[959eb01] | 1 | # pylint: disable=invalid-name |
---|
| 2 | ##################################################################### |
---|
| 3 | #This software was developed by the University of Tennessee as part of the |
---|
| 4 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | #project funded by the US National Science Foundation. |
---|
| 6 | #See the license text in license.txt |
---|
| 7 | #copyright 2010, University of Tennessee |
---|
| 8 | ###################################################################### |
---|
| 9 | |
---|
| 10 | """ |
---|
| 11 | This module implements invariant and its related computations. |
---|
| 12 | |
---|
| 13 | :author: Gervaise B. Alina/UTK |
---|
| 14 | :author: Mathieu Doucet/UTK |
---|
| 15 | :author: Jae Cho/UTK |
---|
| 16 | |
---|
| 17 | """ |
---|
| 18 | import math |
---|
| 19 | import numpy as np |
---|
| 20 | |
---|
| 21 | from sas.sascalc.dataloader.data_info import Data1D as LoaderData1D |
---|
| 22 | |
---|
| 23 | # The minimum q-value to be used when extrapolating |
---|
| 24 | Q_MINIMUM = 1e-5 |
---|
| 25 | |
---|
| 26 | # The maximum q-value to be used when extrapolating |
---|
| 27 | Q_MAXIMUM = 10 |
---|
| 28 | |
---|
| 29 | # Number of steps in the extrapolation |
---|
| 30 | INTEGRATION_NSTEPS = 1000 |
---|
| 31 | |
---|
| 32 | class Transform(object): |
---|
| 33 | """ |
---|
| 34 | Define interface that need to compute a function or an inverse |
---|
| 35 | function given some x, y |
---|
| 36 | """ |
---|
| 37 | |
---|
| 38 | def linearize_data(self, data): |
---|
| 39 | """ |
---|
| 40 | Linearize data so that a linear fit can be performed. |
---|
| 41 | Filter out the data that can't be transformed. |
---|
| 42 | |
---|
| 43 | :param data: LoadData1D instance |
---|
| 44 | |
---|
| 45 | """ |
---|
| 46 | # Check that the vector lengths are equal |
---|
| 47 | assert len(data.x) == len(data.y) |
---|
| 48 | if data.dy is not None: |
---|
| 49 | assert len(data.x) == len(data.dy) |
---|
| 50 | dy = data.dy |
---|
| 51 | else: |
---|
| 52 | dy = np.ones(len(data.y)) |
---|
| 53 | |
---|
| 54 | # Transform the data |
---|
| 55 | data_points = zip(data.x, data.y, dy) |
---|
| 56 | |
---|
| 57 | output_points = [(self.linearize_q_value(p[0]), |
---|
| 58 | math.log(p[1]), |
---|
| 59 | p[2] / p[1]) for p in data_points if p[0] > 0 and \ |
---|
| 60 | p[1] > 0 and p[2] > 0] |
---|
| 61 | |
---|
| 62 | x_out, y_out, dy_out = zip(*output_points) |
---|
| 63 | |
---|
| 64 | # Create Data1D object |
---|
| 65 | x_out = np.asarray(x_out) |
---|
| 66 | y_out = np.asarray(y_out) |
---|
| 67 | dy_out = np.asarray(dy_out) |
---|
| 68 | linear_data = LoaderData1D(x=x_out, y=y_out, dy=dy_out) |
---|
| 69 | |
---|
| 70 | return linear_data |
---|
| 71 | |
---|
| 72 | def get_allowed_bins(self, data): |
---|
| 73 | """ |
---|
| 74 | Goes through the data points and returns a list of boolean values |
---|
| 75 | to indicate whether each points is allowed by the model or not. |
---|
| 76 | |
---|
| 77 | :param data: Data1D object |
---|
| 78 | """ |
---|
| 79 | return [p[0] > 0 and p[1] > 0 and p[2] > 0 for p in zip(data.x, data.y, |
---|
| 80 | data.dy)] |
---|
| 81 | |
---|
| 82 | def linearize_q_value(self, value): |
---|
| 83 | """ |
---|
| 84 | Transform the input q-value for linearization |
---|
| 85 | """ |
---|
| 86 | return NotImplemented |
---|
| 87 | |
---|
| 88 | def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0): |
---|
| 89 | """ |
---|
| 90 | set private member |
---|
| 91 | """ |
---|
| 92 | return NotImplemented |
---|
| 93 | |
---|
| 94 | def evaluate_model(self, x): |
---|
| 95 | """ |
---|
| 96 | Returns an array f(x) values where f is the Transform function. |
---|
| 97 | """ |
---|
| 98 | return NotImplemented |
---|
| 99 | |
---|
| 100 | def evaluate_model_errors(self, x): |
---|
| 101 | """ |
---|
| 102 | Returns an array of I(q) errors |
---|
| 103 | """ |
---|
| 104 | return NotImplemented |
---|
| 105 | |
---|
| 106 | class Guinier(Transform): |
---|
| 107 | """ |
---|
| 108 | class of type Transform that performs operations related to guinier |
---|
| 109 | function |
---|
| 110 | """ |
---|
| 111 | def __init__(self, scale=1, radius=60): |
---|
| 112 | Transform.__init__(self) |
---|
| 113 | self.scale = scale |
---|
| 114 | self.radius = radius |
---|
| 115 | ## Uncertainty of scale parameter |
---|
| 116 | self.dscale = 0 |
---|
| 117 | ## Unvertainty of radius parameter |
---|
| 118 | self.dradius = 0 |
---|
| 119 | |
---|
| 120 | def linearize_q_value(self, value): |
---|
| 121 | """ |
---|
| 122 | Transform the input q-value for linearization |
---|
| 123 | |
---|
| 124 | :param value: q-value |
---|
| 125 | |
---|
| 126 | :return: q*q |
---|
| 127 | """ |
---|
| 128 | return value * value |
---|
| 129 | |
---|
| 130 | def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0): |
---|
| 131 | """ |
---|
| 132 | assign new value to the scale and the radius |
---|
| 133 | """ |
---|
| 134 | self.scale = math.exp(constant) |
---|
| 135 | if slope > 0: |
---|
| 136 | slope = 0.0 |
---|
| 137 | self.radius = math.sqrt(-3 * slope) |
---|
| 138 | # Errors |
---|
| 139 | self.dscale = math.exp(constant) * dconstant |
---|
| 140 | if slope == 0.0: |
---|
| 141 | n_zero = -1.0e-24 |
---|
| 142 | self.dradius = -3.0 / 2.0 / math.sqrt(-3 * n_zero) * dslope |
---|
| 143 | else: |
---|
| 144 | self.dradius = -3.0 / 2.0 / math.sqrt(-3 * slope) * dslope |
---|
| 145 | |
---|
| 146 | return [self.radius, self.scale], [self.dradius, self.dscale] |
---|
| 147 | |
---|
| 148 | def evaluate_model(self, x): |
---|
| 149 | """ |
---|
| 150 | return F(x)= scale* e-((radius*x)**2/3) |
---|
| 151 | """ |
---|
| 152 | return self._guinier(x) |
---|
| 153 | |
---|
| 154 | def evaluate_model_errors(self, x): |
---|
| 155 | """ |
---|
| 156 | Returns the error on I(q) for the given array of q-values |
---|
| 157 | |
---|
| 158 | :param x: array of q-values |
---|
| 159 | """ |
---|
| 160 | p1 = np.array([self.dscale * math.exp(-((self.radius * q) ** 2 / 3)) \ |
---|
| 161 | for q in x]) |
---|
| 162 | p2 = np.array([self.scale * math.exp(-((self.radius * q) ** 2 / 3))\ |
---|
| 163 | * (-(q ** 2 / 3)) * 2 * self.radius * self.dradius for q in x]) |
---|
| 164 | diq2 = p1 * p1 + p2 * p2 |
---|
| 165 | return np.array([math.sqrt(err) for err in diq2]) |
---|
| 166 | |
---|
| 167 | def _guinier(self, x): |
---|
| 168 | """ |
---|
| 169 | Retrieve the guinier function after apply an inverse guinier function |
---|
| 170 | to x |
---|
| 171 | Compute a F(x) = scale* e-((radius*x)**2/3). |
---|
| 172 | |
---|
| 173 | :param x: a vector of q values |
---|
| 174 | :param scale: the scale value |
---|
| 175 | :param radius: the guinier radius value |
---|
| 176 | |
---|
| 177 | :return: F(x) |
---|
| 178 | """ |
---|
| 179 | # transform the radius of coming from the inverse guinier function to a |
---|
| 180 | # a radius of a guinier function |
---|
| 181 | if self.radius <= 0: |
---|
| 182 | msg = "Rg expected positive value, but got %s" % self.radius |
---|
| 183 | raise ValueError(msg) |
---|
| 184 | value = np.array([math.exp(-((self.radius * i) ** 2 / 3)) for i in x]) |
---|
| 185 | return self.scale * value |
---|
| 186 | |
---|
| 187 | class PowerLaw(Transform): |
---|
| 188 | """ |
---|
| 189 | class of type transform that perform operation related to power_law |
---|
| 190 | function |
---|
| 191 | """ |
---|
| 192 | def __init__(self, scale=1, power=4): |
---|
| 193 | Transform.__init__(self) |
---|
| 194 | self.scale = scale |
---|
| 195 | self.power = power |
---|
| 196 | self.dscale = 0.0 |
---|
| 197 | self.dpower = 0.0 |
---|
| 198 | |
---|
| 199 | def linearize_q_value(self, value): |
---|
| 200 | """ |
---|
| 201 | Transform the input q-value for linearization |
---|
| 202 | |
---|
| 203 | :param value: q-value |
---|
| 204 | |
---|
| 205 | :return: log(q) |
---|
| 206 | """ |
---|
| 207 | return math.log(value) |
---|
| 208 | |
---|
| 209 | def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0): |
---|
| 210 | """ |
---|
| 211 | Assign new value to the scale and the power |
---|
| 212 | """ |
---|
| 213 | self.power = -slope |
---|
| 214 | self.scale = math.exp(constant) |
---|
| 215 | |
---|
| 216 | # Errors |
---|
| 217 | self.dscale = math.exp(constant) * dconstant |
---|
| 218 | self.dpower = -dslope |
---|
| 219 | |
---|
| 220 | return [self.power, self.scale], [self.dpower, self.dscale] |
---|
| 221 | |
---|
| 222 | def evaluate_model(self, x): |
---|
| 223 | """ |
---|
| 224 | given a scale and a radius transform x, y using a power_law |
---|
| 225 | function |
---|
| 226 | """ |
---|
| 227 | return self._power_law(x) |
---|
| 228 | |
---|
| 229 | def evaluate_model_errors(self, x): |
---|
| 230 | """ |
---|
| 231 | Returns the error on I(q) for the given array of q-values |
---|
| 232 | :param x: array of q-values |
---|
| 233 | """ |
---|
| 234 | p1 = np.array([self.dscale * math.pow(q, -self.power) for q in x]) |
---|
| 235 | p2 = np.array([self.scale * self.power * math.pow(q, -self.power - 1)\ |
---|
| 236 | * self.dpower for q in x]) |
---|
| 237 | diq2 = p1 * p1 + p2 * p2 |
---|
| 238 | return np.array([math.sqrt(err) for err in diq2]) |
---|
| 239 | |
---|
| 240 | def _power_law(self, x): |
---|
| 241 | """ |
---|
| 242 | F(x) = scale* (x)^(-power) |
---|
| 243 | when power= 4. the model is porod |
---|
| 244 | else power_law |
---|
| 245 | The model has three parameters: :: |
---|
| 246 | 1. x: a vector of q values |
---|
| 247 | 2. power: power of the function |
---|
| 248 | 3. scale : scale factor value |
---|
| 249 | |
---|
| 250 | :param x: array |
---|
| 251 | :return: F(x) |
---|
| 252 | """ |
---|
| 253 | if self.power <= 0: |
---|
| 254 | msg = "Power_law function expected positive power," |
---|
| 255 | msg += " but got %s" % self.power |
---|
| 256 | raise ValueError(msg) |
---|
| 257 | if self.scale <= 0: |
---|
| 258 | msg = "scale expected positive value, but got %s" % self.scale |
---|
| 259 | raise ValueError(msg) |
---|
| 260 | |
---|
| 261 | value = np.array([math.pow(i, -self.power) for i in x]) |
---|
| 262 | return self.scale * value |
---|
| 263 | |
---|
| 264 | class Extrapolator(object): |
---|
| 265 | """ |
---|
| 266 | Extrapolate I(q) distribution using a given model |
---|
| 267 | """ |
---|
| 268 | def __init__(self, data, model=None): |
---|
| 269 | """ |
---|
| 270 | Determine a and b given a linear equation y = ax + b |
---|
| 271 | |
---|
| 272 | If a model is given, it will be used to linearize the data before |
---|
| 273 | the extrapolation is performed. If None, |
---|
| 274 | a simple linear fit will be done. |
---|
| 275 | |
---|
| 276 | :param data: data containing x and y such as y = ax + b |
---|
| 277 | :param model: optional Transform object |
---|
| 278 | """ |
---|
| 279 | self.data = data |
---|
| 280 | self.model = model |
---|
| 281 | |
---|
| 282 | # Set qmin as the lowest non-zero value |
---|
| 283 | self.qmin = Q_MINIMUM |
---|
| 284 | for q_value in self.data.x: |
---|
| 285 | if q_value > 0: |
---|
| 286 | self.qmin = q_value |
---|
| 287 | break |
---|
| 288 | self.qmax = max(self.data.x) |
---|
| 289 | |
---|
| 290 | def fit(self, power=None, qmin=None, qmax=None): |
---|
| 291 | """ |
---|
| 292 | Fit data for y = ax + b return a and b |
---|
| 293 | |
---|
| 294 | :param power: a fixed, otherwise None |
---|
| 295 | :param qmin: Minimum Q-value |
---|
| 296 | :param qmax: Maximum Q-value |
---|
| 297 | """ |
---|
| 298 | if qmin is None: |
---|
| 299 | qmin = self.qmin |
---|
| 300 | if qmax is None: |
---|
| 301 | qmax = self.qmax |
---|
| 302 | |
---|
| 303 | # Identify the bin range for the fit |
---|
| 304 | idx = (self.data.x >= qmin) & (self.data.x <= qmax) |
---|
| 305 | |
---|
| 306 | fx = np.zeros(len(self.data.x)) |
---|
| 307 | |
---|
| 308 | # Uncertainty |
---|
| 309 | if type(self.data.dy) == np.ndarray and \ |
---|
| 310 | len(self.data.dy) == len(self.data.x) and \ |
---|
| 311 | np.all(self.data.dy > 0): |
---|
| 312 | sigma = self.data.dy |
---|
| 313 | else: |
---|
| 314 | sigma = np.ones(len(self.data.x)) |
---|
| 315 | |
---|
| 316 | # Compute theory data f(x) |
---|
| 317 | fx[idx] = self.data.y[idx] |
---|
| 318 | |
---|
| 319 | # Linearize the data |
---|
| 320 | if self.model is not None: |
---|
| 321 | linearized_data = self.model.linearize_data(\ |
---|
| 322 | LoaderData1D(self.data.x[idx], |
---|
| 323 | fx[idx], |
---|
| 324 | dy=sigma[idx])) |
---|
| 325 | else: |
---|
| 326 | linearized_data = LoaderData1D(self.data.x[idx], |
---|
| 327 | fx[idx], |
---|
| 328 | dy=sigma[idx]) |
---|
| 329 | |
---|
| 330 | ##power is given only for function = power_law |
---|
[7432acb] | 331 | if power is not None: |
---|
[959eb01] | 332 | sigma2 = linearized_data.dy * linearized_data.dy |
---|
| 333 | a = -(power) |
---|
| 334 | b = (np.sum(linearized_data.y / sigma2) \ |
---|
| 335 | - a * np.sum(linearized_data.x / sigma2)) / np.sum(1.0 / sigma2) |
---|
| 336 | |
---|
| 337 | |
---|
| 338 | deltas = linearized_data.x * a + \ |
---|
| 339 | np.ones(len(linearized_data.x)) * b - linearized_data.y |
---|
| 340 | residuals = np.sum(deltas * deltas / sigma2) |
---|
| 341 | |
---|
| 342 | err = math.fabs(residuals) / np.sum(1.0 / sigma2) |
---|
| 343 | return [a, b], [0, math.sqrt(err)] |
---|
| 344 | else: |
---|
| 345 | A = np.vstack([linearized_data.x / linearized_data.dy, 1.0 / linearized_data.dy]).T |
---|
| 346 | (p, residuals, _, _) = np.linalg.lstsq(A, linearized_data.y / linearized_data.dy) |
---|
| 347 | |
---|
| 348 | # Get the covariance matrix, defined as inv_cov = a_transposed * a |
---|
| 349 | err = np.zeros(2) |
---|
| 350 | try: |
---|
| 351 | inv_cov = np.dot(A.transpose(), A) |
---|
| 352 | cov = np.linalg.pinv(inv_cov) |
---|
| 353 | err_matrix = math.fabs(residuals) * cov |
---|
| 354 | err = [math.sqrt(err_matrix[0][0]), math.sqrt(err_matrix[1][1])] |
---|
| 355 | except: |
---|
| 356 | err = [-1.0, -1.0] |
---|
| 357 | |
---|
| 358 | return p, err |
---|
| 359 | |
---|
| 360 | |
---|
| 361 | class InvariantCalculator(object): |
---|
| 362 | """ |
---|
| 363 | Compute invariant if data is given. |
---|
| 364 | Can provide volume fraction and surface area if the user provides |
---|
| 365 | Porod constant and contrast values. |
---|
| 366 | |
---|
| 367 | :precondition: the user must send a data of type DataLoader.Data1D |
---|
| 368 | the user provide background and scale values. |
---|
| 369 | |
---|
| 370 | :note: Some computations depends on each others. |
---|
| 371 | """ |
---|
| 372 | def __init__(self, data, background=0, scale=1): |
---|
| 373 | """ |
---|
| 374 | Initialize variables. |
---|
| 375 | |
---|
| 376 | :param data: data must be of type DataLoader.Data1D |
---|
| 377 | :param background: Background value. The data will be corrected |
---|
| 378 | before processing |
---|
| 379 | :param scale: Scaling factor for I(q). The data will be corrected |
---|
| 380 | before processing |
---|
| 381 | """ |
---|
| 382 | # Background and scale should be private data member if the only way to |
---|
| 383 | # change them are by instantiating a new object. |
---|
| 384 | self._background = background |
---|
| 385 | self._scale = scale |
---|
| 386 | # slit height for smeared data |
---|
| 387 | self._smeared = None |
---|
| 388 | # The data should be private |
---|
| 389 | self._data = self._get_data(data) |
---|
| 390 | # get the dxl if the data is smeared: This is done only once on init. |
---|
[7432acb] | 391 | if self._data.dxl is not None and self._data.dxl.all() > 0: |
---|
[959eb01] | 392 | # assumes constant dxl |
---|
| 393 | self._smeared = self._data.dxl[0] |
---|
| 394 | |
---|
| 395 | # Since there are multiple variants of Q*, you should force the |
---|
| 396 | # user to use the get method and keep Q* a private data member |
---|
| 397 | self._qstar = None |
---|
| 398 | |
---|
| 399 | # You should keep the error on Q* so you can reuse it without |
---|
| 400 | # recomputing the whole thing. |
---|
| 401 | self._qstar_err = 0 |
---|
| 402 | |
---|
| 403 | # Extrapolation parameters |
---|
| 404 | self._low_extrapolation_npts = 4 |
---|
| 405 | self._low_extrapolation_function = Guinier() |
---|
| 406 | self._low_extrapolation_power = None |
---|
| 407 | self._low_extrapolation_power_fitted = None |
---|
| 408 | |
---|
| 409 | self._high_extrapolation_npts = 4 |
---|
| 410 | self._high_extrapolation_function = PowerLaw() |
---|
| 411 | self._high_extrapolation_power = None |
---|
| 412 | self._high_extrapolation_power_fitted = None |
---|
| 413 | |
---|
| 414 | # Extrapolation range |
---|
| 415 | self._low_q_limit = Q_MINIMUM |
---|
| 416 | |
---|
| 417 | def _get_data(self, data): |
---|
| 418 | """ |
---|
| 419 | :note: this function must be call before computing any type |
---|
| 420 | of invariant |
---|
| 421 | |
---|
| 422 | :return: new data = self._scale *data - self._background |
---|
| 423 | """ |
---|
| 424 | if not issubclass(data.__class__, LoaderData1D): |
---|
| 425 | #Process only data that inherited from DataLoader.Data_info.Data1D |
---|
[574adc7] | 426 | raise ValueError("Data must be of type DataLoader.Data1D") |
---|
[959eb01] | 427 | #from copy import deepcopy |
---|
| 428 | new_data = (self._scale * data) - self._background |
---|
| 429 | |
---|
| 430 | # Check that the vector lengths are equal |
---|
| 431 | assert len(new_data.x) == len(new_data.y) |
---|
| 432 | |
---|
| 433 | # Verify that the errors are set correctly |
---|
| 434 | if new_data.dy is None or len(new_data.x) != len(new_data.dy) or \ |
---|
| 435 | (min(new_data.dy) == 0 and max(new_data.dy) == 0): |
---|
| 436 | new_data.dy = np.ones(len(new_data.x)) |
---|
| 437 | return new_data |
---|
| 438 | |
---|
| 439 | def _fit(self, model, qmin=Q_MINIMUM, qmax=Q_MAXIMUM, power=None): |
---|
| 440 | """ |
---|
| 441 | fit data with function using |
---|
| 442 | data = self._get_data() |
---|
| 443 | fx = Functor(data , function) |
---|
| 444 | y = data.y |
---|
| 445 | slope, constant = linalg.lstsq(y,fx) |
---|
| 446 | |
---|
| 447 | :param qmin: data first q value to consider during the fit |
---|
| 448 | :param qmax: data last q value to consider during the fit |
---|
| 449 | :param power : power value to consider for power-law |
---|
| 450 | :param function: the function to use during the fit |
---|
| 451 | |
---|
| 452 | :return a: the scale of the function |
---|
| 453 | :return b: the other parameter of the function for guinier will be radius |
---|
| 454 | for power_law will be the power value |
---|
| 455 | """ |
---|
| 456 | extrapolator = Extrapolator(data=self._data, model=model) |
---|
| 457 | p, dp = extrapolator.fit(power=power, qmin=qmin, qmax=qmax) |
---|
| 458 | |
---|
| 459 | return model.extract_model_parameters(constant=p[1], slope=p[0], |
---|
| 460 | dconstant=dp[1], dslope=dp[0]) |
---|
| 461 | |
---|
| 462 | def _get_qstar(self, data): |
---|
| 463 | """ |
---|
| 464 | Compute invariant for pinhole data. |
---|
| 465 | This invariant is given by: :: |
---|
| 466 | |
---|
| 467 | q_star = x0**2 *y0 *dx0 +x1**2 *y1 *dx1 |
---|
| 468 | + ..+ xn**2 *yn *dxn for non smeared data |
---|
| 469 | |
---|
| 470 | q_star = dxl0 *x0 *y0 *dx0 +dxl1 *x1 *y1 *dx1 |
---|
| 471 | + ..+ dlxn *xn *yn *dxn for smeared data |
---|
| 472 | |
---|
| 473 | where n >= len(data.x)-1 |
---|
| 474 | dxl = slit height dQl |
---|
| 475 | dxi = 1/2*(xi+1 - xi) + (xi - xi-1) |
---|
| 476 | dx0 = (x1 - x0)/2 |
---|
| 477 | dxn = (xn - xn-1)/2 |
---|
| 478 | |
---|
| 479 | :param data: the data to use to compute invariant. |
---|
| 480 | |
---|
| 481 | :return q_star: invariant value for pinhole data. q_star > 0 |
---|
| 482 | """ |
---|
| 483 | if len(data.x) <= 1 or len(data.y) <= 1 or len(data.x) != len(data.y): |
---|
| 484 | msg = "Length x and y must be equal" |
---|
| 485 | msg += " and greater than 1; got x=%s, y=%s" % (len(data.x), len(data.y)) |
---|
[574adc7] | 486 | raise ValueError(msg) |
---|
[959eb01] | 487 | else: |
---|
| 488 | # Take care of smeared data |
---|
| 489 | if self._smeared is None: |
---|
| 490 | gx = data.x * data.x |
---|
| 491 | # assumes that len(x) == len(dxl). |
---|
| 492 | else: |
---|
| 493 | gx = data.dxl * data.x |
---|
| 494 | |
---|
| 495 | n = len(data.x) - 1 |
---|
| 496 | #compute the first delta q |
---|
| 497 | dx0 = (data.x[1] - data.x[0]) / 2 |
---|
| 498 | #compute the last delta q |
---|
| 499 | dxn = (data.x[n] - data.x[n - 1]) / 2 |
---|
| 500 | total = 0 |
---|
| 501 | total += gx[0] * data.y[0] * dx0 |
---|
| 502 | total += gx[n] * data.y[n] * dxn |
---|
| 503 | |
---|
| 504 | if len(data.x) == 2: |
---|
| 505 | return total |
---|
| 506 | else: |
---|
| 507 | #iterate between for element different |
---|
| 508 | #from the first and the last |
---|
[574adc7] | 509 | for i in range(1, n - 1): |
---|
[959eb01] | 510 | dxi = (data.x[i + 1] - data.x[i - 1]) / 2 |
---|
| 511 | total += gx[i] * data.y[i] * dxi |
---|
| 512 | return total |
---|
| 513 | |
---|
| 514 | def _get_qstar_uncertainty(self, data): |
---|
| 515 | """ |
---|
| 516 | Compute invariant uncertainty with with pinhole data. |
---|
| 517 | This uncertainty is given as follow: :: |
---|
| 518 | |
---|
| 519 | dq_star = math.sqrt[(x0**2*(dy0)*dx0)**2 + |
---|
| 520 | (x1**2 *(dy1)*dx1)**2 + ..+ (xn**2 *(dyn)*dxn)**2 ] |
---|
| 521 | where n >= len(data.x)-1 |
---|
| 522 | dxi = 1/2*(xi+1 - xi) + (xi - xi-1) |
---|
| 523 | dx0 = (x1 - x0)/2 |
---|
| 524 | dxn = (xn - xn-1)/2 |
---|
| 525 | dyn: error on dy |
---|
| 526 | |
---|
| 527 | :param data: |
---|
| 528 | :note: if data doesn't contain dy assume dy= math.sqrt(data.y) |
---|
| 529 | """ |
---|
| 530 | if len(data.x) <= 1 or len(data.y) <= 1 or \ |
---|
| 531 | len(data.x) != len(data.y) or \ |
---|
| 532 | (data.dy is not None and (len(data.dy) != len(data.y))): |
---|
| 533 | msg = "Length of data.x and data.y must be equal" |
---|
| 534 | msg += " and greater than 1; got x=%s, y=%s" % (len(data.x), len(data.y)) |
---|
[574adc7] | 535 | raise ValueError(msg) |
---|
[959eb01] | 536 | else: |
---|
| 537 | #Create error for data without dy error |
---|
| 538 | if data.dy is None: |
---|
| 539 | dy = math.sqrt(data.y) |
---|
| 540 | else: |
---|
| 541 | dy = data.dy |
---|
| 542 | # Take care of smeared data |
---|
| 543 | if self._smeared is None: |
---|
| 544 | gx = data.x * data.x |
---|
| 545 | # assumes that len(x) == len(dxl). |
---|
| 546 | else: |
---|
| 547 | gx = data.dxl * data.x |
---|
| 548 | |
---|
| 549 | n = len(data.x) - 1 |
---|
| 550 | #compute the first delta |
---|
| 551 | dx0 = (data.x[1] - data.x[0]) / 2 |
---|
| 552 | #compute the last delta |
---|
| 553 | dxn = (data.x[n] - data.x[n - 1]) / 2 |
---|
| 554 | total = 0 |
---|
| 555 | total += (gx[0] * dy[0] * dx0) ** 2 |
---|
| 556 | total += (gx[n] * dy[n] * dxn) ** 2 |
---|
| 557 | if len(data.x) == 2: |
---|
| 558 | return math.sqrt(total) |
---|
| 559 | else: |
---|
| 560 | #iterate between for element different |
---|
| 561 | #from the first and the last |
---|
[574adc7] | 562 | for i in range(1, n - 1): |
---|
[959eb01] | 563 | dxi = (data.x[i + 1] - data.x[i - 1]) / 2 |
---|
| 564 | total += (gx[i] * dy[i] * dxi) ** 2 |
---|
| 565 | return math.sqrt(total) |
---|
| 566 | |
---|
| 567 | def _get_extrapolated_data(self, model, npts=INTEGRATION_NSTEPS, |
---|
| 568 | q_start=Q_MINIMUM, q_end=Q_MAXIMUM): |
---|
| 569 | """ |
---|
| 570 | :return: extrapolate data create from data |
---|
| 571 | """ |
---|
| 572 | #create new Data1D to compute the invariant |
---|
| 573 | q = np.linspace(start=q_start, |
---|
| 574 | stop=q_end, |
---|
| 575 | num=npts, |
---|
| 576 | endpoint=True) |
---|
| 577 | iq = model.evaluate_model(q) |
---|
| 578 | diq = model.evaluate_model_errors(q) |
---|
| 579 | |
---|
| 580 | result_data = LoaderData1D(x=q, y=iq, dy=diq) |
---|
[7432acb] | 581 | if self._smeared is not None: |
---|
[959eb01] | 582 | result_data.dxl = self._smeared * np.ones(len(q)) |
---|
| 583 | return result_data |
---|
| 584 | |
---|
| 585 | def get_data(self): |
---|
| 586 | """ |
---|
| 587 | :return: self._data |
---|
| 588 | """ |
---|
| 589 | return self._data |
---|
| 590 | |
---|
| 591 | def get_extrapolation_power(self, range='high'): |
---|
| 592 | """ |
---|
| 593 | :return: the fitted power for power law function for a given |
---|
| 594 | extrapolation range |
---|
| 595 | """ |
---|
| 596 | if range == 'low': |
---|
| 597 | return self._low_extrapolation_power_fitted |
---|
| 598 | return self._high_extrapolation_power_fitted |
---|
| 599 | |
---|
| 600 | def get_qstar_low(self): |
---|
| 601 | """ |
---|
| 602 | Compute the invariant for extrapolated data at low q range. |
---|
| 603 | |
---|
| 604 | Implementation: |
---|
| 605 | data = self._get_extra_data_low() |
---|
| 606 | return self._get_qstar() |
---|
| 607 | |
---|
| 608 | :return q_star: the invariant for data extrapolated at low q. |
---|
| 609 | """ |
---|
| 610 | # Data boundaries for fitting |
---|
| 611 | qmin = self._data.x[0] |
---|
[b1f20d1] | 612 | qmax = self._data.x[int(self._low_extrapolation_npts - 1)] |
---|
[959eb01] | 613 | |
---|
| 614 | # Extrapolate the low-Q data |
---|
| 615 | p, _ = self._fit(model=self._low_extrapolation_function, |
---|
| 616 | qmin=qmin, |
---|
| 617 | qmax=qmax, |
---|
| 618 | power=self._low_extrapolation_power) |
---|
| 619 | self._low_extrapolation_power_fitted = p[0] |
---|
| 620 | |
---|
| 621 | # Distribution starting point |
---|
| 622 | self._low_q_limit = Q_MINIMUM |
---|
| 623 | if Q_MINIMUM >= qmin: |
---|
| 624 | self._low_q_limit = qmin / 10 |
---|
| 625 | |
---|
| 626 | data = self._get_extrapolated_data(\ |
---|
| 627 | model=self._low_extrapolation_function, |
---|
| 628 | npts=INTEGRATION_NSTEPS, |
---|
| 629 | q_start=self._low_q_limit, q_end=qmin) |
---|
| 630 | |
---|
| 631 | # Systematic error |
---|
| 632 | # If we have smearing, the shape of the I(q) distribution at low Q will |
---|
| 633 | # may not be a Guinier or simple power law. The following is |
---|
| 634 | # a conservative estimation for the systematic error. |
---|
| 635 | err = qmin * qmin * math.fabs((qmin - self._low_q_limit) * \ |
---|
| 636 | (data.y[0] - data.y[INTEGRATION_NSTEPS - 1])) |
---|
| 637 | return self._get_qstar(data), self._get_qstar_uncertainty(data) + err |
---|
| 638 | |
---|
| 639 | def get_qstar_high(self): |
---|
| 640 | """ |
---|
| 641 | Compute the invariant for extrapolated data at high q range. |
---|
| 642 | |
---|
| 643 | Implementation: |
---|
| 644 | data = self._get_extra_data_high() |
---|
| 645 | return self._get_qstar() |
---|
| 646 | |
---|
| 647 | :return q_star: the invariant for data extrapolated at high q. |
---|
| 648 | """ |
---|
| 649 | # Data boundaries for fitting |
---|
| 650 | x_len = len(self._data.x) - 1 |
---|
[b1f20d1] | 651 | qmin = self._data.x[int(x_len - (self._high_extrapolation_npts - 1))] |
---|
| 652 | qmax = self._data.x[int(x_len)] |
---|
[959eb01] | 653 | |
---|
| 654 | # fit the data with a model to get the appropriate parameters |
---|
| 655 | p, _ = self._fit(model=self._high_extrapolation_function, |
---|
| 656 | qmin=qmin, |
---|
| 657 | qmax=qmax, |
---|
| 658 | power=self._high_extrapolation_power) |
---|
| 659 | self._high_extrapolation_power_fitted = p[0] |
---|
| 660 | |
---|
| 661 | #create new Data1D to compute the invariant |
---|
| 662 | data = self._get_extrapolated_data(\ |
---|
| 663 | model=self._high_extrapolation_function, |
---|
| 664 | npts=INTEGRATION_NSTEPS, |
---|
| 665 | q_start=qmax, q_end=Q_MAXIMUM) |
---|
| 666 | |
---|
| 667 | return self._get_qstar(data), self._get_qstar_uncertainty(data) |
---|
| 668 | |
---|
| 669 | def get_extra_data_low(self, npts_in=None, q_start=None, npts=20): |
---|
| 670 | """ |
---|
| 671 | Returns the extrapolated data used for the loew-Q invariant calculation. |
---|
| 672 | By default, the distribution will cover the data points used for the |
---|
| 673 | extrapolation. The number of overlap points is a parameter (npts_in). |
---|
| 674 | By default, the maximum q-value of the distribution will be |
---|
| 675 | the minimum q-value used when extrapolating for the purpose of the |
---|
| 676 | invariant calculation. |
---|
| 677 | |
---|
| 678 | :param npts_in: number of data points for which |
---|
| 679 | the extrapolated data overlap |
---|
| 680 | :param q_start: is the minimum value to uses for extrapolated data |
---|
| 681 | :param npts: the number of points in the extrapolated distribution |
---|
| 682 | |
---|
| 683 | """ |
---|
| 684 | # Get extrapolation range |
---|
| 685 | if q_start is None: |
---|
| 686 | q_start = self._low_q_limit |
---|
| 687 | |
---|
| 688 | if npts_in is None: |
---|
| 689 | npts_in = self._low_extrapolation_npts |
---|
[b1f20d1] | 690 | q_end = self._data.x[max(0, int(npts_in - 1))] |
---|
[959eb01] | 691 | |
---|
| 692 | if q_start >= q_end: |
---|
| 693 | return np.zeros(0), np.zeros(0) |
---|
| 694 | |
---|
| 695 | return self._get_extrapolated_data(\ |
---|
| 696 | model=self._low_extrapolation_function, |
---|
| 697 | npts=npts, |
---|
| 698 | q_start=q_start, q_end=q_end) |
---|
| 699 | |
---|
| 700 | def get_extra_data_high(self, npts_in=None, q_end=Q_MAXIMUM, npts=20): |
---|
| 701 | """ |
---|
| 702 | Returns the extrapolated data used for the high-Q invariant calculation. |
---|
| 703 | By default, the distribution will cover the data points used for the |
---|
| 704 | extrapolation. The number of overlap points is a parameter (npts_in). |
---|
| 705 | By default, the maximum q-value of the distribution will be Q_MAXIMUM, |
---|
| 706 | the maximum q-value used when extrapolating for the purpose of the |
---|
| 707 | invariant calculation. |
---|
| 708 | |
---|
| 709 | :param npts_in: number of data points for which the |
---|
| 710 | extrapolated data overlap |
---|
| 711 | :param q_end: is the maximum value to uses for extrapolated data |
---|
| 712 | :param npts: the number of points in the extrapolated distribution |
---|
| 713 | """ |
---|
| 714 | # Get extrapolation range |
---|
| 715 | if npts_in is None: |
---|
[b1f20d1] | 716 | npts_in = int(self._high_extrapolation_npts) |
---|
[959eb01] | 717 | _npts = len(self._data.x) |
---|
[b1f20d1] | 718 | q_start = self._data.x[min(_npts, int(_npts - npts_in))] |
---|
[959eb01] | 719 | |
---|
| 720 | if q_start >= q_end: |
---|
| 721 | return np.zeros(0), np.zeros(0) |
---|
| 722 | |
---|
| 723 | return self._get_extrapolated_data(\ |
---|
| 724 | model=self._high_extrapolation_function, |
---|
| 725 | npts=npts, |
---|
| 726 | q_start=q_start, q_end=q_end) |
---|
| 727 | |
---|
| 728 | def set_extrapolation(self, range, npts=4, function=None, power=None): |
---|
| 729 | """ |
---|
| 730 | Set the extrapolation parameters for the high or low Q-range. |
---|
| 731 | Note that this does not turn extrapolation on or off. |
---|
| 732 | |
---|
| 733 | :param range: a keyword set the type of extrapolation . type string |
---|
| 734 | :param npts: the numbers of q points of data to consider |
---|
| 735 | for extrapolation |
---|
| 736 | :param function: a keyword to select the function to use |
---|
| 737 | for extrapolation. |
---|
| 738 | of type string. |
---|
| 739 | :param power: an power to apply power_low function |
---|
| 740 | |
---|
| 741 | """ |
---|
| 742 | range = range.lower() |
---|
| 743 | if range not in ['high', 'low']: |
---|
[574adc7] | 744 | raise ValueError("Extrapolation range should be 'high' or 'low'") |
---|
[959eb01] | 745 | function = function.lower() |
---|
| 746 | if function not in ['power_law', 'guinier']: |
---|
| 747 | msg = "Extrapolation function should be 'guinier' or 'power_law'" |
---|
[574adc7] | 748 | raise ValueError(msg) |
---|
[959eb01] | 749 | |
---|
| 750 | if range == 'high': |
---|
| 751 | if function != 'power_law': |
---|
| 752 | msg = "Extrapolation only allows a power law at high Q" |
---|
[574adc7] | 753 | raise ValueError(msg) |
---|
[959eb01] | 754 | self._high_extrapolation_npts = npts |
---|
| 755 | self._high_extrapolation_power = power |
---|
| 756 | self._high_extrapolation_power_fitted = power |
---|
| 757 | else: |
---|
| 758 | if function == 'power_law': |
---|
| 759 | self._low_extrapolation_function = PowerLaw() |
---|
| 760 | else: |
---|
| 761 | self._low_extrapolation_function = Guinier() |
---|
| 762 | self._low_extrapolation_npts = npts |
---|
| 763 | self._low_extrapolation_power = power |
---|
| 764 | self._low_extrapolation_power_fitted = power |
---|
| 765 | |
---|
| 766 | def get_qstar(self, extrapolation=None): |
---|
| 767 | """ |
---|
| 768 | Compute the invariant of the local copy of data. |
---|
| 769 | |
---|
| 770 | :param extrapolation: string to apply optional extrapolation |
---|
| 771 | |
---|
| 772 | :return q_star: invariant of the data within data's q range |
---|
| 773 | |
---|
| 774 | :warning: When using setting data to Data1D , |
---|
| 775 | the user is responsible of |
---|
| 776 | checking that the scale and the background are |
---|
| 777 | properly apply to the data |
---|
| 778 | |
---|
| 779 | """ |
---|
| 780 | self._qstar = self._get_qstar(self._data) |
---|
| 781 | self._qstar_err = self._get_qstar_uncertainty(self._data) |
---|
| 782 | |
---|
| 783 | if extrapolation is None: |
---|
| 784 | return self._qstar |
---|
| 785 | |
---|
| 786 | # Compute invariant plus invariant of extrapolated data |
---|
| 787 | extrapolation = extrapolation.lower() |
---|
| 788 | if extrapolation == "low": |
---|
| 789 | qs_low, dqs_low = self.get_qstar_low() |
---|
| 790 | qs_hi, dqs_hi = 0, 0 |
---|
| 791 | |
---|
| 792 | elif extrapolation == "high": |
---|
| 793 | qs_low, dqs_low = 0, 0 |
---|
| 794 | qs_hi, dqs_hi = self.get_qstar_high() |
---|
| 795 | |
---|
| 796 | elif extrapolation == "both": |
---|
| 797 | qs_low, dqs_low = self.get_qstar_low() |
---|
| 798 | qs_hi, dqs_hi = self.get_qstar_high() |
---|
| 799 | |
---|
| 800 | self._qstar += qs_low + qs_hi |
---|
| 801 | self._qstar_err = math.sqrt(self._qstar_err * self._qstar_err \ |
---|
| 802 | + dqs_low * dqs_low + dqs_hi * dqs_hi) |
---|
| 803 | |
---|
| 804 | return self._qstar |
---|
| 805 | |
---|
| 806 | def get_surface(self, contrast, porod_const, extrapolation=None): |
---|
| 807 | """ |
---|
| 808 | Compute the specific surface from the data. |
---|
| 809 | |
---|
| 810 | Implementation:: |
---|
| 811 | |
---|
| 812 | V = self.get_volume_fraction(contrast, extrapolation) |
---|
| 813 | |
---|
| 814 | Compute the surface given by: |
---|
| 815 | surface = (2*pi *V(1- V)*porod_const)/ q_star |
---|
| 816 | |
---|
| 817 | :param contrast: contrast value to compute the volume |
---|
| 818 | :param porod_const: Porod constant to compute the surface |
---|
| 819 | :param extrapolation: string to apply optional extrapolation |
---|
| 820 | |
---|
| 821 | :return: specific surface |
---|
| 822 | """ |
---|
| 823 | # Compute the volume |
---|
| 824 | volume = self.get_volume_fraction(contrast, extrapolation) |
---|
| 825 | return 2 * math.pi * volume * (1 - volume) * \ |
---|
| 826 | float(porod_const) / self._qstar |
---|
| 827 | |
---|
| 828 | def get_volume_fraction(self, contrast, extrapolation=None): |
---|
| 829 | """ |
---|
| 830 | Compute volume fraction is deduced as follow: :: |
---|
| 831 | |
---|
| 832 | q_star = 2*(pi*contrast)**2* volume( 1- volume) |
---|
| 833 | for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2) |
---|
| 834 | we get 2 values of volume: |
---|
| 835 | with 1 - 4 * k >= 0 |
---|
| 836 | volume1 = (1- sqrt(1- 4*k))/2 |
---|
| 837 | volume2 = (1+ sqrt(1- 4*k))/2 |
---|
| 838 | |
---|
| 839 | q_star: the invariant value included extrapolation is applied |
---|
| 840 | unit 1/A^(3)*1/cm |
---|
| 841 | q_star = self.get_qstar() |
---|
| 842 | |
---|
| 843 | the result returned will be 0 <= volume <= 1 |
---|
| 844 | |
---|
| 845 | :param contrast: contrast value provides by the user of type float. |
---|
| 846 | contrast unit is 1/A^(2)= 10^(16)cm^(2) |
---|
| 847 | :param extrapolation: string to apply optional extrapolation |
---|
| 848 | |
---|
| 849 | :return: volume fraction |
---|
| 850 | |
---|
| 851 | :note: volume fraction must have no unit |
---|
| 852 | """ |
---|
| 853 | if contrast <= 0: |
---|
[574adc7] | 854 | raise ValueError("The contrast parameter must be greater than zero") |
---|
[959eb01] | 855 | |
---|
| 856 | # Make sure Q star is up to date |
---|
| 857 | self.get_qstar(extrapolation) |
---|
| 858 | |
---|
| 859 | if self._qstar <= 0: |
---|
| 860 | msg = "Invalid invariant: Invariant Q* must be greater than zero" |
---|
[574adc7] | 861 | raise RuntimeError(msg) |
---|
[959eb01] | 862 | |
---|
| 863 | # Compute intermediate constant |
---|
| 864 | k = 1.e-8 * self._qstar / (2 * (math.pi * math.fabs(float(contrast))) ** 2) |
---|
| 865 | # Check discriminant value |
---|
| 866 | discrim = 1 - 4 * k |
---|
| 867 | |
---|
| 868 | # Compute volume fraction |
---|
| 869 | if discrim < 0: |
---|
| 870 | msg = "Could not compute the volume fraction: negative discriminant" |
---|
[574adc7] | 871 | raise RuntimeError(msg) |
---|
[959eb01] | 872 | elif discrim == 0: |
---|
| 873 | return 1 / 2 |
---|
| 874 | else: |
---|
| 875 | volume1 = 0.5 * (1 - math.sqrt(discrim)) |
---|
| 876 | volume2 = 0.5 * (1 + math.sqrt(discrim)) |
---|
| 877 | |
---|
| 878 | if 0 <= volume1 and volume1 <= 1: |
---|
| 879 | return volume1 |
---|
| 880 | elif 0 <= volume2 and volume2 <= 1: |
---|
| 881 | return volume2 |
---|
| 882 | msg = "Could not compute the volume fraction: inconsistent results" |
---|
[574adc7] | 883 | raise RuntimeError(msg) |
---|
[959eb01] | 884 | |
---|
| 885 | def get_qstar_with_error(self, extrapolation=None): |
---|
| 886 | """ |
---|
| 887 | Compute the invariant uncertainty. |
---|
| 888 | This uncertainty computation depends on whether or not the data is |
---|
| 889 | smeared. |
---|
| 890 | |
---|
| 891 | :param extrapolation: string to apply optional extrapolation |
---|
| 892 | |
---|
| 893 | :return: invariant, the invariant uncertainty |
---|
| 894 | """ |
---|
| 895 | self.get_qstar(extrapolation) |
---|
| 896 | return self._qstar, self._qstar_err |
---|
| 897 | |
---|
| 898 | def get_volume_fraction_with_error(self, contrast, extrapolation=None): |
---|
| 899 | """ |
---|
| 900 | Compute uncertainty on volume value as well as the volume fraction |
---|
| 901 | This uncertainty is given by the following equation: :: |
---|
| 902 | |
---|
| 903 | dV = 0.5 * (4*k* dq_star) /(2* math.sqrt(1-k* q_star)) |
---|
| 904 | |
---|
| 905 | for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2) |
---|
| 906 | |
---|
| 907 | q_star: the invariant value including extrapolated value if existing |
---|
| 908 | dq_star: the invariant uncertainty |
---|
| 909 | dV: the volume uncertainty |
---|
| 910 | |
---|
| 911 | The uncertainty will be set to -1 if it can't be computed. |
---|
| 912 | |
---|
| 913 | :param contrast: contrast value |
---|
| 914 | :param extrapolation: string to apply optional extrapolation |
---|
| 915 | |
---|
| 916 | :return: V, dV = volume fraction, error on volume fraction |
---|
| 917 | """ |
---|
| 918 | volume = self.get_volume_fraction(contrast, extrapolation) |
---|
| 919 | |
---|
| 920 | # Compute error |
---|
| 921 | k = 1.e-8 * self._qstar / (2 * (math.pi * math.fabs(float(contrast))) ** 2) |
---|
| 922 | # Check value inside the sqrt function |
---|
| 923 | value = 1 - k * self._qstar |
---|
| 924 | if (value) <= 0: |
---|
| 925 | uncertainty = -1 |
---|
| 926 | # Compute uncertainty |
---|
| 927 | uncertainty = math.fabs((0.5 * 4 * k * \ |
---|
| 928 | self._qstar_err) / (2 * math.sqrt(1 - k * self._qstar))) |
---|
| 929 | |
---|
| 930 | return volume, uncertainty |
---|
| 931 | |
---|
| 932 | def get_surface_with_error(self, contrast, porod_const, extrapolation=None): |
---|
| 933 | """ |
---|
| 934 | Compute uncertainty of the surface value as well as the surface value. |
---|
| 935 | The uncertainty is given as follow: :: |
---|
| 936 | |
---|
| 937 | dS = porod_const *2*pi[( dV -2*V*dV)/q_star |
---|
| 938 | + dq_star(v-v**2) |
---|
| 939 | |
---|
| 940 | q_star: the invariant value |
---|
| 941 | dq_star: the invariant uncertainty |
---|
| 942 | V: the volume fraction value |
---|
| 943 | dV: the volume uncertainty |
---|
| 944 | |
---|
| 945 | :param contrast: contrast value |
---|
| 946 | :param porod_const: porod constant value |
---|
| 947 | :param extrapolation: string to apply optional extrapolation |
---|
| 948 | |
---|
| 949 | :return S, dS: the surface, with its uncertainty |
---|
| 950 | """ |
---|
| 951 | # We get the volume fraction, with error |
---|
| 952 | # get_volume_fraction_with_error calls get_volume_fraction |
---|
| 953 | # get_volume_fraction calls get_qstar |
---|
| 954 | # which computes Qstar and dQstar |
---|
| 955 | v, dv = self.get_volume_fraction_with_error(contrast, extrapolation) |
---|
| 956 | |
---|
| 957 | s = self.get_surface(contrast=contrast, porod_const=porod_const, |
---|
| 958 | extrapolation=extrapolation) |
---|
| 959 | ds = porod_const * 2 * math.pi * ((dv - 2 * v * dv) / self._qstar\ |
---|
| 960 | + self._qstar_err * (v - v ** 2)) |
---|
| 961 | |
---|
| 962 | return s, ds |
---|