[2add354] | 1 | import numpy as np |
---|
[4d457df] | 2 | |
---|
[dc5ef15] | 3 | from sas.qtgui.Plotting.PlotterData import Data1D |
---|
| 4 | from sas.qtgui.Plotting.PlotterData import Data2D |
---|
| 5 | |
---|
[4d457df] | 6 | from sas.sascalc.dataloader.data_info import Detector |
---|
| 7 | from sas.sascalc.dataloader.data_info import Source |
---|
| 8 | |
---|
| 9 | |
---|
| 10 | class FittingLogic(object): |
---|
| 11 | """ |
---|
| 12 | All the data-related logic. This class deals exclusively with Data1D/2D |
---|
| 13 | No QStandardModelIndex here. |
---|
| 14 | """ |
---|
| 15 | def __init__(self, data=None): |
---|
| 16 | self._data = data |
---|
[7248d75d] | 17 | self.data_is_loaded = False |
---|
[87dfca4] | 18 | #dq data presence in the dataset |
---|
| 19 | self.dq_flag = False |
---|
| 20 | #di data presence in the dataset |
---|
| 21 | self.di_flag = False |
---|
[7248d75d] | 22 | if data is not None: |
---|
| 23 | self.data_is_loaded = True |
---|
[87dfca4] | 24 | self.setDataProperties() |
---|
[4d457df] | 25 | |
---|
| 26 | @property |
---|
| 27 | def data(self): |
---|
| 28 | return self._data |
---|
| 29 | |
---|
| 30 | @data.setter |
---|
| 31 | def data(self, value): |
---|
| 32 | """ data setter """ |
---|
| 33 | self._data = value |
---|
| 34 | self.data_is_loaded = True |
---|
[87dfca4] | 35 | self.setDataProperties() |
---|
[4d457df] | 36 | |
---|
[180bd54] | 37 | def isLoadedData(self): |
---|
| 38 | """ accessor """ |
---|
| 39 | return self.data_is_loaded |
---|
| 40 | |
---|
[87dfca4] | 41 | def setDataProperties(self): |
---|
| 42 | """ |
---|
| 43 | Analyze data and set up some properties important for |
---|
| 44 | the Presentation layer |
---|
| 45 | """ |
---|
| 46 | if self._data.__class__.__name__ == "Data2D": |
---|
| 47 | if self._data.err_data is not None and np.any(self._data.err_data): |
---|
| 48 | self.di_flag = True |
---|
| 49 | if self._data.dqx_data is not None and np.any(self._data.dqx_data): |
---|
| 50 | self.dq_flag = True |
---|
| 51 | else: |
---|
| 52 | if self._data.dy is not None and np.any(self._data.dy): |
---|
| 53 | self.di_flag = True |
---|
| 54 | if self._data.dx is not None and np.any(self._data.dx): |
---|
| 55 | self.dq_flag = True |
---|
| 56 | elif self._data.dxl is not None and np.any(self._data.dxl): |
---|
| 57 | self.dq_flag = True |
---|
| 58 | |
---|
[4d457df] | 59 | def createDefault1dData(self, interval, tab_id=0): |
---|
| 60 | """ |
---|
| 61 | Create default data for fitting perspective |
---|
| 62 | Only when the page is on theory mode. |
---|
| 63 | """ |
---|
| 64 | self._data = Data1D(x=interval) |
---|
| 65 | self._data.xaxis('\\rm{Q}', "A^{-1}") |
---|
| 66 | self._data.yaxis('\\rm{Intensity}', "cm^{-1}") |
---|
| 67 | self._data.is_data = False |
---|
| 68 | self._data.id = str(tab_id) + " data" |
---|
| 69 | self._data.group_id = str(tab_id) + " Model1D" |
---|
| 70 | |
---|
| 71 | def createDefault2dData(self, qmax, qstep, tab_id=0): |
---|
| 72 | """ |
---|
| 73 | Create 2D data by default |
---|
| 74 | Only when the page is on theory mode. |
---|
| 75 | """ |
---|
| 76 | self._data = Data2D() |
---|
| 77 | self._data.xaxis('\\rm{Q_{x}}', 'A^{-1}') |
---|
| 78 | self._data.yaxis('\\rm{Q_{y}}', 'A^{-1}') |
---|
| 79 | self._data.is_data = False |
---|
| 80 | self._data.id = str(tab_id) + " data" |
---|
| 81 | self._data.group_id = str(tab_id) + " Model2D" |
---|
| 82 | |
---|
| 83 | # Default detector |
---|
| 84 | self._data.detector.append(Detector()) |
---|
| 85 | index = len(self._data.detector) - 1 |
---|
| 86 | self._data.detector[index].distance = 8000 # mm |
---|
| 87 | self._data.source.wavelength = 6 # A |
---|
| 88 | self._data.detector[index].pixel_size.x = 5 # mm |
---|
| 89 | self._data.detector[index].pixel_size.y = 5 # mm |
---|
| 90 | self._data.detector[index].beam_center.x = qmax |
---|
| 91 | self._data.detector[index].beam_center.y = qmax |
---|
| 92 | # theory default: assume the beam |
---|
| 93 | #center is located at the center of sqr detector |
---|
| 94 | xmax = qmax |
---|
| 95 | xmin = -qmax |
---|
| 96 | ymax = qmax |
---|
| 97 | ymin = -qmax |
---|
| 98 | |
---|
[2add354] | 99 | x = np.linspace(start=xmin, stop=xmax, num=qstep, endpoint=True) |
---|
| 100 | y = np.linspace(start=ymin, stop=ymax, num=qstep, endpoint=True) |
---|
[4d457df] | 101 | # Use data info instead |
---|
[2add354] | 102 | new_x = np.tile(x, (len(y), 1)) |
---|
| 103 | new_y = np.tile(y, (len(x), 1)) |
---|
[4d457df] | 104 | new_y = new_y.swapaxes(0, 1) |
---|
| 105 | |
---|
| 106 | # all data required in 1d array |
---|
| 107 | qx_data = new_x.flatten() |
---|
| 108 | qy_data = new_y.flatten() |
---|
[2add354] | 109 | q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) |
---|
[4d457df] | 110 | |
---|
| 111 | # set all True (standing for unmasked) as default |
---|
[2add354] | 112 | mask = np.ones(len(qx_data), dtype=bool) |
---|
[4d457df] | 113 | # calculate the range of qx and qy: this way, |
---|
| 114 | # it is a little more independent |
---|
| 115 | # store x and y bin centers in q space |
---|
| 116 | x_bins = x |
---|
| 117 | y_bins = y |
---|
| 118 | |
---|
| 119 | self._data.source = Source() |
---|
[2add354] | 120 | self._data.data = np.ones(len(mask)) |
---|
| 121 | self._data.err_data = np.ones(len(mask)) |
---|
[4d457df] | 122 | self._data.qx_data = qx_data |
---|
| 123 | self._data.qy_data = qy_data |
---|
| 124 | self._data.q_data = q_data |
---|
| 125 | self._data.mask = mask |
---|
| 126 | self._data.x_bins = x_bins |
---|
| 127 | self._data.y_bins = y_bins |
---|
| 128 | # max and min taking account of the bin sizes |
---|
| 129 | self._data.xmin = xmin |
---|
| 130 | self._data.xmax = xmax |
---|
| 131 | self._data.ymin = ymin |
---|
| 132 | self._data.ymax = ymax |
---|
| 133 | |
---|
[3ae9179] | 134 | def _create1DPlot(self, tab_id, x, y, model, data, component=None): |
---|
[4d457df] | 135 | """ |
---|
[44777ee] | 136 | For internal use: create a new 1D data instance based on fitting results. |
---|
| 137 | 'component' is a string indicating the model component, e.g. "P(Q)" |
---|
[4d457df] | 138 | """ |
---|
| 139 | # Create the new plot |
---|
| 140 | new_plot = Data1D(x=x, y=y) |
---|
| 141 | new_plot.is_data = False |
---|
[2add354] | 142 | new_plot.dy = np.zeros(len(y)) |
---|
[4d457df] | 143 | _yaxis, _yunit = data.get_yaxis() |
---|
| 144 | _xaxis, _xunit = data.get_xaxis() |
---|
| 145 | |
---|
| 146 | new_plot.group_id = data.group_id |
---|
[3ae9179] | 147 | new_plot.id = str(tab_id) + " " + ("[" + component + "] " if component else "") + model.id |
---|
[d6e38661] | 148 | |
---|
[3ae9179] | 149 | # use data.filename for data, use model.id for theory |
---|
| 150 | id_str = data.filename if data.filename else model.id |
---|
| 151 | new_plot.name = model.name + ((" " + component) if component else "") + " [" + id_str + "]" |
---|
[d6e38661] | 152 | |
---|
[0268aed] | 153 | new_plot.title = new_plot.name |
---|
[4d457df] | 154 | new_plot.xaxis(_xaxis, _xunit) |
---|
| 155 | new_plot.yaxis(_yaxis, _yunit) |
---|
| 156 | |
---|
[6fd4e36] | 157 | return new_plot |
---|
[4d457df] | 158 | |
---|
[3ae9179] | 159 | def new1DPlot(self, return_data, tab_id): |
---|
| 160 | """ |
---|
| 161 | Create a new 1D data instance based on fitting results |
---|
| 162 | """ |
---|
[dcabba7] | 163 | return self._create1DPlot(tab_id, return_data['x'], return_data['y'], |
---|
| 164 | return_data['model'], return_data['data']) |
---|
[3ae9179] | 165 | |
---|
[4d457df] | 166 | def new2DPlot(self, return_data): |
---|
| 167 | """ |
---|
| 168 | Create a new 2D data instance based on fitting results |
---|
| 169 | """ |
---|
[dcabba7] | 170 | image = return_data['image'] |
---|
| 171 | data = return_data['data'] |
---|
| 172 | model = return_data['model'] |
---|
[4d457df] | 173 | |
---|
[2add354] | 174 | np.nan_to_num(image) |
---|
[4d457df] | 175 | new_plot = Data2D(image=image, err_image=data.err_data) |
---|
| 176 | new_plot.name = model.name + '2d' |
---|
| 177 | new_plot.title = "Analytical model 2D " |
---|
[dcabba7] | 178 | new_plot.id = str(return_data['page_id']) + " " + data.name |
---|
| 179 | new_plot.group_id = str(return_data['page_id']) + " Model2D" |
---|
[4d457df] | 180 | new_plot.detector = data.detector |
---|
| 181 | new_plot.source = data.source |
---|
| 182 | new_plot.is_data = False |
---|
| 183 | new_plot.qx_data = data.qx_data |
---|
| 184 | new_plot.qy_data = data.qy_data |
---|
| 185 | new_plot.q_data = data.q_data |
---|
| 186 | new_plot.mask = data.mask |
---|
| 187 | ## plot boundaries |
---|
| 188 | new_plot.ymin = data.ymin |
---|
| 189 | new_plot.ymax = data.ymax |
---|
| 190 | new_plot.xmin = data.xmin |
---|
| 191 | new_plot.xmax = data.xmax |
---|
| 192 | |
---|
| 193 | title = data.title |
---|
| 194 | |
---|
| 195 | new_plot.is_data = False |
---|
| 196 | if data.is_data: |
---|
| 197 | data_name = str(data.name) |
---|
| 198 | else: |
---|
| 199 | data_name = str(model.__class__.__name__) + '2d' |
---|
| 200 | |
---|
| 201 | if len(title) > 1: |
---|
| 202 | new_plot.title = "Model2D for %s " % model.name + data_name |
---|
| 203 | new_plot.name = model.name + " [" + \ |
---|
| 204 | data_name + "]" |
---|
| 205 | |
---|
[6fd4e36] | 206 | return new_plot |
---|
[4d457df] | 207 | |
---|
[3ae9179] | 208 | def new1DProductPlots(self, return_data, tab_id): |
---|
| 209 | """ |
---|
[b4d05bd] | 210 | If return_data contains separated P(Q) and/or S(Q) data, create 1D plots for each and return as the tuple |
---|
| 211 | (pq_plot, sq_plot). If either are unavailable, the corresponding plot is None. |
---|
[3ae9179] | 212 | """ |
---|
[40975f8] | 213 | plots = [] |
---|
[9ba91b7] | 214 | for name, result in return_data['intermediate_results'].items(): |
---|
[61f0c75] | 215 | if not isinstance(result, np.ndarray): |
---|
| 216 | continue |
---|
[9ba91b7] | 217 | plots.append(self._create1DPlot(tab_id, return_data['x'], result, |
---|
| 218 | return_data['model'], return_data['data'], |
---|
| 219 | component=name)) |
---|
[40975f8] | 220 | return plots |
---|
[3ae9179] | 221 | |
---|
[4d457df] | 222 | def computeDataRange(self): |
---|
| 223 | """ |
---|
[ee18d33] | 224 | Wrapper for calculating the data range based on local dataset |
---|
| 225 | """ |
---|
| 226 | return self.computeRangeFromData(self.data) |
---|
| 227 | |
---|
| 228 | def computeRangeFromData(self, data): |
---|
| 229 | """ |
---|
[4d457df] | 230 | Compute the minimum and the maximum range of the data |
---|
| 231 | return the npts contains in data |
---|
| 232 | """ |
---|
| 233 | qmin, qmax, npts = None, None, None |
---|
[ee18d33] | 234 | if isinstance(data, Data1D): |
---|
[4d457df] | 235 | try: |
---|
[ee18d33] | 236 | qmin = min(data.x) |
---|
| 237 | qmax = max(data.x) |
---|
| 238 | npts = len(data.x) |
---|
[4d457df] | 239 | except (ValueError, TypeError): |
---|
| 240 | msg = "Unable to find min/max/length of \n data named %s" % \ |
---|
| 241 | self.data.filename |
---|
[b3e8629] | 242 | raise ValueError(msg) |
---|
[4d457df] | 243 | |
---|
| 244 | else: |
---|
| 245 | qmin = 0 |
---|
| 246 | try: |
---|
[ee18d33] | 247 | x = max(np.fabs(data.xmin), np.fabs(data.xmax)) |
---|
| 248 | y = max(np.fabs(data.ymin), np.fabs(data.ymax)) |
---|
[4d457df] | 249 | except (ValueError, TypeError): |
---|
| 250 | msg = "Unable to find min/max of \n data named %s" % \ |
---|
| 251 | self.data.filename |
---|
[b3e8629] | 252 | raise ValueError(msg) |
---|
[2add354] | 253 | qmax = np.sqrt(x * x + y * y) |
---|
[ee18d33] | 254 | npts = len(data.data) |
---|
[4d457df] | 255 | return qmin, qmax, npts |
---|