1 | import numpy as np |
---|
2 | |
---|
3 | from sas.qtgui.Plotting.PlotterData import Data1D |
---|
4 | from sas.qtgui.Plotting.PlotterData import Data2D |
---|
5 | |
---|
6 | from sas.sascalc.dataloader.data_info import Detector |
---|
7 | from sas.sascalc.dataloader.data_info import Source |
---|
8 | |
---|
9 | |
---|
10 | class FittingLogic(object): |
---|
11 | """ |
---|
12 | All the data-related logic. This class deals exclusively with Data1D/2D |
---|
13 | No QStandardModelIndex here. |
---|
14 | """ |
---|
15 | def __init__(self, data=None): |
---|
16 | self._data = data |
---|
17 | self.data_is_loaded = False |
---|
18 | #dq data presence in the dataset |
---|
19 | self.dq_flag = False |
---|
20 | #di data presence in the dataset |
---|
21 | self.di_flag = False |
---|
22 | if data is not None: |
---|
23 | self.data_is_loaded = True |
---|
24 | self.setDataProperties() |
---|
25 | |
---|
26 | @property |
---|
27 | def data(self): |
---|
28 | return self._data |
---|
29 | |
---|
30 | @data.setter |
---|
31 | def data(self, value): |
---|
32 | """ data setter """ |
---|
33 | self._data = value |
---|
34 | self.data_is_loaded = True |
---|
35 | self.setDataProperties() |
---|
36 | |
---|
37 | def isLoadedData(self): |
---|
38 | """ accessor """ |
---|
39 | return self.data_is_loaded |
---|
40 | |
---|
41 | def setDataProperties(self): |
---|
42 | """ |
---|
43 | Analyze data and set up some properties important for |
---|
44 | the Presentation layer |
---|
45 | """ |
---|
46 | if self._data.__class__.__name__ == "Data2D": |
---|
47 | if self._data.err_data is not None and np.any(self._data.err_data): |
---|
48 | self.di_flag = True |
---|
49 | if self._data.dqx_data is not None and np.any(self._data.dqx_data): |
---|
50 | self.dq_flag = True |
---|
51 | else: |
---|
52 | if self._data.dy is not None and np.any(self._data.dy): |
---|
53 | self.di_flag = True |
---|
54 | if self._data.dx is not None and np.any(self._data.dx): |
---|
55 | self.dq_flag = True |
---|
56 | elif self._data.dxl is not None and np.any(self._data.dxl): |
---|
57 | self.dq_flag = True |
---|
58 | |
---|
59 | def createDefault1dData(self, interval, tab_id=0): |
---|
60 | """ |
---|
61 | Create default data for fitting perspective |
---|
62 | Only when the page is on theory mode. |
---|
63 | """ |
---|
64 | self._data = Data1D(x=interval) |
---|
65 | self._data.xaxis('\\rm{Q}', "A^{-1}") |
---|
66 | self._data.yaxis('\\rm{Intensity}', "cm^{-1}") |
---|
67 | self._data.is_data = False |
---|
68 | self._data.id = str(tab_id) + " data" |
---|
69 | self._data.group_id = str(tab_id) + " Model1D" |
---|
70 | |
---|
71 | def createDefault2dData(self, qmax, qstep, tab_id=0): |
---|
72 | """ |
---|
73 | Create 2D data by default |
---|
74 | Only when the page is on theory mode. |
---|
75 | """ |
---|
76 | self._data = Data2D() |
---|
77 | self._data.xaxis('\\rm{Q_{x}}', 'A^{-1}') |
---|
78 | self._data.yaxis('\\rm{Q_{y}}', 'A^{-1}') |
---|
79 | self._data.is_data = False |
---|
80 | self._data.id = str(tab_id) + " data" |
---|
81 | self._data.group_id = str(tab_id) + " Model2D" |
---|
82 | |
---|
83 | # Default detector |
---|
84 | self._data.detector.append(Detector()) |
---|
85 | index = len(self._data.detector) - 1 |
---|
86 | self._data.detector[index].distance = 8000 # mm |
---|
87 | self._data.source.wavelength = 6 # A |
---|
88 | self._data.detector[index].pixel_size.x = 5 # mm |
---|
89 | self._data.detector[index].pixel_size.y = 5 # mm |
---|
90 | self._data.detector[index].beam_center.x = qmax |
---|
91 | self._data.detector[index].beam_center.y = qmax |
---|
92 | # theory default: assume the beam |
---|
93 | #center is located at the center of sqr detector |
---|
94 | xmax = qmax |
---|
95 | xmin = -qmax |
---|
96 | ymax = qmax |
---|
97 | ymin = -qmax |
---|
98 | |
---|
99 | x = np.linspace(start=xmin, stop=xmax, num=qstep, endpoint=True) |
---|
100 | y = np.linspace(start=ymin, stop=ymax, num=qstep, endpoint=True) |
---|
101 | # Use data info instead |
---|
102 | new_x = np.tile(x, (len(y), 1)) |
---|
103 | new_y = np.tile(y, (len(x), 1)) |
---|
104 | new_y = new_y.swapaxes(0, 1) |
---|
105 | |
---|
106 | # all data required in 1d array |
---|
107 | qx_data = new_x.flatten() |
---|
108 | qy_data = new_y.flatten() |
---|
109 | q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) |
---|
110 | |
---|
111 | # set all True (standing for unmasked) as default |
---|
112 | mask = np.ones(len(qx_data), dtype=bool) |
---|
113 | # calculate the range of qx and qy: this way, |
---|
114 | # it is a little more independent |
---|
115 | # store x and y bin centers in q space |
---|
116 | x_bins = x |
---|
117 | y_bins = y |
---|
118 | |
---|
119 | self._data.source = Source() |
---|
120 | self._data.data = np.ones(len(mask)) |
---|
121 | self._data.err_data = np.ones(len(mask)) |
---|
122 | self._data.qx_data = qx_data |
---|
123 | self._data.qy_data = qy_data |
---|
124 | self._data.q_data = q_data |
---|
125 | self._data.mask = mask |
---|
126 | self._data.x_bins = x_bins |
---|
127 | self._data.y_bins = y_bins |
---|
128 | # max and min taking account of the bin sizes |
---|
129 | self._data.xmin = xmin |
---|
130 | self._data.xmax = xmax |
---|
131 | self._data.ymin = ymin |
---|
132 | self._data.ymax = ymax |
---|
133 | |
---|
134 | def _create1DPlot(self, tab_id, x, y, model, data, component=None): |
---|
135 | """ |
---|
136 | For internal use: create a new 1D data instance based on fitting results. |
---|
137 | 'component' is a string indicating the model component, e.g. "P(Q)" |
---|
138 | """ |
---|
139 | # Create the new plot |
---|
140 | new_plot = Data1D(x=x, y=y) |
---|
141 | new_plot.is_data = False |
---|
142 | new_plot.dy = np.zeros(len(y)) |
---|
143 | _yaxis, _yunit = data.get_yaxis() |
---|
144 | _xaxis, _xunit = data.get_xaxis() |
---|
145 | |
---|
146 | new_plot.group_id = data.group_id |
---|
147 | new_plot.id = str(tab_id) + " " + ("[" + component + "] " if component else "") + model.id |
---|
148 | |
---|
149 | # use data.filename for data, use model.id for theory |
---|
150 | id_str = data.filename if data.filename else model.id |
---|
151 | new_plot.name = model.name + ((" " + component) if component else "") + " [" + id_str + "]" |
---|
152 | |
---|
153 | new_plot.title = new_plot.name |
---|
154 | new_plot.xaxis(_xaxis, _xunit) |
---|
155 | new_plot.yaxis(_yaxis, _yunit) |
---|
156 | |
---|
157 | return new_plot |
---|
158 | |
---|
159 | def new1DPlot(self, return_data, tab_id): |
---|
160 | """ |
---|
161 | Create a new 1D data instance based on fitting results |
---|
162 | """ |
---|
163 | return self._create1DPlot(tab_id, return_data['x'], return_data['y'], |
---|
164 | return_data['model'], return_data['data']) |
---|
165 | |
---|
166 | def new2DPlot(self, return_data): |
---|
167 | """ |
---|
168 | Create a new 2D data instance based on fitting results |
---|
169 | """ |
---|
170 | image = return_data['image'] |
---|
171 | data = return_data['data'] |
---|
172 | model = return_data['model'] |
---|
173 | |
---|
174 | np.nan_to_num(image) |
---|
175 | new_plot = Data2D(image=image, err_image=data.err_data) |
---|
176 | new_plot.name = model.name + '2d' |
---|
177 | new_plot.title = "Analytical model 2D " |
---|
178 | new_plot.id = str(return_data['page_id']) + " " + data.name |
---|
179 | new_plot.group_id = str(return_data['page_id']) + " Model2D" |
---|
180 | new_plot.detector = data.detector |
---|
181 | new_plot.source = data.source |
---|
182 | new_plot.is_data = False |
---|
183 | new_plot.qx_data = data.qx_data |
---|
184 | new_plot.qy_data = data.qy_data |
---|
185 | new_plot.q_data = data.q_data |
---|
186 | new_plot.mask = data.mask |
---|
187 | ## plot boundaries |
---|
188 | new_plot.ymin = data.ymin |
---|
189 | new_plot.ymax = data.ymax |
---|
190 | new_plot.xmin = data.xmin |
---|
191 | new_plot.xmax = data.xmax |
---|
192 | |
---|
193 | title = data.title |
---|
194 | |
---|
195 | new_plot.is_data = False |
---|
196 | if data.is_data: |
---|
197 | data_name = str(data.name) |
---|
198 | else: |
---|
199 | data_name = str(model.__class__.__name__) + '2d' |
---|
200 | |
---|
201 | if len(title) > 1: |
---|
202 | new_plot.title = "Model2D for %s " % model.name + data_name |
---|
203 | new_plot.name = model.name + " [" + \ |
---|
204 | data_name + "]" |
---|
205 | |
---|
206 | return new_plot |
---|
207 | |
---|
208 | def new1DProductPlots(self, return_data, tab_id): |
---|
209 | """ |
---|
210 | If return_data contains separated P(Q) and/or S(Q) data, create 1D plots for each and return as the tuple |
---|
211 | (pq_plot, sq_plot). If either are unavailable, the corresponding plot is None. |
---|
212 | """ |
---|
213 | plots = [] |
---|
214 | for name, result in return_data['intermediate_results'].items(): |
---|
215 | if not isinstance(result, np.ndarray): |
---|
216 | continue |
---|
217 | plots.append(self._create1DPlot(tab_id, return_data['x'], result, |
---|
218 | return_data['model'], return_data['data'], |
---|
219 | component=name)) |
---|
220 | return plots |
---|
221 | |
---|
222 | def computeDataRange(self): |
---|
223 | """ |
---|
224 | Wrapper for calculating the data range based on local dataset |
---|
225 | """ |
---|
226 | return self.computeRangeFromData(self.data) |
---|
227 | |
---|
228 | def computeRangeFromData(self, data): |
---|
229 | """ |
---|
230 | Compute the minimum and the maximum range of the data |
---|
231 | return the npts contains in data |
---|
232 | """ |
---|
233 | qmin, qmax, npts = None, None, None |
---|
234 | if isinstance(data, Data1D): |
---|
235 | try: |
---|
236 | qmin = min(data.x) |
---|
237 | qmax = max(data.x) |
---|
238 | npts = len(data.x) |
---|
239 | except (ValueError, TypeError): |
---|
240 | msg = "Unable to find min/max/length of \n data named %s" % \ |
---|
241 | self.data.filename |
---|
242 | raise ValueError(msg) |
---|
243 | |
---|
244 | else: |
---|
245 | qmin = 0 |
---|
246 | try: |
---|
247 | x = max(np.fabs(data.xmin), np.fabs(data.xmax)) |
---|
248 | y = max(np.fabs(data.ymin), np.fabs(data.ymax)) |
---|
249 | except (ValueError, TypeError): |
---|
250 | msg = "Unable to find min/max of \n data named %s" % \ |
---|
251 | self.data.filename |
---|
252 | raise ValueError(msg) |
---|
253 | qmax = np.sqrt(x * x + y * y) |
---|
254 | npts = len(data.data) |
---|
255 | return qmin, qmax, npts |
---|