[318b5bbb] | 1 | <body> |
---|
[4b30118] | 2 | <h4>Generic Scattering Calculator:</h4> |
---|
| 3 | Polarization and Magnetic Scattering |
---|
| 4 | <br> |
---|
| 5 | <br> |
---|
[318b5bbb] | 6 | <ul> |
---|
| 7 | <li><a href="#theory">Theory:</a></li> |
---|
| 8 | <li><a href="#gui">GUI</a></li> |
---|
[4b30118] | 9 | <li><a href="#pdb">PDB Data</a></li> |
---|
[318b5bbb] | 10 | </ul> |
---|
| 11 | <br> |
---|
[4b30118] | 12 | <br> |
---|
[318b5bbb] | 13 | <b>1. <a name="theory">Theory</a> </b> |
---|
| 14 | <br> |
---|
| 15 | In general, a particle with a volume V can be described by an ensemble containing N |
---|
| 16 | 3-dimensional rectangular pixels where each pixels are much smaller than V. |
---|
| 17 | Assuming that |
---|
| 18 | all the pixel sizes are same, the elastic scattering intensity |
---|
| 19 | by the particle |
---|
| 20 | <p> |
---|
[6aad2e8] | 21 | <img src="gen_i.png"/> |
---|
[318b5bbb] | 22 | </p> |
---|
| 23 | <br> |
---|
| 24 | where β<sub>j</sub> and r<sub>j</sub> are the scattering |
---|
| 25 | length density and the position |
---|
| 26 | of the j'th pixel respectively. And the total volume |
---|
| 27 | <p> |
---|
[6aad2e8] | 28 | <img src="v_j.png"/> |
---|
[318b5bbb] | 29 | </p> |
---|
| 30 | <br> |
---|
[3657667] | 31 | for β<sub>j</sub> ≠ 0 where v<sub>j</sub> is the volume of the j'th pixel |
---|
[afcb052] | 32 | (or the j'th natural atomic volume (= atomic mass/natural molar density/Avogadro number) |
---|
[afd45674] | 33 | for the atomic structures). The total volume V can be corrected by users. |
---|
| 34 | This correction is useful especially for an atomic structure (taken from a pdb file) to get the right |
---|
| 35 | normalization. Note that the β<sub>j</sub> displayed in GUI may be incorrect but will not |
---|
| 36 | affect the scattering computation if the correction of the total volume is made. |
---|
[318b5bbb] | 37 | <br> |
---|
| 38 | The scattering length density (SLD) of each pixel where the SLD is uniform, is a combination of the nuclear and magnetic SLDs |
---|
| 39 | and depends on the spin states of the neutrons as follows: |
---|
| 40 | <br> |
---|
| 41 | <br> |
---|
| 42 | For magnetic scattering, only the magnetization component, <b>M</b><sub>perp</sub>, |
---|
| 43 | perpendicular to the scattering vector <b>Q</b> contributes to the the magnetic |
---|
| 44 | scattering length. (Figure below). |
---|
| 45 | <p> |
---|
[6aad2e8] | 46 | <img src="mag_vector.png"/> |
---|
[318b5bbb] | 47 | </p> |
---|
| 48 | <br> |
---|
| 49 | The magnetic scattering length density is then |
---|
| 50 | <p> |
---|
[6aad2e8] | 51 | <img src="dm_eq.png"/> |
---|
[318b5bbb] | 52 | </p> |
---|
| 53 | <br> |
---|
| 54 | where γ = -1.913 the gyromagnetic ratio, μ<sub>B</sub> is the Bohr magneton, |
---|
| 55 | r<sub>0</sub> is the classical radius of electron, |
---|
| 56 | and <b>σ</b> is the Pauli spin. |
---|
| 57 | <br> |
---|
| 58 | For polarized neutron, the magnetic scattering is depending on the spin states. |
---|
| 59 | Let's consider that the incident neutrons are polarized parallel (+)/anti-parallel |
---|
| 60 | (–) to the x' axis (See both Figures above). |
---|
| 61 | The possible out-coming states then are + and - states for both incident states. |
---|
| 62 | <br> |
---|
| 63 | - Non-spin-flips: (+ +) and (- -) |
---|
| 64 | <br> |
---|
| 65 | - Spin-flips: (+ -) and (- +) |
---|
| 66 | <br> |
---|
| 67 | <p> |
---|
[6aad2e8] | 68 | <img src="gen_mag_pic.png"/> |
---|
[318b5bbb] | 69 | </p> |
---|
| 70 | <br> |
---|
| 71 | <br> |
---|
| 72 | Now, let's assume that the angles of the <b>Q</b> vector and the spin-axis (x') from x-axis |
---|
| 73 | are φ and θ<sub>up</sub>, respectively (See Figure above). |
---|
| 74 | Then, depending upon the polarization (spin) state of neutrons, the scattering length |
---|
| 75 | densities , including the nuclear scattering length density (β <sub>N</sub>) are given as, for non-spin-flips, |
---|
| 76 | <p> |
---|
[6aad2e8] | 77 | <img src="sld1.png"/> |
---|
[318b5bbb] | 78 | </p> |
---|
| 79 | <br> |
---|
| 80 | <br> |
---|
| 81 | for spin-flips, |
---|
| 82 | <p> |
---|
[6aad2e8] | 83 | <img src="sld2.png"/> |
---|
[318b5bbb] | 84 | </p> |
---|
| 85 | <br> |
---|
| 86 | <br> |
---|
| 87 | where |
---|
| 88 | <p> |
---|
[6aad2e8] | 89 | <img src="mxp.png"/> |
---|
[318b5bbb] | 90 | </p> |
---|
| 91 | <p> |
---|
[6aad2e8] | 92 | <img src="myp.png"/> |
---|
[318b5bbb] | 93 | </p> |
---|
| 94 | <p> |
---|
[6aad2e8] | 95 | <img src="mzp.png"/> |
---|
[318b5bbb] | 96 | </p> |
---|
| 97 | <p> |
---|
[6aad2e8] | 98 | <img src="mqx.png"/> |
---|
[318b5bbb] | 99 | </p> |
---|
| 100 | <p> |
---|
[6aad2e8] | 101 | <img src="mqy.png"/> |
---|
[318b5bbb] | 102 | </p> |
---|
| 103 | <br> |
---|
| 104 | <br> |
---|
| 105 | Here, the M<sub>0x</sub>, M<sub>0y</sub> and M<sub>0z</sub> are the x, y and z |
---|
| 106 | components of the magnetization vector given in the xyz lab frame. |
---|
| 107 | <br> |
---|
| 108 | <br> |
---|
| 109 | <b>2. <a name="gui">GUI</a> </b> |
---|
| 110 | <br> |
---|
| 111 | <p> |
---|
[6aad2e8] | 112 | <img src="gen_gui_help.png"/> |
---|
[318b5bbb] | 113 | </p> |
---|
| 114 | <br> |
---|
| 115 | <p> |
---|
| 116 | After the computation, the result will be listed in the 'Theory' box |
---|
| 117 | in the data explorer panel on the main window. |
---|
| 118 | <br> |
---|
[4726f7c] | 119 | The 'Up_frac_in' and 'Up_frac_out' are the ratio, (spin up) /(spin up + spin down) neutrons |
---|
[318b5bbb] | 120 | before the sample and at the analyzer, respectively. |
---|
| 121 | </p> |
---|
| 122 | <br> |
---|
[4726f7c] | 123 | *Note I: The values of 'Up_frac_in' and 'Up_frac_out' must be in the range between 0 and 1. |
---|
[077207b] | 124 | For example, both values are 0.5 for unpolarized neutrons. |
---|
| 125 | <br> |
---|
[dbc01f2] | 126 | *Note II: This computation is totally based on the pixel (or atomic) data fixed |
---|
[077207b] | 127 | in the xyz coordinates. Thus no angular orientational averaging is considered. |
---|
| 128 | <br> |
---|
[dbc01f2] | 129 | *Note III: For the nuclear scattering length density, only the real component is taken account. |
---|
| 130 | <br> |
---|
[4b30118] | 131 | <br> |
---|
| 132 | <b>3. <a name="pdb">PDB Data</a> </b> |
---|
| 133 | <br> |
---|
| 134 | This Generic scattering calculator also supports some pdb files without considering polarized/magnetic scattering |
---|
| 135 | so that the related parameters such as Up_*** will be ignored (see the Picture below). The calculation for fixed orientation uses (the first) Equation above resulting |
---|
| 136 | in a 2D output, whileas the scattering calculation averaged over all the orientations uses the Debye equation providing a 1D output: |
---|
| 137 | <p> |
---|
[6aad2e8] | 138 | <img src="gen_debye_eq.png"/> |
---|
[4b30118] | 139 | </p> |
---|
| 140 | <br> |
---|
| 141 | where v<sub>j</sub>β<sub>j</sub> ≡ b<sub>j</sub> is the scattering length of the j'th atom. |
---|
| 142 | The resultant outputs will be displayed in the DataExporer for further uses. |
---|
| 143 | <br> |
---|
| 144 | <p> |
---|
| 145 | <img src="pdb_combo.jpg"/> |
---|
| 146 | </p> |
---|
[318b5bbb] | 147 | </body> |
---|