source: sasview/src/sas/sascalc/data_util/uncertainty.py @ 0a3c740

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalcmagnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 0a3c740 was 574adc7, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

convert sascalc to python 2/3 syntax

  • Property mode set to 100644
File size: 11.1 KB
RevLine 
[ac7be54]1r"""
2Uncertainty propagation class for arithmetic, log and exp.
[4bae1ef]3
[574adc7]4Based on scalars or numpy vectors, this class allows you to store and
[4bae1ef]5manipulate values+uncertainties, with propagation of gaussian error for
[ac7be54]6addition, subtraction, multiplication, division, power, exp and log.
[4bae1ef]7
8Storage properties are determined by the numbers used to set the value
[574adc7]9and uncertainty.  Be sure to use floating point uncertainty vectors
[4bae1ef]10for inplace operations since numpy does not do automatic type conversion.
11Normal operations can use mixed integer and floating point.  In place
[ac7be54]12operations such as *a \*= b* create at most one extra copy for each operation.
13By contrast, *c = a\*b* uses four intermediate vectors, so shouldn't be used
[4bae1ef]14for huge arrays.
15"""
16
17from __future__ import division
18
[9a5097c]19import numpy as np
[574adc7]20
21from .import err1d
22from .formatnum import format_uncertainty
[4bae1ef]23
24__all__ = ['Uncertainty']
25
26# TODO: rename to Measurement and add support for units?
27# TODO: C implementation of *,/,**?
28class Uncertainty(object):
29    # Make standard deviation available
[9a5097c]30    def _getdx(self): return np.sqrt(self.variance)
[574adc7]31    def _setdx(self,dx):
[4bae1ef]32        # Direct operation
33        #    variance = dx**2
34        # Indirect operation to avoid temporaries
35        self.variance[:] = dx
36        self.variance **= 2
37    dx = property(_getdx,_setdx,doc="standard deviation")
38
39    # Constructor
40    def __init__(self, x, variance=None):
[574adc7]41        self.x, self.variance = x, variance
42
[4bae1ef]43    # Numpy array slicing operations
[574adc7]44    def __len__(self):
[4bae1ef]45        return len(self.x)
[574adc7]46    def __getitem__(self,key):
[4bae1ef]47        return Uncertainty(self.x[key],self.variance[key])
48    def __setitem__(self,key,value):
49        self.x[key] = value.x
50        self.variance[key] = value.variance
51    def __delitem__(self, key):
52        del self.x[key]
53        del self.variance[key]
54    #def __iter__(self): pass # Not sure we need iter
55
56    # Normal operations: may be of mixed type
57    def __add__(self, other):
58        if isinstance(other,Uncertainty):
59            return Uncertainty(*err1d.add(self.x,self.variance,other.x,other.variance))
60        else:
61            return Uncertainty(self.x+other, self.variance+0) # Force copy
62    def __sub__(self, other):
63        if isinstance(other,Uncertainty):
64            return Uncertainty(*err1d.sub(self.x,self.variance,other.x,other.variance))
65        else:
66            return Uncertainty(self.x-other, self.variance+0) # Force copy
67    def __mul__(self, other):
68        if isinstance(other,Uncertainty):
69            return Uncertainty(*err1d.mul(self.x,self.variance,other.x,other.variance))
70        else:
71            return Uncertainty(self.x*other, self.variance*other**2)
72    def __truediv__(self, other):
73        if isinstance(other,Uncertainty):
74            return Uncertainty(*err1d.div(self.x,self.variance,other.x,other.variance))
75        else:
76            return Uncertainty(self.x/other, self.variance/other**2)
77    def __pow__(self, other):
78        if isinstance(other,Uncertainty):
79            # Haven't calcuated variance in (a+/-da) ** (b+/-db)
80            return NotImplemented
81        else:
82            return Uncertainty(*err1d.pow(self.x,self.variance,other))
83
84    # Reverse operations
85    def __radd__(self, other):
86        return Uncertainty(self.x+other, self.variance+0) # Force copy
87    def __rsub__(self, other):
88        return Uncertainty(other-self.x, self.variance+0)
89    def __rmul__(self, other):
90        return Uncertainty(self.x*other, self.variance*other**2)
91    def __rtruediv__(self, other):
92        x,variance = err1d.pow(self.x,self.variance,-1)
93        return Uncertainty(x*other,variance*other**2)
94    def __rpow__(self, other): return NotImplemented
95
96    # In-place operations: may be of mixed type
97    def __iadd__(self, other):
98        if isinstance(other,Uncertainty):
99            self.x,self.variance \
100                = err1d.add_inplace(self.x,self.variance,other.x,other.variance)
101        else:
102            self.x+=other
103        return self
104    def __isub__(self, other):
105        if isinstance(other,Uncertainty):
106            self.x,self.variance \
107                = err1d.sub_inplace(self.x,self.variance,other.x,other.variance)
108        else:
109            self.x-=other
110        return self
111    def __imul__(self, other):
112        if isinstance(other,Uncertainty):
113            self.x, self.variance \
114                = err1d.mul_inplace(self.x,self.variance,other.x,other.variance)
115        else:
116            self.x *= other
117            self.variance *= other**2
118        return self
119    def __itruediv__(self, other):
120        if isinstance(other,Uncertainty):
121            self.x,self.variance \
122                = err1d.div_inplace(self.x,self.variance,other.x,other.variance)
123        else:
124            self.x /= other
125            self.variance /= other**2
126        return self
127    def __ipow__(self, other):
128        if isinstance(other,Uncertainty):
129            # Haven't calcuated variance in (a+/-da) ** (b+/-db)
130            return NotImplemented
131        else:
132            self.x,self.variance = err1d.pow_inplace(self.x, self.variance, other)
133        return self
134
135    # Use true division instead of integer division
136    def __div__(self, other): return self.__truediv__(other)
137    def __rdiv__(self, other): return self.__rtruediv__(other)
138    def __idiv__(self, other): return self.__itruediv__(other)
139
[574adc7]140
[4bae1ef]141    # Unary ops
142    def __neg__(self):
143        return Uncertainty(-self.x,self.variance)
144    def __pos__(self):
145        return self
146    def __abs__(self):
[9a5097c]147        return Uncertainty(np.abs(self.x),self.variance)
[4bae1ef]148
149    def __str__(self):
[9a5097c]150        #return str(self.x)+" +/- "+str(np.sqrt(self.variance))
151        if np.isscalar(self.x):
152            return format_uncertainty(self.x,np.sqrt(self.variance))
[4bae1ef]153        else:
[574adc7]154            return [format_uncertainty(v,dv)
[9a5097c]155                    for v,dv in zip(self.x,np.sqrt(self.variance))]
[4bae1ef]156    def __repr__(self):
157        return "Uncertainty(%s,%s)"%(str(self.x),str(self.variance))
158
159    # Not implemented
160    def __floordiv__(self, other): return NotImplemented
161    def __mod__(self, other): return NotImplemented
162    def __divmod__(self, other): return NotImplemented
163    def __mod__(self, other): return NotImplemented
164    def __lshift__(self, other): return NotImplemented
165    def __rshift__(self, other): return NotImplemented
166    def __and__(self, other): return NotImplemented
167    def __xor__(self, other): return NotImplemented
168    def __or__(self, other): return NotImplemented
169
170    def __rfloordiv__(self, other): return NotImplemented
171    def __rmod__(self, other): return NotImplemented
172    def __rdivmod__(self, other): return NotImplemented
173    def __rmod__(self, other): return NotImplemented
174    def __rlshift__(self, other): return NotImplemented
175    def __rrshift__(self, other): return NotImplemented
176    def __rand__(self, other): return NotImplemented
177    def __rxor__(self, other): return NotImplemented
178    def __ror__(self, other): return NotImplemented
179
180    def __ifloordiv__(self, other): return NotImplemented
181    def __imod__(self, other): return NotImplemented
182    def __idivmod__(self, other): return NotImplemented
183    def __imod__(self, other): return NotImplemented
184    def __ilshift__(self, other): return NotImplemented
185    def __irshift__(self, other): return NotImplemented
186    def __iand__(self, other): return NotImplemented
187    def __ixor__(self, other): return NotImplemented
188    def __ior__(self, other): return NotImplemented
189
190    def __invert__(self): return NotImplmented  # For ~x
191    def __complex__(self): return NotImplmented
192    def __int__(self): return NotImplmented
193    def __long__(self): return NotImplmented
194    def __float__(self): return NotImplmented
195    def __oct__(self): return NotImplmented
196    def __hex__(self): return NotImplmented
197    def __index__(self): return NotImplmented
198    def __coerce__(self): return NotImplmented
199
200    def log(self):
201        return Uncertainty(*err1d.log(self.x,self.variance))
202
203    def exp(self):
204        return Uncertainty(*err1d.exp(self.x,self.variance))
205
206def log(val): return self.log()
207def exp(val): return self.exp()
208
209def test():
210    a = Uncertainty(5,3)
211    b = Uncertainty(4,2)
212
213    # Scalar operations
214    z = a+4
215    assert z.x == 5+4 and z.variance == 3
216    z = a-4
217    assert z.x == 5-4 and z.variance == 3
218    z = a*4
219    assert z.x == 5*4 and z.variance == 3*4**2
220    z = a/4
221    assert z.x == 5./4 and z.variance == 3./4**2
[574adc7]222
[4bae1ef]223    # Reverse scalar operations
224    z = 4+a
225    assert z.x == 4+5 and z.variance == 3
226    z = 4-a
227    assert z.x == 4-5 and z.variance == 3
228    z = 4*a
229    assert z.x == 4*5 and z.variance == 3*4**2
230    z = 4/a
231    assert z.x == 4./5 and abs(z.variance - 3./5**4 * 4**2) < 1e-15
[574adc7]232
[4bae1ef]233    # Power operations
234    z = a**2
235    assert z.x == 5**2 and z.variance == 4*3*5**2
236    z = a**1
237    assert z.x == 5**1 and z.variance == 3
238    z = a**0
239    assert z.x == 5**0 and z.variance == 0
240    z = a**-1
241    assert z.x == 5**-1 and abs(z.variance - 3./5**4) < 1e-15
242
243    # Binary operations
244    z = a+b
245    assert z.x == 5+4 and z.variance == 3+2
246    z = a-b
247    assert z.x == 5-4 and z.variance == 3+2
248    z = a*b
249    assert z.x == 5*4 and z.variance == (5**2*2 + 4**2*3)
250    z = a/b
251    assert z.x == 5./4 and abs(z.variance - (3./5**2 + 2./4**2)*(5./4)**2) < 1e-15
252
[574adc7]253    # ===== Inplace operations =====
[4bae1ef]254    # Scalar operations
255    y = a+0; y += 4
256    z = a+4
257    assert y.x == z.x and abs(y.variance-z.variance) < 1e-15
258    y = a+0; y -= 4
259    z = a-4
260    assert y.x == z.x and abs(y.variance-z.variance) < 1e-15
261    y = a+0; y *= 4
262    z = a*4
263    assert y.x == z.x and abs(y.variance-z.variance) < 1e-15
264    y = a+0; y /= 4
265    z = a/4
266    assert y.x == z.x and abs(y.variance-z.variance) < 1e-15
267
268    # Power operations
269    y = a+0; y **= 4
270    z = a**4
271    assert y.x == z.x and abs(y.variance-z.variance) < 1e-15
272
273    # Binary operations
274    y = a+0; y += b
275    z = a+b
276    assert y.x == z.x and abs(y.variance-z.variance) < 1e-15
277    y = a+0; y -= b
278    z = a-b
279    assert y.x == z.x and abs(y.variance-z.variance) < 1e-15
280    y = a+0; y *= b
281    z = a*b
282    assert y.x == z.x and abs(y.variance-z.variance) < 1e-15
283    y = a+0; y /= b
284    z = a/b
285    assert y.x == z.x and abs(y.variance-z.variance) < 1e-15
286
287
288    # =============== vector operations ================
289    # Slicing
[9a5097c]290    z = Uncertainty(np.array([1,2,3,4,5]),np.array([2,1,2,3,2]))
[4bae1ef]291    assert z[2].x == 3 and z[2].variance == 2
292    assert (z[2:4].x == [3,4]).all()
293    assert (z[2:4].variance == [2,3]).all()
[9a5097c]294    z[2:4] = Uncertainty(np.array([8,7]),np.array([4,5]))
[4bae1ef]295    assert z[2].x == 8 and z[2].variance == 4
[9a5097c]296    A = Uncertainty(np.array([a.x]*2),np.array([a.variance]*2))
297    B = Uncertainty(np.array([b.x]*2),np.array([b.variance]*2))
[4bae1ef]298
299    # TODO complete tests of copy and inplace operations for vectors and slices.
300
301    # Binary operations
302    z = A+B
303    assert (z.x == 5+4).all() and (z.variance == 3+2).all()
304    z = A-B
305    assert (z.x == 5-4).all() and (z.variance == 3+2).all()
306    z = A*B
307    assert (z.x == 5*4).all() and (z.variance == (5**2*2 + 4**2*3)).all()
308    z = A/B
309    assert (z.x == 5./4).all()
310    assert (abs(z.variance - (3./5**2 + 2./4**2)*(5./4)**2) < 1e-15).all()
[574adc7]311
[4bae1ef]312    # printing; note that sqrt(3) ~ 1.7
313    assert str(Uncertainty(5,3)) == "5.0(17)"
314    assert str(Uncertainty(15,3)) == "15.0(17)"
315    assert str(Uncertainty(151.23356,0.324185**2)) == "151.23(32)"
316
317if __name__ == "__main__": test()
Note: See TracBrowser for help on using the repository browser.