars = enumerate(sasmodel.getParamList()) |
---|
[6fe5100] | 623 | msg1 = "[Iteration #: %s ]" % self.iterations |
---|
| 624 | msg3 = "=== goodness of fit: %s ===" % (str(self.fitness)) |
---|
[95d58d3] | 625 | msg2 = ["P%-3d %s......|.....%s" % (i, v, sasmodel.getParam(v)) |
---|
[6fe5100] | 626 | for i,v in pars if v in self.param_list] |
---|
| 627 | msg = [msg1, msg3] + msg2 |
---|
| 628 | return "\n".join(msg) |
---|
[50fcb09] | 629 | |
---|
[51f14603] | 630 | def print_summary(self): |
---|
| 631 | """ |
---|
| 632 | """ |
---|
[9c3d784] | 633 | print(str(self)) |
---|