source: sasview/src/sas/models/media/olddocs/model_functions.rst @ 1e81bc8

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 1e81bc8 was 02d7952, checked in by smk78, 9 years ago

Oops! Missed a duplicate label Guinier_

  • Property mode set to 100644
File size: 167.7 KB
RevLine 
[1c03e14]1.. model_functions.rst
2
3.. This is a port of the original SasView model_functions.html to ReSTructured text
[6386cd8]4.. by S King, ISIS, during and after SasView CodeCamp-II in April 2014.
5
6.. Thanks are due to A Jackson & P Kienzle for advice on RST!
7
8.. The CoreShellEllipsoidXTModel was ported and documented by R K Heenan, ISIS, Apr 2014
9.. The RectangularPrism models were coded and documented by M A Gonzalez, ILL, Apr 2014
10
11.. To do:
12.. Add example parameters/plots for the CoreShellEllipsoidXTModel
13.. Add example parameters/plots for the RectangularPrism models
14.. Check the content against the NIST Igor Help File
15.. Wordsmith the content for consistency of style, etc
16
17
18
19.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
20
[1c03e14]21
[ee9fa94]22.. note::  The contents of this document are presented in good faith and are
23           believed to be mostly correct and accurate, however they have not
24           yet been rigorously checked for errors. June2015
[fb07044d]25
[1c03e14]26
27.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
28
29
30
31.. Actual document starts here...
32
[5e880fe1]33.. _SasView_model_functions:
34
[1c03e14]35SasView Model Functions
36=======================
37
[98b30b4]38.. _Background:
[1c03e14]39
[98b30b4]401. Background
[1c03e14]41---------------
42
43Many of our models use the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
[6386cd8]44Research and thus some content and figures in this document are originated from or shared with the NIST SANS Igor-based
45analysis package.
[1c03e14]46
47This software provides form factors for various particle shapes. After giving a mathematical definition of each model,
48we show the list of parameters available to the user. Validation plots for each model are also presented.
49
50Instructions on how to use SasView itself are available separately.
51
52To easily compare to the scattering intensity measured in experiments, we normalize the form factors by the volume of
53the particle
54
[34e0c32]55.. image:: ..\img\olddocs\image001.PNG
[1c03e14]56
57with
58
[34e0c32]59.. image:: ..\img\olddocs\image002.PNG
[1c03e14]60
61where |P0|\ *(q)* is the un-normalized form factor, |rho|\ *(r)* is the scattering length density at a given
62point in space and the integration is done over the volume *V* of the scatterer.
63
64For systems without inter-particle interference, the form factors we provide can be related to the scattering intensity
65by the particle volume fraction
66
[34e0c32]67.. image:: ..\img\olddocs\image003.PNG
[1c03e14]68
69Our so-called 1D scattering intensity functions provide *P(q)* for the case where the scatterer is randomly oriented. In
[6386cd8]70that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SAS
[1c03e14]71detector will have an azimuthal symmetry around *q*\ =0 .
72
73Our so-called 2D scattering intensity functions provide *P(q,* |phi| *)* for an oriented system as a function of a
74q-vector in the plane of the detector. We define the angle |phi| as the angle between the q vector and the horizontal
75(x) axis of the plane of the detector.
76
77For information about polarised and magnetic scattering, click here_.
78
79.. _here: polar_mag_help.html
80
81
82
83.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
84
85
86
87.. _Model:
88
892. Model functions
90------------------
91
92.. _Shape-based:
93
942.1 Shape-based Functions
95-------------------------
96
97Sphere-based
98------------
99
100- SphereModel_ (including magnetic 2D version)
101- BinaryHSModel_
102- FuzzySphereModel_
103- RaspBerryModel_
104- CoreShellModel_ (including magnetic 2D version)
[7072ce6]105- MicelleSphCoreModel_
[1c03e14]106- CoreMultiShellModel_ (including magnetic 2D version)
107- Core2ndMomentModel_
108- MultiShellModel_
109- OnionExpShellModel_
110- VesicleModel_
111- SphericalSLDModel_
112- LinearPearlsModel_
113- PearlNecklaceModel_
114
115Cylinder-based
116--------------
117
118- CylinderModel_ (including magnetic 2D version)
119- HollowCylinderModel_
[38d4102]120- CappedCylinderModel_
121- CoreShellCylinderModel_
122- EllipticalCylinderModel_
[77cfcf0]123- FlexibleCylinderModel_
124- FlexCylEllipXModel_
125- CoreShellBicelleModel_
126- BarBellModel_
127- StackedDisksModel_
128- PringleModel_
[1c03e14]129
130Ellipsoid-based
131---------------
132
[990c2eb]133- EllipsoidModel_
134- CoreShellEllipsoidModel_
135- CoreShellEllipsoidXTModel_
[bf8c07b]136- TriaxialEllipsoidModel_
[1c03e14]137
138Lamellae
139--------
140
[1127c32]141- LamellarModel_
142- LamellarFFHGModel_
143- LamellarPSModel_
144- LamellarPSHGModel_
[1c03e14]145
146Paracrystals
147------------
148
[1127c32]149- LamellarPCrystalModel_
[d4117ccb]150- SCCrystalModel_
151- FCCrystalModel_
152- BCCrystalModel_
[1c03e14]153
154Parallelpipeds
155--------------
156
[bf8c07b]157- ParallelepipedModel_ (including magnetic 2D version)
158- CSParallelepipedModel_
[6386cd8]159- RectangularPrismModel_
160- RectangularHollowPrismModel_
161- RectangularHollowPrismInfThinWallsModel_
[1c03e14]162
163.. _Shape-independent:
164
1652.2 Shape-Independent Functions
166-------------------------------
167
[6386cd8]168(In alphabetical order)
169
[4ed2d0a1]170- AbsolutePower_Law_
[93b6fcc]171- BEPolyelectrolyte_
172- BroadPeakModel_
173- CorrLength_
174- DABModel_
175- Debye_
176- FractalModel_
177- FractalCoreShell_
178- GaussLorentzGel_
[6386cd8]179- GelFitModel_
[ad25dc2]180- GuinierLaw_
[93b6fcc]181- GuinierPorod_
[6386cd8]182- LineModel_
[ad25dc2]183- LorentzOZ_
[93b6fcc]184- MassFractalModel_
185- MassSurfaceFractal_
[6386cd8]186- PeakGaussModel_
187- PeakLorentzModel_
188- Poly_GaussCoil_
189- PolyExclVolume_
190- PorodModel_
191- RPA10Model_
192- StarPolymer_
[93b6fcc]193- SurfaceFractalModel_
194- TeubnerStrey_
[6386cd8]195- TwoLorentzian_
196- TwoPowerLaw_
197- UnifiedPowerRg_
198- ReflectivityModel_
199- ReflectivityIIModel_
[1c03e14]200
201.. _Structure-factor:
202
2032.3 Structure Factor Functions
204------------------------------
205
206- HardSphereStructure_
207- SquareWellStructure_
208- HayterMSAStructure_
209- StickyHSStructure_
210
211.. _Customised:
212
2132.4 Customized Functions
214------------------------
215
216- testmodel_
217- testmodel_2_
218- sum_p1_p2_
219- sum_Ap1_1_Ap2_
220- polynomial5_
221- sph_bessel_jn_
222
[ee9fa94]223Also see the documentation on :ref:`Adding_your_own_models` under Fitting Data.
224
[1c03e14]225
226
227.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
228
229
230
231.. _References:
232
2333. References
234-------------
235
236*Small-Angle Scattering of X-Rays*
[93b6fcc]237A Guinier and G Fournet
[1c03e14]238John Wiley & Sons, New York (1955)
239
[93b6fcc]240P Stckel, R May, I Strell, Z Cejka, W Hoppe, H Heumann, W Zillig and H Crespi
[1c03e14]241*Eur. J. Biochem.*, 112, (1980), 411-417
242
[93b6fcc]243G Porod
[1c03e14]244in *Small Angle X-ray Scattering*
[93b6fcc]245(editors) O Glatter and O Kratky
[1c03e14]246Academic Press (1982)
247
248*Structure Analysis by Small-Angle X-Ray and Neutron Scattering*
[93b6fcc]249L.A Feigin and D I Svergun
[1c03e14]250Plenum Press, New York (1987)
251
[93b6fcc]252S Hansen
[1c03e14]253*J. Appl. Cryst.* 23, (1990), 344-346
254
[93b6fcc]255S J Henderson
[1c03e14]256*Biophys. J.* 70, (1996), 1618-1627
257
[93b6fcc]258B C McAlister and B P Grady
[1c03e14]259*J. Appl. Cryst.* 31, (1998), 594-599
260
[93b6fcc]261S R Kline
[1c03e14]262*J Appl. Cryst.* 39(6), (2006), 895
263
264**Also see the references at the end of the each model function descriptions.**
265
266
267
268.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
269
270
271
272Model Definitions
273-----------------
274
275.. _SphereModel:
276
277**2.1.1. SphereModel**
278
279This model provides the form factor, *P(q)*, for a monodisperse spherical particle with uniform scattering length
280density. The form factor is normalized by the particle volume as described below.
281
282For information about polarised and magnetic scattering, click here_.
283
284.. _here: polar_mag_help.html
285
286*2.1.1.1. Definition*
287
288The 1D scattering intensity is calculated in the following way (Guinier, 1955)
289
[34e0c32]290.. image:: ..\img\olddocs\image004.PNG
[1c03e14]291
292where *scale* is a volume fraction, *V* is the volume of the scatterer, *r* is the radius of the sphere, *bkg* is
293the background level and *sldXXX* is the scattering length density (SLD) of the scatterer or the solvent.
294
295Note that if your data is in absolute scale, the *scale* should represent the volume fraction (which is unitless) if
296you have a good fit. If not, it should represent the volume fraction \* a factor (by which your data might need to be
297rescaled).
298
299The 2D scattering intensity is the same as above, regardless of the orientation of the q vector.
300
301The returned value is scaled to units of |cm^-1| and the parameters of the SphereModel are the following:
302
303==============  ========  =============
304Parameter name  Units     Default value
305==============  ========  =============
306scale           None      1
307radius          |Ang|     60
308sldSph          |Ang^-2|  2.0e-6
309sldSolv         |Ang^-2|  1.0e-6
310background      |cm^-1|   0
311==============  ========  =============
312
313Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
314Research (Kline, 2006).
315
316REFERENCE
[bf8c07b]317
[93b6fcc]318A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]319
320*2.1.1.2. Validation of the SphereModel*
321
322Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
323NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software.
324
[34e0c32]325.. image:: ..\img\olddocs\image005.jpg
[1c03e14]326
327Figure 1: Comparison of the DANSE scattering intensity for a sphere with the output of the NIST SANS analysis software.
328The parameters were set to: Scale=1.0, Radius=60 |Ang|, Contrast=1e-6 |Ang^-2|, and Background=0.01 |cm^-1|.
329
[93b6fcc]330*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
[1c03e14]331
332
333
334.. _BinaryHSModel:
335
336**2.1.2. BinaryHSModel**
337
338*2.1.2.1. Definition*
339
340This model (binary hard sphere model) provides the scattering intensity, for binary mixture of spheres including hard
341sphere interaction between those particles. Using Percus-Yevick closure, the calculation is an exact multi-component
342solution
343
[34e0c32]344.. image:: ..\img\olddocs\image006.PNG
[1c03e14]345
346where *Sij* are the partial structure factors and *fi* are the scattering amplitudes of the particles. The subscript 1
347is for the smaller particle and 2 is for the larger. The number fraction of the larger particle, (*x* = n2/(n1+n2),
348where *n* = the number density) is internally calculated based on
349
[34e0c32]350.. image:: ..\img\olddocs\image007.PNG
[1c03e14]351
352The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
353
[34e0c32]354.. image:: ..\img\olddocs\image008.PNG
[1c03e14]355
356The parameters of the BinaryHSModel are the following (in the names, *l* (or *ls*\ ) stands for larger spheres
357while *s* (or *ss*\ ) for the smaller spheres).
358
359==============  ========  =============
360Parameter name  Units     Default value
361==============  ========  =============
362background      |cm^-1|   0.001
363l_radius        |Ang|     100.0
364ss_sld          |Ang^-2|  0.0
365ls_sld          |Ang^-2|  3e-6
366solvent_sld     |Ang^-2|  6e-6
367s_radius        |Ang|     25.0
368vol_frac_ls     None      0.1
369vol_frac_ss     None      0.2
370==============  ========  =============
371
[34e0c32]372.. image:: ..\img\olddocs\image009.jpg
[1c03e14]373
374*Figure. 1D plot using the default values above (w/200 data point).*
375
376Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
377Research (Kline, 2006).
378
379See the reference for details.
380
381REFERENCE
[bf8c07b]382
[93b6fcc]383N W Ashcroft and D C Langreth, *Physical Review*, 156 (1967) 685-692
[1c03e14]384[Errata found in *Phys. Rev.* 166 (1968) 934]
385
386
387
388.. _FuzzySphereModel:
389
390**2.1.3. FuzzySphereModel**
391
392This model is to calculate the scattering from spherical particles with a "fuzzy" interface.
393
394*2.1.3.1. Definition*
395
396The scattering intensity *I(q)* is calculated as:
397
[34e0c32]398.. image:: ..\img\olddocs\image010.PNG
[1c03e14]399
400where the amplitude *A(q)* is given as the typical sphere scattering convoluted with a Gaussian to get a gradual
401drop-off in the scattering length density
402
[34e0c32]403.. image:: ..\img\olddocs\image011.PNG
[1c03e14]404
405Here |A2|\ *(q)* is the form factor, *P(q)*. The scale is equivalent to the volume fraction of spheres, each of
406volume, *V*\. Contrast (|drho|) is the difference of scattering length densities of the sphere and the surrounding
407solvent.
408
409Poly-dispersion in radius and in fuzziness is provided for.
410
411The returned value is scaled to units of |cm^-1|\ |sr^-1|; ie, absolute scale.
412
413From the reference
414
415  The "fuzziness" of the interface is defined by the parameter |sigma| :sub:`fuzzy`\ . The particle radius *R*
416  represents the radius of the particle where the scattering length density profile decreased to 1/2 of the core
417  density. The |sigma| :sub:`fuzzy`\ is the width of the smeared particle surface; i.e., the standard deviation
418  from the average height of the fuzzy interface. The inner regions of the microgel that display a higher density
419  are described by the radial box profile extending to a radius of approximately *Rbox* ~ *R* - 2\ |sigma|\ . The
420  profile approaches zero as *Rsans* ~ *R* + 2\ |sigma|\ .
421
422For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
423
[34e0c32]424.. image:: ..\img\olddocs\image008.PNG
[1c03e14]425
426This example dataset is produced by running the FuzzySphereModel, using 200 data points, *qmin* = 0.001 -1,
427*qmax* = 0.7 |Ang^-1| and the default values
428
429==============  ========  =============
430Parameter name  Units     Default value
431==============  ========  =============
432scale           None      1.0
433radius          |Ang|     60
434fuzziness       |Ang|     10
435sldSolv         |Ang^-2|  3e-6
436sldSph          |Ang^-2|  1e-6
437background      |cm^-1|   0.001
438==============  ========  =============
439
[34e0c32]440.. image:: ..\img\olddocs\image012.jpg
[1c03e14]441
442*Figure. 1D plot using the default values (w/200 data point).*
443
444REFERENCE
[bf8c07b]445
[93b6fcc]446M Stieger, J. S Pedersen, P Lindner, W Richtering, *Langmuir*, 20 (2004) 7283-7292
[1c03e14]447
448
449
450.. _RaspBerryModel:
451
452**2.1.4. RaspBerryModel**
453
454Calculates the form factor, *P(q)*, for a "Raspberry-like" structure where there are smaller spheres at the surface
455of a larger sphere, such as the structure of a Pickering emulsion.
456
457*2.1.4.1. Definition*
458
459The structure is:
460
[34e0c32]461.. image:: ..\img\olddocs\raspberry_pic.jpg
[1c03e14]462
463where *Ro* = the radius of the large sphere, *Rp* = the radius of the smaller sphere on the surface, |delta| = the
464fractional penetration depth, and surface coverage = fractional coverage of the large sphere surface (0.9 max).
465
466The large and small spheres have their own SLD, as well as the solvent. The surface coverage term is a fractional
467coverage (maximum of approximately 0.9 for hexagonally-packed spheres on a surface). Since not all of the small
468spheres are necessarily attached to the surface, the excess free (small) spheres scattering is also included in the
469calculation. The function calculated follows equations (8)-(12) of the reference below, and the equations are not
470reproduced here.
471
472The returned value is scaled to units of |cm^-1|. No inter-particle scattering is included in this model.
473
474For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
475
[34e0c32]476.. image:: ..\img\olddocs\image008.PNG
[1c03e14]477
478This example dataset is produced by running the RaspBerryModel, using 2000 data points, *qmin* = 0.0001 |Ang^-1|,
479*qmax* = 0.2 |Ang^-1| and the default values below, where *Ssph/Lsph* stands for smaller or larger sphere, respectively,
480and *surfrac_Ssph* is the surface fraction of the smaller spheres.
481
482==============  ========  =============
483Parameter name  Units     Default value
484==============  ========  =============
485delta_Ssph      None      0
486radius_Lsph     |Ang|     5000
487radius_Ssph     |Ang|     100
488sld_Lsph        |Ang^-2|  -4e-07
489sld_Ssph        |Ang^-2|  3.5e-6
490sld_solv        |Ang^-2|  6.3e-6
491surfrac_Ssph    None      0.4
492volf_Lsph       None      0.05
493volf_Lsph       None      0.005
494background      |cm^-1|   0
495==============  ========  =============
496
[34e0c32]497.. image:: ..\img\olddocs\raspberry_plot.jpg
[1c03e14]498
499*Figure. 1D plot using the values of /2000 data points.*
500
501REFERENCE
[bf8c07b]502
[93b6fcc]503K Larson-Smith, A Jackson, and D C Pozzo, *Small angle scattering model for Pickering emulsions and raspberry*
[1c03e14]504*particles*, *Journal of Colloid and Interface Science*, 343(1) (2010) 36-41
505
506
507
508.. _CoreShellModel:
509
510**2.1.5. CoreShellModel**
511
512This model provides the form factor, *P(q)*, for a spherical particle with a core-shell structure. The form factor is
513normalized by the particle volume.
514
515For information about polarised and magnetic scattering, click here_.
516
517*2.1.5.1. Definition*
518
519The 1D scattering intensity is calculated in the following way (Guinier, 1955)
520
[34e0c32]521.. image:: ..\img\olddocs\image013.PNG
[1c03e14]522
523where *scale* is a scale factor, *Vs* is the volume of the outer shell, *Vc* is the volume of the core, *rs* is the
524radius of the shell, *rc* is the radius of the core, *c* is the scattering length density of the core, *s* is the
525scattering length density of the shell, *solv* is the scattering length density of the solvent, and *bkg* is the
526background level.
527
528The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
529
530NB: The outer most radius (ie, = *radius* + *thickness*) is used as the effective radius for *S(Q)* when
531*P(Q)* \* *S(Q)* is applied.
532
533The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellModel are the following
534
535==============  ========  =============
536Parameter name  Units     Default value
537==============  ========  =============
538scale           None      1.0
539(core) radius   |Ang|     60
540thickness       |Ang|     10
541core_sld        |Ang^-2|  1e-6
542shell_sld       |Ang^-2|  2e-6
543solvent_sld     |Ang^-2|  3e-6
544background      |cm^-1|   0.001
545==============  ========  =============
546
547Here, *radius* = the radius of the core and *thickness* = the thickness of the shell.
548
549Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
550Research (Kline, 2006).
551
552REFERENCE
[bf8c07b]553
[93b6fcc]554A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]555
556*2.1.5.2. Validation of the core-shell sphere model*
557
558Validation of our code was done by comparing the output of the 1D model to the output of the software provided by
559NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software.
560
[34e0c32]561.. image:: ..\img\olddocs\image014.jpg
[1c03e14]562
563Figure 1: Comparison of the SasView scattering intensity for a core-shell sphere with the output of the NIST SANS
564analysis software. The parameters were set to: *Scale* = 1.0, *Radius* = 60 , *Contrast* = 1e-6 |Ang^-2|, and
565*Background* = 0.001 |cm^-1|.
566
567
568
569.. _CoreMultiShellModel:
570
571**2.1.6. CoreMultiShellModel**
572
573This model provides the scattering from a spherical core with 1 to 4 concentric shell structures. The SLDs of the core
574and each shell are individually specified.
575
576For information about polarised and magnetic scattering, click here_.
577
578*2.1.6.1. Definition*
579
580This model is a trivial extension of the CoreShell function to a larger number of shells. See the CoreShell function
581for a diagram and documentation.
582
[77cfcf0]583The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]584
585Be careful! The SLDs and scale can be highly correlated. Hold as many of these parameters fixed as possible.
586
587The 2D scattering intensity is the same as P(q) of 1D, regardless of the orientation of the q vector.
588
589NB: The outer most radius (ie, = *radius* + 4 *thicknesses*) is used as the effective radius for *S(Q)* when
590*P(Q)* \* *S(Q)* is applied.
591
592The returned value is scaled to units of |cm^-1| and the parameters of the CoreMultiShell model are the following
593
594==============  ========  =============
595Parameter name  Units     Default value
596==============  ========  =============
597scale           None      1.0
598rad_core        |Ang|     60
599sld_core        |Ang^-2|  6.4e-6
600sld_shell1      |Ang^-2|  1e-6
601sld_shell2      |Ang^-2|  2e-6
602sld_shell3      |Ang^-2|  3e-6
603sld_shell4      |Ang^-2|  4e-6
604sld_solv        |Ang^-2|  6.4e-6
605thick_shell1    |Ang|     10
606thick_shell2    |Ang|     10
607thick_shell3    |Ang|     10
608thick_shell4    |Ang|     10
609background      |cm^-1|   0.001
610==============  ========  =============
611
612NB: Here, *rad_core* = the radius of the core, *thick_shelli* = the thickness of the shell *i* and
613*sld_shelli* = the SLD of the shell *i*. *sld_core* and the *sld_solv* are the SLD of the core and the solvent,
614respectively.
615
616Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
617Research (Kline, 2006).
618
619This example dataset is produced by running the CoreMultiShellModel using 200 data points, *qmin* = 0.001 -1,
620*qmax* = 0.7 -1 and the above default values.
621
[34e0c32]622.. image:: ..\img\olddocs\image015.jpg
[1c03e14]623
624*Figure: 1D plot using the default values (w/200 data point).*
625
626The scattering length density profile for the default sld values (w/ 4 shells).
627
[34e0c32]628.. image:: ..\img\olddocs\image016.jpg
[1c03e14]629
630*Figure: SLD profile against the radius of the sphere for default SLDs.*
631
632REFERENCE
[bf8c07b]633
634See the CoreShellModel_ documentation.
[1c03e14]635
636
637
638.. _Core2ndMomentModel:
639
640**2.1.7. Core2ndMomentModel**
641
642This model describes the scattering from a layer of surfactant or polymer adsorbed on spherical particles under the
643conditions that (i) the particles (cores) are contrast-matched to the dispersion medium, (ii) *S(Q)* ~ 1 (ie, the
644particle volume fraction is dilute), (iii) the particle radius is >> layer thickness (ie, the interface is locally
645flat), and (iv) scattering from excess unadsorbed adsorbate in the bulk medium is absent or has been corrected for.
646
647Unlike a core-shell model, this model does not assume any form for the density distribution of the adsorbed species
648normal to the interface (cf, a core-shell model which assumes the density distribution to be a homogeneous
649step-function). For comparison, if the thickness of a (core-shell like) step function distribution is *t*, the second
650moment, |sigma| = sqrt((*t* :sup:`2` )/12). The |sigma| is the second moment about the mean of the density distribution
651(ie, the distance of the centre-of-mass of the distribution from the interface).
652
653*2.1.7.1. Definition*
654
655The *I* :sub:`0` is calculated in the following way (King, 2002)
656
[34e0c32]657.. image:: ..\img\olddocs\secondmeq1.jpg
[1c03e14]658
659where *scale* is a scale factor, *poly* is the sld of the polymer (or surfactant) layer, *solv* is the sld of the
660solvent/medium and cores, |phi|\ :sub:`cores` is the volume fraction of the core paraticles, and |biggamma| and
661|delta| are the adsorbed amount and the bulk density of the polymers respectively. The |sigma| is the second moment
662of the thickness distribution.
663
664Note that all parameters except the |sigma| are correlated for fitting so that fitting those with more than one
665parameter will generally fail. Also note that unlike other shape models, no volume normalization is applied to this
666model (the calculation is exact).
667
668The returned value is scaled to units of |cm^-1| and the parameters are the following
669
670==============  ========  =============
671Parameter name  Units     Default value
672==============  ========  =============
673scale           None      1.0
674density_poly    g/cm2     0.7
675radius_core     |Ang|     500
676ads_amount      mg/m 2    1.9
677second_moment   |Ang|     23.0
678volf_cores      None      0.14
679sld_poly        |Ang^-2|  1.5e-6
680sld_solv        |Ang^-2|  6.3e-6
681background      |cm^-1|   0.0
682==============  ========  =============
683
[34e0c32]684.. image:: ..\img\olddocs\secongm_fig1.jpg
[1c03e14]685
686REFERENCE
[bf8c07b]687
[93b6fcc]688S King, P Griffiths, J. Hone, and T Cosgrove, *SANS from Adsorbed Polymer Layers*,
[1c03e14]689*Macromol. Symp.*, 190 (2002) 33-42
690
691
692
693.. _MultiShellModel:
694
695**2.1.8. MultiShellModel**
696
697This model provides the form factor, *P(q)*, for a multi-lamellar vesicle with *N* shells where the core is filled with
698solvent and the shells are interleaved with layers of solvent. For *N* = 1, this returns the VesicleModel (above).
699
[34e0c32]700.. image:: ..\img\olddocs\image020.jpg
[1c03e14]701
702The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
703
[34e0c32]704.. image:: ..\img\olddocs\image008.PNG
[1c03e14]705
706NB: The outer most radius (= *core_radius* + *n_pairs* \* *s_thickness* + (*n_pairs* - 1) \* *w_thickness*) is used
707as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
708
709The returned value is scaled to units of |cm^-1| and the parameters of the MultiShellModel are the following
710
711==============  ========  =============
712Parameter name  Units     Default value
713==============  ========  =============
714scale           None      1.0
715core_radius     |Ang|     60.0
716n_pairs         None      2.0
717core_sld        |Ang^-2|  6.3e-6
718shell_sld       |Ang^-2|  0.0
719background      |cm^-1|   0.0
720s_thickness     |Ang|     10
721w_thickness     |Ang|     10
722==============  ========  =============
723
724NB: *s_thickness* is the shell thickness while the *w_thickness* is the solvent thickness, and *n_pair*
725is the number of shells.
726
[34e0c32]727.. image:: ..\img\olddocs\image021.jpg
[1c03e14]728
729*Figure. 1D plot using the default values (w/200 data point).*
730
731Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
732Research (Kline, 2006).
733
734REFERENCE
[bf8c07b]735
[93b6fcc]736B Cabane, *Small Angle Scattering Methods*, in *Surfactant Solutions: New Methods of Investigation*, Ch.2,
737Surfactant Science Series Vol. 22, Ed. R Zana and M Dekker, New York, (1987).
[1c03e14]738
739
740
741.. _OnionExpShellModel:
742
743**2.1.9. OnionExpShellModel**
744
745This model provides the form factor, *P(q)*, for a multi-shell sphere where the scattering length density (SLD) of the
746each shell is described by an exponential (linear, or flat-top) function. The form factor is normalized by the volume
747of the sphere where the SLD is not identical to the SLD of the solvent. We currently provide up to 9 shells with this
748model.
749
750*2.1.9.1. Definition*
751
752The 1D scattering intensity is calculated in the following way
753
[34e0c32]754.. image:: ..\img\olddocs\image022.gif
[1c03e14]755
[34e0c32]756.. image:: ..\img\olddocs\image023.gif
[1c03e14]757
758where, for a spherically symmetric particle with a particle density |rho|\ *(r)*
759
[34e0c32]760.. image:: ..\img\olddocs\image024.gif
[1c03e14]761
762so that
763
[34e0c32]764.. image:: ..\img\olddocs\image025.gif
[1c03e14]765
[34e0c32]766.. image:: ..\img\olddocs\image026.gif
[1c03e14]767
[34e0c32]768.. image:: ..\img\olddocs\image027.gif
[1c03e14]769
770Here we assumed that the SLDs of the core and solvent are constant against *r*.
771
772Now lets consider the SLD of a shell, *r*\ :sub:`shelli`, defined by
773
[34e0c32]774.. image:: ..\img\olddocs\image028.gif
[1c03e14]775
776An example of a possible SLD profile is shown below where *sld_in_shelli* (|rho|\ :sub:`in`\ ) and
777*thick_shelli* (|bigdelta|\ *t* :sub:`shelli`\ ) stand for the SLD of the inner side of the *i*\ th shell and the
778thickness of the *i*\ th shell in the equation above, respectively.
779
780For \| *A* \| > 0,
781
[34e0c32]782.. image:: ..\img\olddocs\image029.gif
[1c03e14]783
784For *A* ~ 0 (eg., *A* = -0.0001), this function converges to that of the linear SLD profile (ie,
785|rho|\ :sub:`shelli`\ *(r)* = *A*\ :sup:`'` ( *r* - *r*\ :sub:`shelli` - 1) / |bigdelta|\ *t* :sub:`shelli`) + *B*\ :sup:`'`),
786so this case is equivalent to
787
[34e0c32]788.. image:: ..\img\olddocs\image030.gif
[1c03e14]789
[34e0c32]790.. image:: ..\img\olddocs\image031.gif
[1c03e14]791
[34e0c32]792.. image:: ..\img\olddocs\image032.gif
[1c03e14]793
[34e0c32]794.. image:: ..\img\olddocs\image033.gif
[1c03e14]795
796For *A* = 0, the exponential function has no dependence on the radius (so that *sld_out_shell* (|rho|\ :sub:`out`) is
797ignored this case) and becomes flat. We set the constant to |rho|\ :sub:`in` for convenience, and thus the form
798factor contributed by the shells is
799
[34e0c32]800.. image:: ..\img\olddocs\image034.gif
[1c03e14]801
[34e0c32]802.. image:: ..\img\olddocs\image035.gif
[1c03e14]803
804In the equation
805
[34e0c32]806.. image:: ..\img\olddocs\image036.gif
[1c03e14]807
808Finally, the form factor can be calculated by
809
[34e0c32]810.. image:: ..\img\olddocs\image037.gif
[1c03e14]811
812where
813
[34e0c32]814.. image:: ..\img\olddocs\image038.gif
[1c03e14]815
816and
817
[34e0c32]818.. image:: ..\img\olddocs\image039.gif
[1c03e14]819
820The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
821defined as
822
[34e0c32]823.. image:: ..\img\olddocs\image040.gif
[1c03e14]824
825NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
826
827The returned value is scaled to units of |cm^-1| and the parameters of this model (for only one shell) are the following
828
829==============  ========  =============
830Parameter name  Units     Default value
831==============  ========  =============
832A_shell1        None      1
833scale           None      1.0
834rad_core        |Ang|     200
835thick_shell1    |Ang|     50
836sld_core        |Ang^-2|  1.0e-06
837sld_in_shell1   |Ang^-2|  1.7e-06
838sld_out_shell1  |Ang^-2|  2.0e-06
839sld_solv        |Ang^-2|  6.4e-06
840background      |cm^-1|   0.0
841==============  ========  =============
842
843NB: *rad_core* represents the core radius (*R1*) and *thick_shell1* (*R2* - *R1*) is the thickness of the shell1, etc.
844
[34e0c32]845.. image:: ..\img\olddocs\image041.jpg
[1c03e14]846
847*Figure. 1D plot using the default values (w/400 point).*
848
[34e0c32]849.. image:: ..\img\olddocs\image042.jpg
[1c03e14]850
851*Figure. SLD profile from the default values.*
852
853REFERENCE
[bf8c07b]854
[93b6fcc]855L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
[1c03e14]856Plenum Press, New York, (1987).
857
858
859
860.. _VesicleModel:
861
862**2.1.10. VesicleModel**
863
864This model provides the form factor, *P(q)*, for an unilamellar vesicle. The form factor is normalized by the volume
865of the shell.
866
867*2.1.10.1. Definition*
868
869The 1D scattering intensity is calculated in the following way (Guinier, 1955)
870
[34e0c32]871.. image:: ..\img\olddocs\image017.PNG
[1c03e14]872
873where *scale* is a scale factor, *Vshell* is the volume of the shell, *V1* is the volume of the core, *V2* is the total
874volume, *R1* is the radius of the core, *R2* is the outer radius of the shell, |rho|\ :sub:`1` is the scattering
875length density of the core and the solvent, |rho|\ :sub:`2` is the scattering length density of the shell, *bkg* is
876the background level, and *J1* = (sin\ *x*- *x* cos\ *x*)/ *x* :sup:`2`\ . The functional form is identical to a
877"typical" core-shell structure, except that the scattering is normalized by the volume that is contributing to the
878scattering, namely the volume of the shell alone. Also, the vesicle is best defined in terms of a core radius (= *R1*)
879and a shell thickness, *t*.
880
[34e0c32]881.. image:: ..\img\olddocs\image018.jpg
[1c03e14]882
883The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
884defined as
885
[34e0c32]886.. image:: ..\img\olddocs\image008.PNG
[1c03e14]887
888NB: The outer most radius (= *radius* + *thickness*) is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)*
889is applied.
890
891The returned value is scaled to units of |cm^-1| and the parameters of the VesicleModel are the following
892
893==============  ========  =============
894Parameter name  Units     Default value
895==============  ========  =============
896scale           None      1.0
897radius          |Ang|     100
898thickness       |Ang|     30
899core_sld        |Ang^-2|  6.3e-6
900shell_sld       |Ang^-2|  0
901background      |cm^-1|   0.0
902==============  ========  =============
903
904NB: *radius* represents the core radius (*R1*) and the *thickness* (*R2* - *R1*) is the shell thickness.
905
[34e0c32]906.. image:: ..\img\olddocs\image019.jpg
[1c03e14]907
908*Figure. 1D plot using the default values (w/200 data point).*
909
910Our model uses the form factor calculations implemented in a c-library
911provided by the NIST Center for Neutron Research (Kline, 2006).
912
913REFERENCE
[bf8c07b]914
[93b6fcc]915A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]916
917
918
919.. _SphericalSLDModel:
920
921**2.1.11. SphericalSLDModel**
922
923Similarly to the OnionExpShellModel, this model provides the form factor, *P(q)*, for a multi-shell sphere, where the
924interface between the each neighboring shells can be described by one of a number of functions including error,
925power-law, and exponential functions. This model is to calculate the scattering intensity by building a continuous
926custom SLD profile against the radius of the particle. The SLD profile is composed of a flat core, a flat solvent,
927a number (up to 9 ) flat shells, and the interfacial layers between the adjacent flat shells (or core, and solvent)
928(see below). Unlike the OnionExpShellModel (using an analytical integration), the interfacial layers here are
929sub-divided and numerically integrated assuming each of the sub-layers are described by a line function. The number
930of the sub-layer can be given by users by setting the integer values of *npts_inter* in the GUI. The form factor is
931normalized by the total volume of the sphere.
932
933*2.1.11.1. Definition*
934
935The 1D scattering intensity is calculated in the following way:
936
[34e0c32]937.. image:: ..\img\olddocs\image022.gif
[1c03e14]938
[34e0c32]939.. image:: ..\img\olddocs\image043.gif
[1c03e14]940
941where, for a spherically symmetric particle with a particle density |rho|\ *(r)*
942
[34e0c32]943.. image:: ..\img\olddocs\image024.gif
[1c03e14]944
945so that
946
[34e0c32]947.. image:: ..\img\olddocs\image044.gif
[1c03e14]948
[34e0c32]949.. image:: ..\img\olddocs\image045.gif
[1c03e14]950
[34e0c32]951.. image:: ..\img\olddocs\image046.gif
[1c03e14]952
[34e0c32]953.. image:: ..\img\olddocs\image047.gif
[1c03e14]954
[34e0c32]955.. image:: ..\img\olddocs\image048.gif
[1c03e14]956
[34e0c32]957.. image:: ..\img\olddocs\image027.gif
[1c03e14]958
959Here we assumed that the SLDs of the core and solvent are constant against *r*. The SLD at the interface between
960shells, |rho|\ :sub:`inter_i`, is calculated with a function chosen by an user, where the functions are
961
9621) Exp
963
[34e0c32]964.. image:: ..\img\olddocs\image049.gif
[1c03e14]965
9662) Power-Law
967
[34e0c32]968.. image:: ..\img\olddocs\image050.gif
[1c03e14]969
9703) Erf
971
[34e0c32]972.. image:: ..\img\olddocs\image051.gif
[1c03e14]973
974The functions are normalized so that they vary between 0 and 1, and they are constrained such that the SLD is
975continuous at the boundaries of the interface as well as each sub-layers. Thus *B* and *C* are determined.
976
977Once |rho|\ :sub:`rinter_i` is found at the boundary of the sub-layer of the interface, we can find its contribution
978to the form factor *P(q)*
979
[34e0c32]980.. image:: ..\img\olddocs\image052.gif
[1c03e14]981
[34e0c32]982.. image:: ..\img\olddocs\image053.gif
[1c03e14]983
[34e0c32]984.. image:: ..\img\olddocs\image054.gif
[1c03e14]985
986where we assume that |rho|\ :sub:`inter_i`\ *(r)* can be approximately linear within a sub-layer *j*.
987
988In the equation
989
[34e0c32]990.. image:: ..\img\olddocs\image055.gif
[1c03e14]991
992Finally, the form factor can be calculated by
993
[34e0c32]994.. image:: ..\img\olddocs\image037.gif
[1c03e14]995
996where
997
[34e0c32]998.. image:: ..\img\olddocs\image038.gif
[1c03e14]999
1000and
1001
[34e0c32]1002.. image:: ..\img\olddocs\image056.gif
[1c03e14]1003
1004The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
1005defined as
1006
[34e0c32]1007.. image:: ..\img\olddocs\image040.gif
[1c03e14]1008
1009NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1010
1011The returned value is scaled to units of |cm^-1| and the parameters of this model (for just one shell) are the following
1012
1013==============  ========  =============
1014Parameter name  Units     Default value
1015==============  ========  =============
1016background      |cm^-1|   0.0
1017npts_inter      None      35
1018scale           None      1
1019sld_solv        |Ang^-2|  1e-006
1020func_inter1     None      Erf
1021nu_inter        None      2.5
1022thick_inter1    |Ang|     50
1023sld_flat1       |Ang^-2|  4e-006
1024thick_flat1     |Ang|     100
1025func_inter0     None      Erf
1026nu_inter0       None      2.5
1027rad_core0       |Ang|     50
1028sld_core0       |Ang^-2|  2.07e-06
1029thick_core0     |Ang|     50
1030==============  ========  =============
1031
1032NB: *rad_core0* represents the core radius (*R1*).
1033
[34e0c32]1034.. image:: ..\img\olddocs\image057.jpg
[1c03e14]1035
1036*Figure. 1D plot using the default values (w/400 point).*
1037
[34e0c32]1038.. image:: ..\img\olddocs\image058.jpg
[1c03e14]1039
1040*Figure. SLD profile from the default values.*
1041
1042REFERENCE
[bf8c07b]1043
[93b6fcc]1044L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
[1c03e14]1045Plenum Press, New York, (1987)
1046
1047
1048
1049.. _LinearPearlsModel:
1050
1051**2.1.12. LinearPearlsModel**
1052
1053This model provides the form factor for *N* spherical pearls of radius *R* linearly joined by short strings (or segment
1054length or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation distance. The thickness
1055of each string is assumed to be negligible.
1056
[34e0c32]1057.. image:: ..\img\olddocs\linearpearls.jpg
[1c03e14]1058
1059*2.1.12.1. Definition*
1060
1061The output of the scattering intensity function for the LinearPearlsModel is given by (Dobrynin, 1996)
1062
[34e0c32]1063.. image:: ..\img\olddocs\linearpearl_eq1.gif
[1c03e14]1064
1065where the mass *m*\ :sub:`p` is (SLD\ :sub:`pearl` - SLD\ :sub:`solvent`) \* (volume of *N* pearls). V is the total
1066volume.
1067
1068The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
1069
1070The returned value is scaled to units of |cm^-1| and the parameters of the LinearPearlsModel are the following
1071
1072===============  ========  =============
1073Parameter name   Units     Default value
1074===============  ========  =============
1075scale            None      1.0
1076radius           |Ang|     80.0
1077edge_separation  |Ang|     350.0
1078num_pearls       None      3
1079sld_pearl        |Ang^-2|  1e-6
1080sld_solv         |Ang^-2|  6.3e-6
1081background       |cm^-1|   0.0
1082===============  ========  =============
1083
1084NB: *num_pearls* must be an integer.
1085
[34e0c32]1086.. image:: ..\img\olddocs\linearpearl_plot.jpg
[1c03e14]1087
1088REFERENCE
[bf8c07b]1089
[93b6fcc]1090A V Dobrynin, M Rubinstein and S P Obukhov, *Macromol.*, 29 (1996) 2974-2979
[1c03e14]1091
1092
1093
1094.. _PearlNecklaceModel:
1095
1096**2.1.13. PearlNecklaceModel**
1097
1098This model provides the form factor for a pearl necklace composed of two elements: *N* pearls (homogeneous spheres
1099of radius *R*) freely jointed by *M* rods (like strings - with a total mass *Mw* = *M* \* *m*\ :sub:`r` + *N* \* *m*\ :sub:`s`,
1100and the string segment length (or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation
1101distance.
1102
[34e0c32]1103.. image:: ..\img\olddocs\pearl_fig.jpg
[1c03e14]1104
1105*2.1.13.1. Definition*
1106
1107The output of the scattering intensity function for the PearlNecklaceModel is given by (Schweins, 2004)
1108
[34e0c32]1109.. image:: ..\img\olddocs\pearl_eq1.gif
[1c03e14]1110
1111where
1112
[34e0c32]1113.. image:: ..\img\olddocs\pearl_eq2.gif
[1c03e14]1114
[34e0c32]1115.. image:: ..\img\olddocs\pearl_eq3.gif
[1c03e14]1116
[34e0c32]1117.. image:: ..\img\olddocs\pearl_eq4.gif
[1c03e14]1118
[34e0c32]1119.. image:: ..\img\olddocs\pearl_eq5.gif
[1c03e14]1120
[34e0c32]1121.. image:: ..\img\olddocs\pearl_eq6.gif
[1c03e14]1122
1123and
1124
[34e0c32]1125.. image:: ..\img\olddocs\pearl_eq7.gif
[1c03e14]1126
1127where the mass *m*\ :sub:`i` is (SLD\ :sub:`i` - SLD\ :sub:`solvent`) \* (volume of the *N* pearls/rods). *V* is the
1128total volume of the necklace.
1129
1130The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
1131
1132The returned value is scaled to units of |cm^-1| and the parameters of the PearlNecklaceModel are the following
1133
1134===============  ========  =============
1135Parameter name   Units     Default value
1136===============  ========  =============
1137scale            None      1.0
1138radius           |Ang|     80.0
1139edge_separation  |Ang|     350.0
1140num_pearls       None      3
1141sld_pearl        |Ang^-2|  1e-6
1142sld_solv         |Ang^-2|  6.3e-6
1143sld_string       |Ang^-2|  1e-6
1144thick_string
1145(=rod diameter)  |Ang|     2.5
1146background       |cm^-1|   0.0
1147===============  ========  =============
1148
1149NB: *num_pearls* must be an integer.
1150
[34e0c32]1151.. image:: ..\img\olddocs\pearl_plot.jpg
[1c03e14]1152
1153REFERENCE
[bf8c07b]1154
[93b6fcc]1155R Schweins and K Huber, *Particle Scattering Factor of Pearl Necklace Chains*, *Macromol. Symp.* 211 (2004) 25-42 2004
[1c03e14]1156
1157
1158
1159.. _CylinderModel:
1160
1161**2.1.14. CylinderModel**
1162
1163This model provides the form factor for a right circular cylinder with uniform scattering length density. The form
1164factor is normalized by the particle volume.
1165
1166For information about polarised and magnetic scattering, click here_.
1167
1168*2.1.14.1. Definition*
1169
1170The output of the 2D scattering intensity function for oriented cylinders is given by (Guinier, 1955)
1171
[34e0c32]1172.. image:: ..\img\olddocs\image059.PNG
[1c03e14]1173
1174where
1175
[34e0c32]1176.. image:: ..\img\olddocs\image060.PNG
[1c03e14]1177
1178and |alpha| is the angle between the axis of the cylinder and the *q*-vector, *V* is the volume of the cylinder,
[58eccf6]1179*L* is the length of the cylinder, *r* is the radius of the cylinder, and |drho| (contrast) is the
[1c03e14]1180scattering length density difference between the scatterer and the solvent. *J1* is the first order Bessel function.
1181
1182To provide easy access to the orientation of the cylinder, we define the axis of the cylinder using two angles |theta|
1183and |phi|. Those angles are defined in Figure 1.
1184
[34e0c32]1185.. image:: ..\img\olddocs\image061.jpg
[1c03e14]1186
1187*Figure 1. Definition of the angles for oriented cylinders.*
1188
[34e0c32]1189.. image:: ..\img\olddocs\image062.jpg
[1c03e14]1190
1191*Figure 2. Examples of the angles for oriented pp against the detector plane.*
1192
1193NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and length values, and used as the
1194effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1195
1196The returned value is scaled to units of |cm^-1| and the parameters of the CylinderModel are the following:
1197
1198==============  ========  =============
1199Parameter name  Units     Default value
1200==============  ========  =============
1201scale           None      1.0
1202radius          |Ang|     20.0
1203length          |Ang|     400.0
1204contrast        |Ang^-2|  3.0e-6
1205background      |cm^-1|   0.0
1206cyl_theta       degree    60
1207cyl_phi         degree    60
1208==============  ========  =============
1209
1210The output of the 1D scattering intensity function for randomly oriented cylinders is then given by
1211
[34e0c32]1212.. image:: ..\img\olddocs\image063.PNG
[1c03e14]1213
1214The *cyl_theta* and *cyl_phi* parameter are not used for the 1D output. Our implementation of the scattering kernel
1215and the 1D scattering intensity use the c-library from NIST.
1216
[38d4102]1217*2.1.14.2. Validation of the CylinderModel*
[1c03e14]1218
1219Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
1220NIST (Kline, 2006). Figure 3 shows a comparison of the 1D output of our model and the output of the NIST software.
1221
[34e0c32]1222.. image:: ..\img\olddocs\image065.jpg
[1c03e14]1223
[38d4102]1224*Figure 3: Comparison of the SasView scattering intensity for a cylinder with the output of the NIST SANS analysis*
1225*software.* The parameters were set to: *Scale* = 1.0, *Radius* = 20 |Ang|, *Length* = 400 |Ang|,
[1c03e14]1226*Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.01 |cm^-1|.
1227
1228In general, averaging over a distribution of orientations is done by evaluating the following
1229
[34e0c32]1230.. image:: ..\img\olddocs\image064.PNG
[1c03e14]1231
1232where *p(*\ |theta|,\ |phi|\ *)* is the probability distribution for the orientation and |P0|\ *(q,*\ |alpha|\ *)* is
1233the scattering intensity for the fully oriented system. Since we have no other software to compare the implementation
1234of the intensity for fully oriented cylinders, we can compare the result of averaging our 2D output using a uniform
1235distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 4 shows the result of such a cross-check.
1236
[34e0c32]1237.. image:: ..\img\olddocs\image066.jpg
[1c03e14]1238
[38d4102]1239*Figure 4: Comparison of the intensity for uniformly distributed cylinders calculated from our 2D model and the*
1240*intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius* = 20 |Ang|,
1241*Length* = 400 |Ang|, *Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]1242
1243
1244
1245.. _HollowCylinderModel:
1246
1247**2.1.15. HollowCylinderModel**
1248
1249This model provides the form factor, *P(q)*, for a monodisperse hollow right angle circular cylinder (tube) where the
1250form factor is normalized by the volume of the tube
1251
1252*P(q)* = *scale* \* *<F*\ :sup:`2`\ *>* / *V*\ :sub:`shell` + *background*
1253
1254where the averaging < > is applied only for the 1D calculation.
1255
1256The inside and outside of the hollow cylinder are assumed have the same SLD.
1257
[38d4102]1258*2.1.15.1 Definition*
1259
[1c03e14]1260The 1D scattering intensity is calculated in the following way (Guinier, 1955)
1261
[34e0c32]1262.. image:: ..\img\olddocs\image072.PNG
[1c03e14]1263
1264where *scale* is a scale factor, *J1* is the 1st order Bessel function, *J1(x)* = (sin *x* - *x* cos *x*)/ *x*\ :sup:`2`.
1265
1266To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
1267angles |theta| and |phi|\ . As for the case of the cylinder, those angles are defined in Figure 2 of the CylinderModel.
1268
1269NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as the
1270effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1271
1272In the parameters, the contrast represents SLD :sub:`shell` - SLD :sub:`solvent` and the *radius* = *R*\ :sub:`shell`
1273while *core_radius* = *R*\ :sub:`core`.
1274
1275==============  ========  =============
1276Parameter name  Units     Default value
1277==============  ========  =============
1278scale           None      1.0
1279radius          |Ang|     30
1280length          |Ang|     400
1281core_radius     |Ang|     20
1282sldCyl          |Ang^-2|  6.3e-6
1283sldSolv         |Ang^-2|  5e-06
1284background      |cm^-1|   0.01
1285==============  ========  =============
1286
[34e0c32]1287.. image:: ..\img\olddocs\image074.jpg
[1c03e14]1288
1289*Figure. 1D plot using the default values (w/1000 data point).*
1290
1291Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
1292(Kline, 2006).
1293
[34e0c32]1294.. image:: ..\img\olddocs\image061.jpg
[1c03e14]1295
[38d4102]1296*Figure. Definition of the angles for the oriented HollowCylinderModel.*
[1c03e14]1297
[34e0c32]1298.. image:: ..\img\olddocs\image062.jpg
[1c03e14]1299
[38d4102]1300*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1301
1302REFERENCE
[bf8c07b]1303
[93b6fcc]1304L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press,
[38d4102]1305New York, (1987)
[1c03e14]1306
1307
1308
1309.. _CappedCylinderModel:
1310
1311**2.1.16 CappedCylinderModel**
1312
[38d4102]1313Calculates the scattering from a cylinder with spherical section end-caps. This model simply becomes the ConvexLensModel
1314when the length of the cylinder *L* = 0, that is, a sphereocylinder with end caps that have a radius larger than that
1315of the cylinder and the center of the end cap radius lies within the cylinder. See the diagram for the details
[1c03e14]1316of the geometry and restrictions on parameter values.
1317
[38d4102]1318*2.1.16.1. Definition*
[1c03e14]1319
[77cfcf0]1320The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]1321
[38d4102]1322The Capped Cylinder geometry is defined as
[1c03e14]1323
[34e0c32]1324.. image:: ..\img\olddocs\image112.jpg
[1c03e14]1325
[38d4102]1326where *r* is the radius of the cylinder. All other parameters are as defined in the diagram. Since the end cap radius
1327*R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as
[1c03e14]1328
[38d4102]1329*h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`)
[1c03e14]1330
[38d4102]1331The scattered intensity *I(q)* is calculated as
[1c03e14]1332
[34e0c32]1333.. image:: ..\img\olddocs\image113.jpg
[1c03e14]1334
[38d4102]1335where the amplitude *A(q)* is given as
[1c03e14]1336
[34e0c32]1337.. image:: ..\img\olddocs\image114.jpg
[1c03e14]1338
[38d4102]1339The < > brackets denote an average of the structure over all orientations. <\ *A*\ :sup:`2`\ *(q)*> is then the form
1340factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is the
1341difference of scattering length densities of the cylinder and the surrounding solvent.
[1c03e14]1342
[38d4102]1343The volume of the Capped Cylinder is (with *h* as a positive value here)
[1c03e14]1344
[34e0c32]1345.. image:: ..\img\olddocs\image115.jpg
[1c03e14]1346
[6386cd8]1347and its radius-of-gyration
[1c03e14]1348
[34e0c32]1349.. image:: ..\img\olddocs\image116.jpg
[1c03e14]1350
[38d4102]1351**The requirement that** *R* >= *r* **is not enforced in the model! It is up to you to restrict this during analysis.**
[1c03e14]1352
[38d4102]1353This following example dataset is produced by running the MacroCappedCylinder(), using 200 data points,
1354*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]1355
1356==============  ========  =============
1357Parameter name  Units     Default value
1358==============  ========  =============
1359scale           None      1.0
1360len_cyl         |Ang|     400.0
1361rad_cap         |Ang|     40.0
1362rad_cyl         |Ang|     20.0
1363sld_capcyl      |Ang^-2|  1.0e-006
1364sld_solv        |Ang^-2|  6.3e-006
1365background      |cm^-1|   0
1366==============  ========  =============
1367
[34e0c32]1368.. image:: ..\img\olddocs\image117.jpg
[1c03e14]1369
1370*Figure. 1D plot using the default values (w/256 data point).*
1371
[38d4102]1372For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for
1373|theta| = 45 deg and |phi| =0 deg with default values for other parameters
[1c03e14]1374
[34e0c32]1375.. image:: ..\img\olddocs\image118.jpg
[1c03e14]1376
1377*Figure. 2D plot (w/(256X265) data points).*
1378
[34e0c32]1379.. image:: ..\img\olddocs\image061.jpg
[1c03e14]1380
[38d4102]1381*Figure. Definition of the angles for oriented 2D cylinders.*
[1c03e14]1382
[34e0c32]1383.. image:: ..\img\olddocs\image062.jpg
[1c03e14]1384
[38d4102]1385*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1386
[38d4102]1387REFERENCE
[bf8c07b]1388
[93b6fcc]1389H Kaya, *J. Appl. Cryst.*, 37 (2004) 223-230
[bf8c07b]1390
[93b6fcc]1391H Kaya and N-R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata)
[1c03e14]1392
1393
1394
1395.. _CoreShellCylinderModel:
1396
[38d4102]1397**2.1.17. CoreShellCylinderModel**
[1c03e14]1398
[38d4102]1399This model provides the form factor for a circular cylinder with a core-shell scattering length density profile. The
1400form factor is normalized by the particle volume.
[1c03e14]1401
[38d4102]1402*2.1.17.1. Definition*
[1c03e14]1403
[38d4102]1404The output of the 2D scattering intensity function for oriented core-shell cylinders is given by (Kline, 2006)
[1c03e14]1405
[34e0c32]1406.. image:: ..\img\olddocs\image067.PNG
[1c03e14]1407
[38d4102]1408where
[1c03e14]1409
[34e0c32]1410.. image:: ..\img\olddocs\image068.PNG
[1c03e14]1411
[34e0c32]1412.. image:: ..\img\olddocs\image239.PNG
[1c03e14]1413
[38d4102]1414and |alpha| is the angle between the axis of the cylinder and the *q*\ -vector, *Vs* is the volume of the outer shell
1415(i.e. the total volume, including the shell), *Vc* is the volume of the core, *L* is the length of the core, *r* is the
1416radius of the core, *t* is the thickness of the shell, |rho|\ :sub:`c` is the scattering length density of the core,
1417|rho|\ :sub:`s` is the scattering length density of the shell, |rho|\ :sub:`solv` is the scattering length density of
1418the solvent, and *bkg* is the background level. The outer radius of the shell is given by *r+t* and the total length of
1419the outer shell is given by *L+2t*. *J1* is the first order Bessel function.
[1c03e14]1420
[34e0c32]1421.. image:: ..\img\olddocs\image069.jpg
[1c03e14]1422
[38d4102]1423To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
1424angles |theta| and |phi|\ . As for the case of the cylinder, those angles are defined in Figure 2 of the CylinderModel.
[1c03e14]1425
[38d4102]1426NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as the
1427effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1428
[38d4102]1429The returned value is scaled to units of |cm^-1| and the parameters of the core-shell cylinder model are the following
[1c03e14]1430
1431==============  ========  =============
1432Parameter name  Units     Default value
1433==============  ========  =============
1434scale           None      1.0
1435radius          |Ang|     20.0
1436thickness       |Ang|     10.0
1437length          |Ang|     400.0
1438core_sld        |Ang^-2|  1e-6
1439shell_sld       |Ang^-2|  4e-6
1440solvent_sld     |Ang^-2|  1e-6
1441background      |cm^-1|   0.0
1442axis_theta      degree    90
1443axis_phi        degree    0.0
1444==============  ========  =============
1445
[38d4102]1446The output of the 1D scattering intensity function for randomly oriented cylinders is then given by the equation above.
[1c03e14]1447
[38d4102]1448The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering kernel
1449and the 1D scattering intensity use the c-library from NIST.
[1c03e14]1450
[38d4102]1451*2.1.17.2. Validation of the CoreShellCylinderModel*
[1c03e14]1452
[38d4102]1453Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
1454NIST (Kline, 2006). Figure 1 shows a comparison of the 1D output of our model and the output of the NIST software.
[1c03e14]1455
[34e0c32]1456.. image:: ..\img\olddocs\image070.jpg
[1c03e14]1457
[38d4102]1458*Figure 1: Comparison of the SasView scattering intensity for a core-shell cylinder with the output of the NIST SANS*
1459*analysis software.* The parameters were set to: *Scale* = 1.0, *Radius* = 20 |Ang|, *Thickness* = 10 |Ang|,
1460*Length* = 400 |Ang|, *Core_sld* = 1e-6 |Ang^-2|, *Shell_sld* = 4e-6 |Ang^-2|, *Solvent_sld* = 1e-6 |Ang^-2|,
1461and *Background* = 0.01 |cm^-1|.
[1c03e14]1462
[38d4102]1463Averaging over a distribution of orientation is done by evaluating the equation above. Since we have no other software
1464to compare the implementation of the intensity for fully oriented cylinders, we can compare the result of averaging our
14652D output using a uniform distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 2 shows the result of such a cross-check.
[1c03e14]1466
[34e0c32]1467.. image:: ..\img\olddocs\image071.jpg
[1c03e14]1468
[38d4102]1469*Figure 2: Comparison of the intensity for uniformly distributed core-shell cylinders calculated from our 2D model and*
1470*the intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius* = 20 |Ang|,
1471*Thickness* = 10 |Ang|, *Length* =400 |Ang|, *Core_sld* = 1e-6 |Ang^-2|, *Shell_sld* = 4e-6 |Ang^-2|,
1472*Solvent_sld* = 1e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]1473
[34e0c32]1474.. image:: ..\img\olddocs\image061.jpg
[1c03e14]1475
[38d4102]1476*Figure. Definition of the angles for oriented core-shell cylinders.*
[1c03e14]1477
[34e0c32]1478.. image:: ..\img\olddocs\image062.jpg
[1c03e14]1479
[38d4102]1480*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1481
14822013/11/26 - Description reviewed by Heenan, R.
1483
1484
1485
1486.. _EllipticalCylinderModel:
1487
1488**2.1.18 EllipticalCylinderModel**
1489
[38d4102]1490This function calculates the scattering from an elliptical cylinder.
[1c03e14]1491
[38d4102]1492*2.1.18.1 Definition for 2D (orientated system)*
[1c03e14]1493
[38d4102]1494The angles |theta| and |phi| define the orientation of the axis of the cylinder. The angle |bigpsi| is defined as the
1495orientation of the major axis of the ellipse with respect to the vector *Q*\ . A gaussian polydispersity can be added
1496to any of the orientation angles, and also for the minor radius and the ratio of the ellipse radii.
[1c03e14]1497
[34e0c32]1498.. image:: ..\img\olddocs\image098.gif
[1c03e14]1499
[38d4102]1500*Figure.* *a* = *r_minor* and |nu|\ :sub:`n` = *r_ratio* (i.e., *r_major* / *r_minor*).
[1c03e14]1501
[38d4102]1502The function calculated is
[1c03e14]1503
[34e0c32]1504.. image:: ..\img\olddocs\image099.PNG
[1c03e14]1505
[38d4102]1506with the functions
[1c03e14]1507
[34e0c32]1508.. image:: ..\img\olddocs\image100.PNG
[1c03e14]1509
[38d4102]1510and the angle |bigpsi| is defined as the orientation of the major axis of the ellipse with respect to the vector *q*\ .
[1c03e14]1511
[38d4102]1512*2.1.18.2 Definition for 1D (no preferred orientation)*
[1c03e14]1513
[38d4102]1514The form factor is averaged over all possible orientation before normalized by the particle volume
[1c03e14]1515
[38d4102]1516*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V*
[1c03e14]1517
1518The returned value is scaled to units of |cm^-1|.
1519
[38d4102]1520To provide easy access to the orientation of the elliptical cylinder, we define the axis of the cylinder using two
1521angles |theta|, |phi| and |bigpsi|. As for the case of the cylinder, the angles |theta| and |phi| are defined on
1522Figure 2 of CylinderModel. The angle |bigpsi| is the rotational angle around its own long_c axis against the *q* plane.
1523For example, |bigpsi| = 0 when the *r_minor* axis is parallel to the *x*\ -axis of the detector.
[1c03e14]1524
[38d4102]1525All angle parameters are valid and given only for 2D calculation; ie, an oriented system.
[1c03e14]1526
[34e0c32]1527.. image:: ..\img\olddocs\image101.jpg
[1c03e14]1528
[38d4102]1529*Figure. Definition of angles for 2D*
[1c03e14]1530
[34e0c32]1531.. image:: ..\img\olddocs\image062.jpg
[1c03e14]1532
[38d4102]1533*Figure. Examples of the angles for oriented elliptical cylinders against the detector plane.*
[1c03e14]1534
[38d4102]1535NB: The 2nd virial coefficient of the cylinder is calculated based on the averaged radius (= sqrt(*r_minor*\ :sup:`2` \* *r_ratio*))
1536and length values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1537
1538==============  ========  =============
1539Parameter name  Units     Default value
1540==============  ========  =============
1541scale           None      1.0
1542r_minor         |Ang|     20.0
1543r_ratio         |Ang|     1.5
1544length          |Ang|     400.0
1545sldCyl          |Ang^-2|  4e-06
1546sldSolv         |Ang^-2|  1e-06
1547background      |cm^-1|   0
1548==============  ========  =============
1549
[34e0c32]1550.. image:: ..\img\olddocs\image102.jpg
[1c03e14]1551
1552*Figure. 1D plot using the default values (w/1000 data point).*
1553
[38d4102]1554*2.1.18.3 Validation of the EllipticalCylinderModel*
[1c03e14]1555
[38d4102]1556Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
1557the 2D calculation over all possible angles. The figure below shows the comparison where the solid dot refers to
1558averaged 2D values while the line represents the result of the 1D calculation (for the 2D averaging, values of 76, 180,
1559and 76 degrees are taken for the angles of |theta|, |phi|, and |bigpsi| respectively).
[1c03e14]1560
[34e0c32]1561.. image:: ..\img\olddocs\image103.gif
[1c03e14]1562
1563*Figure. Comparison between 1D and averaged 2D.*
1564
[38d4102]1565In the 2D average, more binning in the angle |phi| is necessary to get the proper result. The following figure shows
1566the results of the averaging by varying the number of angular bins.
[1c03e14]1567
[34e0c32]1568.. image:: ..\img\olddocs\image104.gif
[1c03e14]1569
1570*Figure. The intensities averaged from 2D over different numbers of bins and angles.*
1571
1572REFERENCE
[bf8c07b]1573
[93b6fcc]1574L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[38d4102]1575New York, (1987)
[1c03e14]1576
1577
1578
1579.. _FlexibleCylinderModel:
1580
1581**2.1.19. FlexibleCylinderModel**
1582
[38d4102]1583This model provides the form factor, *P(q)*, for a flexible cylinder where the form factor is normalized by the volume
1584of the cylinder. **Inter-cylinder interactions are NOT provided for.**
[1c03e14]1585
[38d4102]1586*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V* + *background*
[1c03e14]1587
[38d4102]1588where the averaging < > is applied over all orientations for 1D.
[1c03e14]1589
[38d4102]1590The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
1591
[34e0c32]1592.. image:: ..\img\olddocs\image040.gif
[38d4102]1593
1594*2.1.19.1. Definition*
1595
[34e0c32]1596.. image:: ..\img\olddocs\image075.jpg
[38d4102]1597
1598The chain of contour length, *L*, (the total length) can be described as a chain of some number of locally stiff
1599segments of length *l*\ :sub:`p`\ , the persistence length (the length along the cylinder over which the flexible
1600cylinder can be considered a rigid rod). The Kuhn length (*b* = 2 \* *l* :sub:`p`) is also used to describe the
1601stiffness of a chain.
1602
1603The returned value is in units of |cm^-1|, on absolute scale.
1604
1605In the parameters, the sldCyl and sldSolv represent the SLD of the chain/cylinder and solvent respectively.
[1c03e14]1606
1607==============  ========  =============
1608Parameter name  Units     Default value
1609==============  ========  =============
1610scale           None      1.0
1611radius          |Ang|     20
1612length          |Ang|     1000
1613sldCyl          |Ang^-2|  1e-06
1614sldSolv         |Ang^-2|  6.3e-06
1615background      |cm^-1|   0.01
1616kuhn_length     |Ang|     100
1617==============  ========  =============
1618
[34e0c32]1619.. image:: ..\img\olddocs\image076.jpg
[1c03e14]1620
1621*Figure. 1D plot using the default values (w/1000 data point).*
1622
[38d4102]1623Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
1624(Kline, 2006).
[1c03e14]1625
[38d4102]1626From the reference
[1c03e14]1627
[38d4102]1628  "Method 3 With Excluded Volume" is used. The model is a parametrization of simulations of a discrete representation
1629  of the worm-like chain model of Kratky and Porod applied in the pseudocontinuous limit. See equations (13,26-27) in
1630  the original reference for the details.
[1c03e14]1631
[38d4102]1632REFERENCE
[bf8c07b]1633
[93b6fcc]1634J S Pedersen and P Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume*
[38d4102]1635*effects*. *Macromolecules*, 29 (1996) 7602-7612
[1c03e14]1636
[38d4102]1637Correction of the formula can be found in
[bf8c07b]1638
[93b6fcc]1639W R Chen, P D Butler and L J Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from*
[4ed2d0a1]1640*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548
[1c03e14]1641
1642
1643
1644.. _FlexCylEllipXModel:
1645
1646**2.1.20 FlexCylEllipXModel**
1647
[38d4102]1648This model calculates the form factor for a flexible cylinder with an elliptical cross section and a uniform scattering
1649length density. The non-negligible diameter of the cylinder is included by accounting for excluded volume interactions
1650within the walk of a single cylinder. The form factor is normalized by the particle volume such that
[1c03e14]1651
[38d4102]1652*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V* + *background*
1653
1654where < > is an average over all possible orientations of the flexible cylinder.
1655
1656*2.1.20.1. Definition*
[1c03e14]1657
[38d4102]1658The function calculated is from the reference given below. From that paper, "Method 3 With Excluded Volume" is used.
1659The model is a parameterization of simulations of a discrete representation of the worm-like chain model of Kratky and
1660Porod applied in the pseudo-continuous limit. See equations (13, 26-27) in the original reference for the details.
[1c03e14]1661
[38d4102]1662NB: there are several typos in the original reference that have been corrected by WRC. Details of the corrections are
1663in the reference below. Most notably
[1c03e14]1664
[38d4102]1665- Equation (13): the term (1 - w(QR)) should swap position with w(QR)
[1c03e14]1666
[38d4102]1667- Equations (23) and (24) are incorrect; WRC has entered these into Mathematica and solved analytically. The results
1668  were then converted to code.
[1c03e14]1669
1670- Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of max(a3*b/sqrt(RgSquare),3)
1671
1672- The scattering function is negative for a range of parameter values and q-values that are experimentally accessible. A correction function has been added to give the proper behavior.
1673
[34e0c32]1674.. image:: ..\img\olddocs\image077.jpg
[1c03e14]1675
[38d4102]1676The chain of contour length, *L*, (the total length) can be described as a chain of some number of locally stiff
1677segments of length *l*\ :sub:`p`\ , the persistence length (the length along the cylinder over which the flexible
1678cylinder can be considered a rigid rod). The Kuhn length (*b* = 2 \* *l* :sub:`p`) is also used to describe the
1679stiffness of a chain.
[1c03e14]1680
[38d4102]1681The cross section of the cylinder is elliptical, with minor radius *a*\ . The major radius is larger, so of course,
1682**the axis ratio (parameter 4) must be greater than one.** Simple constraints should be applied during curve fitting to
1683maintain this inequality.
[1c03e14]1684
1685The returned value is in units of |cm^-1|, on absolute scale.
1686
[38d4102]1687In the parameters, *sldCyl* and *sldSolv* represent the SLD of the chain/cylinder and solvent respectively. The
1688*scale*, and the contrast are both multiplicative factors in the model and are perfectly correlated. One or both of
1689these parameters must be held fixed during model fitting.
[1c03e14]1690
[38d4102]1691If the scale is set equal to the particle volume fraction, |phi|, the returned value is the scattered intensity per
1692unit volume, *I(q)* = |phi| \* *P(q)*.
[1c03e14]1693
[38d4102]1694**No inter-cylinder interference effects are included in this calculation.**
[1c03e14]1695
[38d4102]1696For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]1697
[34e0c32]1698.. image:: ..\img\olddocs\image008.PNG
[1c03e14]1699
[38d4102]1700This example dataset is produced by running the Macro FlexCylEllipXModel, using 200 data points, *qmin* = 0.001 |Ang^-1|,
1701*qmax* = 0.7 |Ang^-1| and the default values below
[1c03e14]1702
1703==============  ========  =============
1704Parameter name  Units     Default value
1705==============  ========  =============
1706axis_ratio      None      1.5
1707background      |cm^-1|   0.0001
1708Kuhn_length     |Ang|     100
1709Contour length  |Ang|     1e+3
1710radius          |Ang|     20.0
1711scale           None      1.0
1712sldCyl          |Ang^-2|  1e-6
1713sldSolv         |Ang^-2|  6.3e-6
1714==============  ========  =============
1715
[34e0c32]1716.. image:: ..\img\olddocs\image078.jpg
[1c03e14]1717
1718*Figure. 1D plot using the default values (w/200 data points).*
1719
[38d4102]1720REFERENCE
[bf8c07b]1721
[93b6fcc]1722J S Pedersen and P Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume*
[38d4102]1723*effects*. *Macromolecules*, 29 (1996) 7602-7612
1724
1725Correction of the formula can be found in
[bf8c07b]1726
[93b6fcc]1727W R Chen, P D Butler and L J Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from*
[4ed2d0a1]1728*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548
[38d4102]1729
[1c03e14]1730
1731
1732.. _CoreShellBicelleModel:
1733
1734**2.1.21 CoreShellBicelleModel**
1735
[77cfcf0]1736This model provides the form factor for a circular cylinder with a core-shell scattering length density profile. The
1737form factor is normalized by the particle volume.
[1c03e14]1738
[77cfcf0]1739This model is a more general case of core-shell cylinder model (see above and reference below) in that the parameters
1740of the shell are separated into a face-shell and a rim-shell so that users can set different values of the thicknesses
1741and SLDs.
[1c03e14]1742
[34e0c32]1743.. image:: ..\img\olddocs\image240.png
[1c03e14]1744
[77cfcf0]1745*(Graphic from DOI: 10.1039/C0NP00002G)*
1746
1747The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellBicelleModel are the following
[1c03e14]1748
1749==============  ========  =============
1750Parameter name  Units     Default value
1751==============  ========  =============
1752scale           None      1.0
1753radius          |Ang|     20.0
1754rim_thick       |Ang|     10.0
1755face_thick      |Ang|     10.0
1756length          |Ang|     400.0
1757core_sld        |Ang^-2|  1e-6
1758rim_sld         |Ang^-2|  4e-6
1759face_sld        |Ang^-2|  4e-6
1760solvent_sld     |Ang^-2|  1e-6
1761background      |cm^-1|   0.0
1762axis_theta      degree    90
1763axis_phi        degree    0.0
1764==============  ========  =============
1765
[77cfcf0]1766The output of the 1D scattering intensity function for randomly oriented cylinders is then given by the equation above.
[1c03e14]1767
[77cfcf0]1768The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering kernel
1769and the 1D scattering intensity use the c-library from NIST.
[1c03e14]1770
[34e0c32]1771.. image:: ..\img\olddocs\cscylbicelle_pic.jpg
[1c03e14]1772
1773*Figure. 1D plot using the default values (w/200 data point).*
1774
[34e0c32]1775.. image:: ..\img\olddocs\image061.jpg
[1c03e14]1776
[77cfcf0]1777*Figure. Definition of the angles for the oriented CoreShellBicelleModel.*
[1c03e14]1778
[34e0c32]1779.. image:: ..\img\olddocs\image062.jpg
[1c03e14]1780
[77cfcf0]1781*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1782
1783REFERENCE
[bf8c07b]1784
[93b6fcc]1785L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press,
[77cfcf0]1786New York, (1987)
[1c03e14]1787
1788
1789
1790.. _BarBellModel:
1791
1792**2.1.22. BarBellModel**
1793
[77cfcf0]1794Calculates the scattering from a barbell-shaped cylinder (This model simply becomes the DumBellModel when the length of
1795the cylinder, *L*, is set to zero). That is, a sphereocylinder with spherical end caps that have a radius larger than
1796that of the cylinder and the center of the end cap radius lies outside of the cylinder. All dimensions of the BarBell
1797are considered to be monodisperse. See the diagram for the details of the geometry and restrictions on parameter values.
[1c03e14]1798
[77cfcf0]1799*2.1.22.1. Definition*
[1c03e14]1800
[77cfcf0]1801The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]1802
1803The barbell geometry is defined as
1804
[34e0c32]1805.. image:: ..\img\olddocs\image105.jpg
[1c03e14]1806
[77cfcf0]1807where *r* is the radius of the cylinder. All other parameters are as defined in the diagram.
[1c03e14]1808
[77cfcf0]1809Since the end cap radius
1810*R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as
[1c03e14]1811
[77cfcf0]1812*h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`)
[1c03e14]1813
[77cfcf0]1814The scattered intensity *I(q)* is calculated as
[1c03e14]1815
[34e0c32]1816.. image:: ..\img\olddocs\image106.PNG
[1c03e14]1817
[77cfcf0]1818where the amplitude *A(q)* is given as
[1c03e14]1819
[34e0c32]1820.. image:: ..\img\olddocs\image107.PNG
[1c03e14]1821
[77cfcf0]1822The < > brackets denote an average of the structure over all orientations. <*A* :sup:`2`\ *(q)*> is then the form
1823factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is
1824the difference of scattering length densities of the cylinder and the surrounding solvent.
[1c03e14]1825
[77cfcf0]1826The volume of the barbell is
[1c03e14]1827
[34e0c32]1828.. image:: ..\img\olddocs\image108.jpg
[1c03e14]1829
1830
[6386cd8]1831and its radius-of-gyration is
[1c03e14]1832
[34e0c32]1833.. image:: ..\img\olddocs\image109.jpg
[1c03e14]1834
[77cfcf0]1835**The requirement that** *R* >= *r* **is not enforced in the model!** It is up to you to restrict this during analysis.
[1c03e14]1836
[77cfcf0]1837This example dataset is produced by running the Macro PlotBarbell(), using 200 data points, *qmin* = 0.001 |Ang^-1|,
1838*qmax* = 0.7 |Ang^-1| and the following default values
[1c03e14]1839
1840==============  ========  =============
1841Parameter name  Units     Default value
1842==============  ========  =============
1843scale           None      1.0
1844len_bar         |Ang|     400.0
1845rad_bar         |Ang|     20.0
1846rad_bell        |Ang|     40.0
1847sld_barbell     |Ang^-2|  1.0e-006
1848sld_solv        |Ang^-2|  6.3e-006
1849background      |cm^-1|   0
1850==============  ========  =============
1851
[34e0c32]1852.. image:: ..\img\olddocs\image110.jpg
[1c03e14]1853
1854*Figure. 1D plot using the default values (w/256 data point).*
1855
[77cfcf0]1856For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for
1857|theta| = 45 deg and |phi| = 0 deg with default values for other parameters
[1c03e14]1858
[34e0c32]1859.. image:: ..\img\olddocs\image111.jpg
[1c03e14]1860
1861*Figure. 2D plot (w/(256X265) data points).*
1862
[34e0c32]1863.. image:: ..\img\olddocs\image061.jpg
[1c03e14]1864
[77cfcf0]1865*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1866
[34e0c32]1867.. image:: ..\img\olddocs\image062.jpg
[1c03e14]1868
1869Figure. Definition of the angles for oriented 2D barbells.
1870
[77cfcf0]1871REFERENCE
[bf8c07b]1872
[93b6fcc]1873H Kaya, *J. Appl. Cryst.*, 37 (2004) 37 223-230
[bf8c07b]1874
[93b6fcc]1875H Kaya and N R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata)
[77cfcf0]1876
[1c03e14]1877
1878
1879.. _StackedDisksModel:
1880
1881**2.1.23. StackedDisksModel**
1882
[77cfcf0]1883This model provides the form factor, *P(q)*, for stacked discs (tactoids) with a core/layer structure where the form
1884factor is normalized by the volume of the cylinder. Assuming the next neighbor distance (d-spacing) in a stack of
1885parallel discs obeys a Gaussian distribution, a structure factor *S(q)* proposed by Kratky and Porod in 1949 is used
1886in this function.
[1c03e14]1887
[77cfcf0]1888Note that the resolution smearing calculation uses 76 Gauss quadrature points to properly smear the model since the
1889function is HIGHLY oscillatory, especially around the *q*-values that correspond to the repeat distance of the layers.
[1c03e14]1890
[77cfcf0]1891The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
[1c03e14]1892
[34e0c32]1893.. image:: ..\img\olddocs\image008.PNG
[1c03e14]1894
[77cfcf0]1895The returned value is in units of |cm^-1| |sr^-1|, on absolute scale.
[1c03e14]1896
[77cfcf0]1897*2.1.23.1 Definition*
[1c03e14]1898
[34e0c32]1899.. image:: ..\img\olddocs\image079.gif
[1c03e14]1900
[4ed2d0a1]1901The scattering intensity *I(q)* is
[1c03e14]1902
[34e0c32]1903.. image:: ..\img\olddocs\image081.PNG
[1c03e14]1904
[77cfcf0]1905where the contrast
[1c03e14]1906
[34e0c32]1907.. image:: ..\img\olddocs\image082.PNG
[1c03e14]1908
[77cfcf0]1909and *N* is the number of discs per unit volume, |alpha| is the angle between the axis of the disc and *q*, and *Vt*
1910and *Vc* are the total volume and the core volume of a single disc, respectively.
[1c03e14]1911
[34e0c32]1912.. image:: ..\img\olddocs\image083.PNG
[1c03e14]1913
[77cfcf0]1914where *d* = thickness of the layer (*layer_thick*), 2\ *h* = core thickness (*core_thick*), and *R* = radius of the
1915disc (*radius*).
[1c03e14]1916
[34e0c32]1917.. image:: ..\img\olddocs\image084.PNG
[1c03e14]1918
[77cfcf0]1919where *n* = the total number of the disc stacked (*n_stacking*), *D* = the next neighbor center-to-center distance
1920(*d-spacing*), and |sigma|\ D= the Gaussian standard deviation of the d-spacing (*sigma_d*).
[1c03e14]1921
[77cfcf0]1922To provide easy access to the orientation of the stacked disks, we define the axis of the cylinder using two angles
1923|theta| and |phi|. These angles are defined on Figure 2 of CylinderModel.
[1c03e14]1924
[77cfcf0]1925NB: The 2nd virial coefficient of the cylinder is calculated based on the *radius* and *length* = *n_stacking* \*
1926(*core_thick* + 2 \* *layer_thick*) values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1927
1928==============  ========  =============
1929Parameter name  Units     Default value
1930==============  ========  =============
1931background      |cm^-1|   0.001
1932core_sld        |Ang^-2|  4e-006
1933core_thick      |Ang|     10
1934layer_sld       |Ang^-2|  0
1935layer_thick     |Ang|     15
1936n_stacking      None      1
1937radius          |Ang|     3e+03
1938scale           None      0.01
1939sigma_d         |Ang|     0
1940solvent_sld     |Ang^-2|  5e-06
1941==============  ========  =============
1942
[34e0c32]1943.. image:: ..\img\olddocs\image085.jpg
[1c03e14]1944
1945*Figure. 1D plot using the default values (w/1000 data point).*
1946
[34e0c32]1947.. image:: ..\img\olddocs\image086.jpg
[1c03e14]1948
[77cfcf0]1949*Figure. Examples of the angles for oriented stackeddisks against the detector plane.*
[1c03e14]1950
[34e0c32]1951.. image:: ..\img\olddocs\image062.jpg
[1c03e14]1952
[77cfcf0]1953*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1954
[77cfcf0]1955Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
1956(Kline, 2006)
[1c03e14]1957
1958REFERENCE
[bf8c07b]1959
[93b6fcc]1960A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, 1955
[bf8c07b]1961
[93b6fcc]1962O Kratky and G Porod, *J. Colloid Science*, 4, (1949) 35
[bf8c07b]1963
[93b6fcc]1964J S Higgins and H C Benoit, *Polymers and Neutron Scattering*, Clarendon, Oxford, 1994
[1c03e14]1965
1966
1967
1968.. _PringleModel:
1969
1970**2.1.24. PringleModel**
1971
[77cfcf0]1972This model provides the form factor, *P(q)*, for a 'pringle' or 'saddle-shaped' object (a hyperbolic paraboloid).
[1c03e14]1973
[34e0c32]1974.. image:: ..\img\olddocs\image241.png
[1c03e14]1975
[77cfcf0]1976*(Graphic from Matt Henderson, matt@matthen.com)*
[1c03e14]1977
1978The returned value is in units of |cm^-1|, on absolute scale.
1979
[77cfcf0]1980The form factor calculated is
[1c03e14]1981
[34e0c32]1982.. image:: ..\img\olddocs\pringle_eqn_1.jpg
[1c03e14]1983
1984where
1985
[34e0c32]1986.. image:: ..\img\olddocs\pringle_eqn_2.jpg
[1c03e14]1987
[77cfcf0]1988The parameters of the model and a plot comparing the pringle model with the equivalent cylinder are shown below.
[1c03e14]1989
1990==============  ========  =============
1991Parameter name  Units     Default value
1992==============  ========  =============
1993background      |cm^-1|   0.0
1994alpha           None      0.001
1995beta            None      0.02
1996radius          |Ang|     60
1997scale           None      1
1998sld_pringle     |Ang^-2|  1e-06
1999sld_solvent     |Ang^-2|  6.3e-06
2000thickness       |Ang|     10
2001==============  ========  =============
2002
[34e0c32]2003.. image:: ..\img\olddocs\pringle-vs-cylinder.png
[1c03e14]2004
2005*Figure. 1D plot using the default values (w/150 data point).*
2006
2007REFERENCE
[bf8c07b]2008
[93b6fcc]2009S Alexandru Rautu, Private Communication.
[1c03e14]2010
2011
2012
2013.. _EllipsoidModel:
2014
2015**2.1.25. EllipsoidModel**
2016
[ca1af82]2017This model provides the form factor for an ellipsoid (ellipsoid of revolution) with uniform scattering length density.
2018The form factor is normalized by the particle volume.
[1c03e14]2019
[ca1af82]2020*2.1.25.1. Definition*
[1c03e14]2021
[ca1af82]2022The output of the 2D scattering intensity function for oriented ellipsoids is given by (Feigin, 1987)
[1c03e14]2023
[34e0c32]2024.. image:: ..\img\olddocs\image059.PNG
[1c03e14]2025
[ca1af82]2026where
[1c03e14]2027
[34e0c32]2028.. image:: ..\img\olddocs\image119.PNG
[1c03e14]2029
[ca1af82]2030and
[1c03e14]2031
[34e0c32]2032.. image:: ..\img\olddocs\image120.PNG
[1c03e14]2033
[ca1af82]2034|alpha| is the angle between the axis of the ellipsoid and the *q*\ -vector, *V* is the volume of the ellipsoid, *Ra*
2035is the radius along the rotational axis of the ellipsoid, *Rb* is the radius perpendicular to the rotational axis of
[58eccf6]2036the ellipsoid and |drho| (contrast) is the scattering length density difference between the scatterer and
[ca1af82]2037the solvent.
[1c03e14]2038
[ca1af82]2039To provide easy access to the orientation of the ellipsoid, we define the rotation axis of the ellipsoid using two
2040angles |theta| and |phi|\ . These angles are defined on Figure 2 of the CylinderModel_. For the ellipsoid, |theta|
2041is the angle between the rotational axis and the *z*\ -axis.
[1c03e14]2042
[ca1af82]2043NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the *radius_a* and *radius_b* values, and
2044used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2045
[ca1af82]2046The returned value is scaled to units of |cm^-1| and the parameters of the EllipsoidModel are the following
[1c03e14]2047
2048================  ========  =============
2049Parameter name    Units     Default value
2050================  ========  =============
2051scale             None      1.0
2052radius_a (polar)  |Ang|     20.0
2053radius_b (equat)  |Ang|     400.0
2054sldEll            |Ang^-2|  4.0e-6
2055sldSolv           |Ang^-2|  1.0e-6
2056background        |cm^-1|   0.0
2057axis_theta        degree    90
2058axis_phi          degree    0.0
2059================  ========  =============
2060
[ca1af82]2061The output of the 1D scattering intensity function for randomly oriented ellipsoids is then given by the equation
2062above.
[1c03e14]2063
[34e0c32]2064.. image:: ..\img\olddocs\image121.jpg
[1c03e14]2065
[ca1af82]2066The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering
2067kernel and the 1D scattering intensity use the c-library from NIST.
[1c03e14]2068
[34e0c32]2069.. image:: ..\img\olddocs\image122.jpg
[1c03e14]2070
[ca1af82]2071*Figure. The angles for oriented ellipsoid.*
[1c03e14]2072
[ca1af82]2073*2.1.25.1. Validation of the EllipsoidModel*
[1c03e14]2074
[ca1af82]2075Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
2076NIST (Kline, 2006). Figure 1 below shows a comparison of the 1D output of our model and the output of the NIST
2077software.
[1c03e14]2078
[34e0c32]2079.. image:: ..\img\olddocs\image123.jpg
[1c03e14]2080
[ca1af82]2081*Figure 1: Comparison of the SasView scattering intensity for an ellipsoid with the output of the NIST SANS analysis*
2082*software.* The parameters were set to: *Scale* = 1.0, *Radius_a* = 20, *Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|,
2083and *Background* = 0.01 |cm^-1|.
[1c03e14]2084
[ca1af82]2085Averaging over a distribution of orientation is done by evaluating the equation above. Since we have no other software
2086to compare the implementation of the intensity for fully oriented ellipsoids, we can compare the result of averaging
2087our 2D output using a uniform distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 2 shows the result of such a
[1c03e14]2088cross-check.
2089
[34e0c32]2090.. image:: ..\img\olddocs\image124.jpg
[1c03e14]2091
[ca1af82]2092*Figure 2: Comparison of the intensity for uniformly distributed ellipsoids calculated from our 2D model and the*
2093*intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius_a* = 20,
2094*Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]2095
[ca1af82]2096The discrepancy above *q* = 0.3 |cm^-1| is due to the way the form factors are calculated in the c-library provided by
2097NIST. A numerical integration has to be performed to obtain *P(q)* for randomly oriented particles. The NIST software
2098performs that integration with a 76-point Gaussian quadrature rule, which will become imprecise at high q where the
2099amplitude varies quickly as a function of *q*. The SasView result shown has been obtained by summing over 501
2100equidistant points in . Our result was found to be stable over the range of *q* shown for a number of points higher
2101than 500.
[1c03e14]2102
[ca1af82]2103REFERENCE
[bf8c07b]2104
[93b6fcc]2105L A Feigin and D I Svergun. *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[ca1af82]2106New York, 1987.
[1c03e14]2107
2108
2109
2110.. _CoreShellEllipsoidModel:
2111
2112**2.1.26. CoreShellEllipsoidModel**
2113
[990c2eb]2114This model provides the form factor, *P(q)*, for a core shell ellipsoid (below) where the form factor is normalized by
2115the volume of the cylinder.
[1c03e14]2116
[990c2eb]2117*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2118
[990c2eb]2119where the volume *V* = (4/3)\ |pi| (*r*\ :sub:`maj` *r*\ :sub:`min`\ :sup:`2`) and the averaging < > is applied over
2120all orientations for 1D.
[1c03e14]2121
[34e0c32]2122.. image:: ..\img\olddocs\image125.gif
[1c03e14]2123
[990c2eb]2124The returned value is in units of |cm^-1|, on absolute scale.
[1c03e14]2125
[990c2eb]2126*2.1.26.1. Definition*
[1c03e14]2127
[990c2eb]2128The form factor calculated is
[1c03e14]2129
[34e0c32]2130.. image:: ..\img\olddocs\image126.PNG
[1c03e14]2131
[990c2eb]2132To provide easy access to the orientation of the core-shell ellipsoid, we define the axis of the solid ellipsoid using
2133two angles |theta| and |phi|\ . These angles are defined on Figure 2 of the CylinderModel_. The contrast is defined as
2134SLD(core) - SLD(shell) and SLD(shell) - SLD(solvent).
[1c03e14]2135
[990c2eb]2136In the parameters, *equat_core* = equatorial core radius, *polar_core* = polar core radius, *equat_shell* =
2137*r*\ :sub:`min` (or equatorial outer radius), and *polar_shell* = = *r*\ :sub:`maj` (or polar outer radius).
[1c03e14]2138
[990c2eb]2139NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the *radius_a* (= *polar_shell*) and
2140*radius_b* (= *equat_shell*) values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2141
2142==============  ========  =============
2143Parameter name  Units     Default value
2144==============  ========  =============
2145background      |cm^-1|   0.001
2146equat_core      |Ang|     200
2147equat_shell     |Ang|     250
2148sld_solvent     |Ang^-2|  6e-06
2149ploar_shell     |Ang|     30
2150ploar_core      |Ang|     20
2151scale           None      1
2152sld_core        |Ang^-2|  2e-06
2153sld_shell       |Ang^-2|  1e-06
2154==============  ========  =============
2155
[34e0c32]2156.. image:: ..\img\olddocs\image127.jpg
[1c03e14]2157
2158*Figure. 1D plot using the default values (w/1000 data point).*
2159
[34e0c32]2160.. image:: ..\img\olddocs\image122.jpg
[1c03e14]2161
[990c2eb]2162*Figure. The angles for oriented CoreShellEllipsoid.*
[1c03e14]2163
[990c2eb]2164Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2165(Kline, 2006).
[1c03e14]2166
2167REFERENCE
[bf8c07b]2168
[93b6fcc]2169M Kotlarchyk, S H Chen, *J. Chem. Phys.*, 79 (1983) 2461
[bf8c07b]2170
[93b6fcc]2171S J Berr, *Phys. Chem.*, 91 (1987) 4760
[1c03e14]2172
2173
2174
[77cfcf0]2175.. _CoreShellEllipsoidXTModel:
2176
2177**2.1.27. CoreShellEllipsoidXTModel**
2178
2179An alternative version of *P(q)* for the core-shell ellipsoid (see CoreShellEllipsoidModel), having as parameters the
2180core axial ratio *X* and a shell thickness, which are more often what we would like to determine.
2181
2182This model is also better behaved when polydispersity is applied than the four independent radii in
2183CoreShellEllipsoidModel.
2184
[990c2eb]2185*2.1.27.1. Definition*
[77cfcf0]2186
[34e0c32]2187.. image:: ..\img\olddocs\image125.gif
[77cfcf0]2188
2189The geometric parameters of this model are
2190
2191  *equat_core* = equatorial core radius = *Rminor_core*
[a342928]2192 
[77cfcf0]2193  *X_core* = *polar_core* / *equat_core* = *Rmajor_core* / *Rminor_core*
[a342928]2194 
[77cfcf0]2195  *T_shell* = *equat_outer* - *equat_core* = *Rminor_outer* - *Rminor_core*
[a342928]2196 
[77cfcf0]2197  *XpolarShell* = *Tpolar_shell* / *T_shell* = (*Rmajor_outer* - *Rmajor_core*)/(*Rminor_outer* - *Rminor_core*)
2198
2199In terms of the original radii
2200
2201  *polar_core* = *equat_core* \* *X_core*
[a342928]2202 
[77cfcf0]2203  *equat_shell* = *equat_core* + *T_shell*
[a342928]2204 
[77cfcf0]2205  *polar_shell* = *equat_core* \* *X_core* + *T_shell* \* *XpolarShell*
2206
2207  (where we note that "shell" perhaps confusingly, relates to the outer radius)
2208
2209When *X_core* < 1 the core is oblate; when *X_core* > 1  it is prolate. *X_core* = 1 is a spherical core.
2210
2211For a fixed shell thickness *XpolarShell* = 1, to scale the shell thickness pro-rata with the radius
2212*XpolarShell* = *X_core*.
2213
2214When including an *S(q)*, the radius in *S(q)* is calculated to be that of a sphere with the same 2nd virial
2215coefficient of the **outer** surface of the ellipsoid. This may have some undesirable effects if the aspect ratio of
2216the ellipsoid is large (ie, if *X* << 1 or *X* >> 1), when the *S(q)* - which assumes spheres - will not in any case
2217be valid.
2218
[6386cd8]2219If SAS data are in absolute units, and the SLDs are correct, then *scale* should be the total volume fraction of the
[77cfcf0]2220"outer particle". When *S(q)* is introduced this moves to the *S(q)* volume fraction, and *scale* should then be 1.0,
2221or contain some other units conversion factor (for example, if you have SAXS data).
2222
2223==============  ========  =============
2224Parameter name  Units     Default value
2225==============  ========  =============
2226background      |cm^-1|   0.001
2227equat_core      |Ang|     20
2228scale           None      0.05
2229sld_core        |Ang^-2|  2.0e-6
2230sld_shell       |Ang^-2|  1.0e-6
2231sld_solv        |Ang^-2|  6.3e-6
2232T_shell         |Ang|     30
2233X_core          None      3.0
2234XpolarShell     None      1.0
2235==============  ========  =============
2236
2237REFERENCE
[bf8c07b]2238
[93b6fcc]2239R K Heenan, Private communication
[77cfcf0]2240
2241
2242
[bf8c07b]2243.. _TriaxialEllipsoidModel:
[1c03e14]2244
[77cfcf0]2245**2.1.28. TriaxialEllipsoidModel**
[1c03e14]2246
[990c2eb]2247This model provides the form factor, *P(q)*, for an ellipsoid (below) where all three axes are of different lengths,
2248i.e., *Ra* =< *Rb* =< *Rc*\ . **Users should maintain this inequality for all calculations**.
[1c03e14]2249
[990c2eb]2250*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2251
[990c2eb]2252where the volume *V* = (4/3)\ |pi| (*Ra* *Rb* *Rc*), and the averaging < > is applied over all orientations for 1D.
[1c03e14]2253
[34e0c32]2254.. image:: ..\img\olddocs\image128.jpg
[1c03e14]2255
2256The returned value is in units of |cm^-1|, on absolute scale.
2257
[990c2eb]2258*2.1.28.1. Definition*
2259
2260The form factor calculated is
[1c03e14]2261
[34e0c32]2262.. image:: ..\img\olddocs\image129.PNG
[1c03e14]2263
[990c2eb]2264To provide easy access to the orientation of the triaxial ellipsoid, we define the axis of the cylinder using the
2265angles |theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is
2266the rotational angle around its own *semi_axisC* axis against the *q* plane. For example, |bigpsi| = 0 when the
2267*semi_axisA* axis is parallel to the *x*-axis of the detector.
[1c03e14]2268
[6386cd8]2269The radius-of-gyration for this system is *Rg*\ :sup:`2` = (*Ra*\ :sup:`2` *Rb*\ :sup:`2` *Rc*\ :sup:`2`)/5.
[1c03e14]2270
[990c2eb]2271The contrast is defined as SLD(ellipsoid) - SLD(solvent). In the parameters, *semi_axisA* = *Ra* (or minor equatorial
2272radius), *semi_axisB* = *Rb* (or major equatorial radius), and *semi_axisC* = *Rc* (or polar radius of the ellipsoid).
[1c03e14]2273
[990c2eb]2274NB: The 2nd virial coefficient of the triaxial solid ellipsoid is calculated based on the
2275*radius_a* (= *semi_axisC*\ ) and *radius_b* (= sqrt(*semi_axisA* \* *semi_axisB*)) values, and used as the effective
2276radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2277
2278==============  ========  =============
2279Parameter name  Units     Default value
2280==============  ========  =============
2281background      |cm^-1|   0.0
2282semi_axisA      |Ang|     35
2283semi_axisB      |Ang|     100
2284semi_axisC      |Ang|     400
2285scale           None      1
2286sldEll          |Ang^-2|  1.0e-06
2287sldSolv         |Ang^-2|  6.3e-06
2288==============  ========  =============
2289
[34e0c32]2290.. image:: ..\img\olddocs\image130.jpg
[1c03e14]2291
2292*Figure. 1D plot using the default values (w/1000 data point).*
2293
[990c2eb]2294*2.1.28.2.Validation of the TriaxialEllipsoidModel*
[1c03e14]2295
[990c2eb]2296Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
22972D calculation over all possible angles. The Figure below shows the comparison where the solid dot refers to averaged
22982D while the line represents the result of 1D calculation (for 2D averaging, 76, 180, and 76 points are taken for the
2299angles of |theta|, |phi|, and |psi| respectively).
[1c03e14]2300
[34e0c32]2301.. image:: ..\img\olddocs\image131.gif
[1c03e14]2302
2303*Figure. Comparison between 1D and averaged 2D.*
2304
[34e0c32]2305.. image:: ..\img\olddocs\image132.jpg
[1c03e14]2306
[990c2eb]2307*Figure. The angles for oriented ellipsoid.*
[1c03e14]2308
[990c2eb]2309Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2310(Kline, 2006)
[1c03e14]2311
2312REFERENCE
[bf8c07b]2313
[93b6fcc]2314L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[990c2eb]2315New York, 1987.
[1c03e14]2316
2317
2318
2319.. _LamellarModel:
2320
[77cfcf0]2321**2.1.29. LamellarModel**
[1c03e14]2322
[1127c32]2323This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar phase where a uniform SLD and random
2324distribution in solution are assumed. Polydispersity in the bilayer thickness can be applied from the GUI.
[1c03e14]2325
[1127c32]2326*2.1.29.1. Definition*
[1c03e14]2327
[1127c32]2328The scattering intensity *I(q)* is
[1c03e14]2329
[34e0c32]2330.. image:: ..\img\olddocs\image133.PNG
[1c03e14]2331
[1127c32]2332The form factor is
[1c03e14]2333
[34e0c32]2334.. image:: ..\img\olddocs\image134.PNG
[1c03e14]2335
[1127c32]2336where |delta| = bilayer thickness.
[1c03e14]2337
[1127c32]2338The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2339
[34e0c32]2340.. image:: ..\img\olddocs\image040.gif
[1c03e14]2341
[1127c32]2342The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_bi* = SLD of the bilayer,
2343*sld_sol* = SLD of the solvent, and *bi_thick* = thickness of the bilayer.
[1c03e14]2344
2345==============  ========  =============
2346Parameter name  Units     Default value
2347==============  ========  =============
2348background      |cm^-1|   0.0
2349sld_bi          |Ang^-2|  1e-06
2350bi_thick        |Ang|     50
2351sld_sol         |Ang^-2|  6e-06
2352scale           None      1
2353==============  ========  =============
2354
[34e0c32]2355.. image:: ..\img\olddocs\image135.jpg
[1c03e14]2356
2357*Figure. 1D plot using the default values (w/1000 data point).*
2358
[1127c32]2359Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2360(Kline, 2006).
[1c03e14]2361
2362REFERENCE
2363
[93b6fcc]2364F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2365
[bf8c07b]2366also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2367
2368
2369
2370.. _LamellarFFHGModel:
2371
[77cfcf0]2372**2.1.30. LamellarFFHGModel**
[1c03e14]2373
[1127c32]2374This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar phase where a random distribution in
2375solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail region.
[1c03e14]2376
[1127c32]2377*2.1.31.1. Definition*
[1c03e14]2378
[1127c32]2379The scattering intensity *I(q)* is
[1c03e14]2380
[34e0c32]2381.. image:: ..\img\olddocs\image136.PNG
[1c03e14]2382
[1127c32]2383The form factor is
[1c03e14]2384
[34e0c32]2385.. image:: ..\img\olddocs\image137.jpg
[1c03e14]2386
[1127c32]2387where |delta|\ T = tail length (or *t_length*), |delta|\ H = head thickness (or *h_thickness*),
[3342eb3]2388|drho|\ H = SLD(headgroup) - SLD(solvent), and |drho|\ T = SLD(tail) - SLD(solvent). The total thickness is 2(H+T).
[1c03e14]2389
[1127c32]2390The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2391
[34e0c32]2392.. image:: ..\img\olddocs\image040.gif
[1c03e14]2393
[1127c32]2394The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_tail* = SLD of the tail group,
2395and *sld_head* = SLD of the head group.
[1c03e14]2396
2397==============  ========  =============
2398Parameter name  Units     Default value
2399==============  ========  =============
2400background      |cm^-1|   0.0
2401sld_head        |Ang^-2|  3e-06
2402scale           None      1
2403sld_solvent     |Ang^-2|  6e-06
2404h_thickness     |Ang|     10
2405t_length        |Ang|     15
2406sld_tail        |Ang^-2|  0
2407==============  ========  =============
2408
[34e0c32]2409.. image:: ..\img\olddocs\image138.jpg
[1c03e14]2410
2411*Figure. 1D plot using the default values (w/1000 data point).*
2412
[1127c32]2413Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2414(Kline, 2006).
[1c03e14]2415
2416REFERENCE
2417
[93b6fcc]2418F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2419
[bf8c07b]2420also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2421
[93b6fcc]2422*2014/04/17 - Description reviewed by S King and P Butler.*
[4ed2d0a1]2423
[1c03e14]2424
2425
2426.. _LamellarPSModel:
2427
[77cfcf0]2428**2.1.31. LamellarPSModel**
[1c03e14]2429
[1127c32]2430This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lyotropic lamellar phase where a random
2431distribution in solution are assumed.
[1c03e14]2432
[1127c32]2433*2.1.31.1. Definition*
[1c03e14]2434
[1127c32]2435The scattering intensity *I(q)* is
[1c03e14]2436
[34e0c32]2437.. image:: ..\img\olddocs\image139.PNG
[1c03e14]2438
2439The form factor is
2440
[34e0c32]2441.. image:: ..\img\olddocs\image134.PNG
[1c03e14]2442
[1127c32]2443and the structure factor is
[1c03e14]2444
[34e0c32]2445.. image:: ..\img\olddocs\image140.PNG
[1c03e14]2446
2447where
2448
[34e0c32]2449.. image:: ..\img\olddocs\image141.PNG
[1c03e14]2450
[58eccf6]2451Here *d* = (repeat) spacing, |delta| = bilayer thickness, the contrast |drho| = SLD(headgroup) - SLD(solvent),
[1127c32]2452K = smectic bending elasticity, B = compression modulus, and N = number of lamellar plates (*n_plates*).
[1c03e14]2453
[1127c32]2454NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.**
2455And due to a complication of the model function, users are responsible for making sure that all the assumptions are
2456handled accurately (see the original reference below for more details).
[1c03e14]2457
[1127c32]2458The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2459
[34e0c32]2460.. image:: ..\img\olddocs\image040.gif
[1c03e14]2461
2462The returned value is in units of |cm^-1|, on absolute scale.
2463
2464==============  ========  =============
2465Parameter name  Units     Default value
2466==============  ========  =============
2467background      |cm^-1|   0.0
2468contrast        |Ang^-2|  5e-06
2469scale           None      1
2470delta           |Ang|     30
2471n_plates        None      20
2472spacing         |Ang|     400
2473caille          |Ang^-2|  0.1
2474==============  ========  =============
2475
[34e0c32]2476.. image:: ..\img\olddocs\image142.jpg
[1c03e14]2477
2478*Figure. 1D plot using the default values (w/6000 data point).*
2479
[1127c32]2480Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2481(Kline, 2006).
[1c03e14]2482
2483REFERENCE
2484
[93b6fcc]2485F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2486
[bf8c07b]2487also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2488
2489
2490
2491.. _LamellarPSHGModel:
2492
[77cfcf0]2493**2.1.32. LamellarPSHGModel**
[1c03e14]2494
[1127c32]2495This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lyotropic lamellar phase where a random
2496distribution in solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail
2497region.
[1c03e14]2498
[1127c32]2499*2.1.32.1. Definition*
[1c03e14]2500
[1127c32]2501The scattering intensity *I(q)* is
[1c03e14]2502
[34e0c32]2503.. image:: ..\img\olddocs\image139.PNG
[1c03e14]2504
[1127c32]2505The form factor is
[1c03e14]2506
[34e0c32]2507.. image:: ..\img\olddocs\image143.PNG
[1c03e14]2508
2509The structure factor is
2510
[34e0c32]2511.. image:: ..\img\olddocs\image140.PNG
[1c03e14]2512
2513where
2514
[34e0c32]2515.. image:: ..\img\olddocs\image141.PNG
[1c03e14]2516
[1127c32]2517where |delta|\ T = tail length (or *t_length*), |delta|\ H = head thickness (or *h_thickness*),
[58eccf6]2518|drho|\ H = SLD(headgroup) - SLD(solvent), and |drho|\ T = SLD(tail) - SLD(headgroup).
[1127c32]2519Here *d* = (repeat) spacing, *K* = smectic bending elasticity, *B* = compression modulus, and N = number of lamellar
2520plates (*n_plates*).
[1c03e14]2521
[1127c32]2522NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.**
2523And due to a complication of the model function, users are responsible for making sure that all the assumptions are
2524handled accurately (see the original reference below for more details).
[1c03e14]2525
[1127c32]2526The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2527
[34e0c32]2528.. image:: ..\img\olddocs\image040.gif
[1c03e14]2529
[1127c32]2530The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_tail* = SLD of the tail group,
2531*sld_head* = SLD of the head group, and *sld_solvent* = SLD of the solvent.
[1c03e14]2532
2533==============  ========  =============
2534Parameter name  Units     Default value
2535==============  ========  =============
2536background      |cm^-1|   0.001
2537sld_head        |Ang^-2|  2e-06
2538scale           None      1
2539sld_solvent     |Ang^-2|  6e-06
2540deltaH          |Ang|     2
2541deltaT          |Ang|     10
2542sld_tail        |Ang^-2|  0
2543n_plates        None      30
2544spacing         |Ang|     40
2545caille          |Ang^-2|  0.001
2546==============  ========  =============
2547
[34e0c32]2548.. image:: ..\img\olddocs\image144.jpg
[1c03e14]2549
2550*Figure. 1D plot using the default values (w/6000 data point).*
2551
[1127c32]2552Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2553(Kline, 2006).
[1c03e14]2554
2555REFERENCE
2556
[93b6fcc]2557F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2558
[bf8c07b]2559also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2560
2561
2562
2563.. _LamellarPCrystalModel:
2564
[77cfcf0]2565**2.1.33. LamellarPCrystalModel**
[1c03e14]2566
[1127c32]2567This model calculates the scattering from a stack of repeating lamellar structures. The stacks of lamellae (infinite
2568in lateral dimension) are treated as a paracrystal to account for the repeating spacing. The repeat distance is further
2569characterized by a Gaussian polydispersity. **This model can be used for large multilamellar vesicles.**
[1c03e14]2570
[1127c32]2571*2.1.33.1. Definition*
[1c03e14]2572
[1127c32]2573The scattering intensity *I(q)* is calculated as
[1c03e14]2574
[34e0c32]2575.. image:: ..\img\olddocs\image145.jpg
[1c03e14]2576
[1127c32]2577The form factor of the bilayer is approximated as the cross section of an infinite, planar bilayer of thickness *t*
[1c03e14]2578
[34e0c32]2579.. image:: ..\img\olddocs\image146.jpg
[1c03e14]2580
[1127c32]2581Here, the scale factor is used instead of the mass per area of the bilayer (*G*). The scale factor is the volume
[d4117ccb]2582fraction of the material in the bilayer, *not* the total excluded volume of the paracrystal. *Z*\ :sub:`N`\ *(q)*
2583describes the interference effects for aggregates consisting of more than one bilayer. The equations used are (3-5)
2584from the Bergstrom reference below.
[1c03e14]2585
[1127c32]2586Non-integer numbers of stacks are calculated as a linear combination of the lower and higher values
[1c03e14]2587
[34e0c32]2588.. image:: ..\img\olddocs\image147.jpg
[1c03e14]2589
[1127c32]2590The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
[1c03e14]2591
[34e0c32]2592.. image:: ..\img\olddocs\image040.gif
[1c03e14]2593
[1127c32]2594The parameters of the model are *Nlayers* = no. of layers, and *pd_spacing* = polydispersity of spacing.
[1c03e14]2595
2596==============  ========  =============
2597Parameter name  Units     Default value
2598==============  ========  =============
2599background      |cm^-1|   0
2600scale           None      1
2601Nlayers         None      20
2602pd_spacing      None      0.2
2603sld_layer       |Ang^-2|  1e-6
2604sld_solvent     |Ang^-2|  6.34e-6
2605spacing         |Ang|     250
2606thickness       |Ang|     33
2607==============  ========  =============
2608
[34e0c32]2609.. image:: ..\img\olddocs\image148.jpg
[1c03e14]2610
[1127c32]2611*Figure. 1D plot using the default values above (w/20000 data point).*
[1c03e14]2612
[1127c32]2613Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2614(Kline, 2006).
[1c03e14]2615
2616REFERENCE
2617
[93b6fcc]2618M Bergstrom, J S Pedersen, P Schurtenberger, S U Egelhaaf, *J. Phys. Chem. B*, 103 (1999) 9888-9897
[1c03e14]2619
2620
2621
2622.. _SCCrystalModel:
2623
[77cfcf0]2624**2.1.34. SCCrystalModel**
[1c03e14]2625
[d4117ccb]2626Calculates the scattering from a **simple cubic lattice** with paracrystalline distortion. Thermal vibrations are
2627considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed
2628to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2629
[77cfcf0]2630The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2631
[d4117ccb]2632*2.1.34.1. Definition*
[1c03e14]2633
[4ed2d0a1]2634The scattering intensity *I(q)* is calculated as
[1c03e14]2635
[34e0c32]2636.. image:: ..\img\olddocs\image149.jpg
[1c03e14]2637
[d4117ccb]2638where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2639correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2640paracrystalline structure factor for a simple cubic structure.
[1c03e14]2641
[d4117ccb]2642Equation (16) of the 1987 reference is used to calculate *Z(q)*, using equations (13)-(15) from the 1987 paper for
2643*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2644
[d4117ccb]2645The lattice correction (the occupied volume of the lattice) for a simple cubic structure of particles of radius *R*
2646and nearest neighbor separation *D* is
[1c03e14]2647
[34e0c32]2648.. image:: ..\img\olddocs\image150.jpg
[1c03e14]2649
[d4117ccb]2650The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2651
[34e0c32]2652.. image:: ..\img\olddocs\image151.jpg
[1c03e14]2653
[d4117ccb]2654where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2655
[d4117ccb]2656The simple cubic lattice is
[1c03e14]2657
[34e0c32]2658.. image:: ..\img\olddocs\image152.jpg
[1c03e14]2659
[d4117ccb]2660For a crystal, diffraction peaks appear at reduced *q*\ -values given by
[1c03e14]2661
[34e0c32]2662.. image:: ..\img\olddocs\image153.jpg
[1c03e14]2663
[d4117ccb]2664where for a simple cubic lattice any *h*\ , *k*\ , *l* are allowed and none are forbidden. Thus the peak positions
2665correspond to (just the first 5)
[1c03e14]2666
[34e0c32]2667.. image:: ..\img\olddocs\image154.jpg
[1c03e14]2668
[d4117ccb]2669**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2670**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2671SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2672makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2673
2674==============  ========  =============
2675Parameter name  Units     Default value
2676==============  ========  =============
2677background      |cm^-1|   0
2678dnn             |Ang|     220
2679scale           None      1
2680sldSolv         |Ang^-2|  6.3e-06
2681radius          |Ang|     40
2682sld_Sph         |Ang^-2|  3e-06
2683d_factor        None      0.06
2684==============  ========  =============
2685
[d4117ccb]2686This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2687default values.
[bf8c07b]2688
[34e0c32]2689.. image:: ..\img\olddocs\image155.jpg
[1c03e14]2690
[d4117ccb]2691*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2692
[d4117ccb]2693The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2694scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2695computation.
[1c03e14]2696
[34e0c32]2697.. image:: ..\img\olddocs\image156.jpg
[1c03e14]2698
[34e0c32]2699.. image:: ..\img\olddocs\image157.jpg
[1c03e14]2700
[d4117ccb]2701*Figure. 2D plot using the default values (w/200X200 pixels).*
[1c03e14]2702
[d4117ccb]2703REFERENCE
[1c03e14]2704
[d4117ccb]2705Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2706(Original Paper)
[1c03e14]2707
[d4117ccb]2708Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2709(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2710
2711
2712
2713.. _FCCrystalModel:
2714
[77cfcf0]2715**2.1.35. FCCrystalModel**
[1c03e14]2716
[d4117ccb]2717Calculates the scattering from a **face-centered cubic lattice** with paracrystalline distortion. Thermal vibrations
2718are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
2719assumed to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2720
[77cfcf0]2721The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2722
[d4117ccb]2723*2.1.35.1. Definition*
[1c03e14]2724
[d4117ccb]2725The scattering intensity *I(q)* is calculated as
[1c03e14]2726
[34e0c32]2727.. image:: ..\img\olddocs\image158.jpg
[1c03e14]2728
[d4117ccb]2729where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2730correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2731paracrystalline structure factor for a face-centered cubic structure.
[1c03e14]2732
[d4117ccb]2733Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (23)-(25) from the 1987 paper for
2734*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2735
[d4117ccb]2736The lattice correction (the occupied volume of the lattice) for a face-centered cubic structure of particles of radius
2737*R* and nearest neighbor separation *D* is
[1c03e14]2738
[34e0c32]2739.. image:: ..\img\olddocs\image159.jpg
[1c03e14]2740
[d4117ccb]2741The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2742
[34e0c32]2743.. image:: ..\img\olddocs\image160.jpg
[1c03e14]2744
[d4117ccb]2745where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2746
[d4117ccb]2747The face-centered cubic lattice is
[1c03e14]2748
[34e0c32]2749.. image:: ..\img\olddocs\image161.jpg
[1c03e14]2750
[d4117ccb]2751For a crystal, diffraction peaks appear at reduced q-values given by
[1c03e14]2752
[34e0c32]2753.. image:: ..\img\olddocs\image162.jpg
[1c03e14]2754
[d4117ccb]2755where for a face-centered cubic lattice *h*\ , *k*\ , *l* all odd or all even are allowed and reflections where
2756*h*\ , *k*\ , *l* are mixed odd/even are forbidden. Thus the peak positions correspond to (just the first 5)
[1c03e14]2757
[34e0c32]2758.. image:: ..\img\olddocs\image163.jpg
[1c03e14]2759
[d4117ccb]2760**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2761**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2762SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2763makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2764
2765==============  ========  =============
2766Parameter name  Units     Default value
2767==============  ========  =============
2768background      |cm^-1|   0
2769dnn             |Ang|     220
2770scale           None      1
2771sldSolv         |Ang^-2|  6.3e-06
2772radius          |Ang|     40
2773sld_Sph         |Ang^-2|  3e-06
2774d_factor        None      0.06
2775==============  ========  =============
2776
[d4117ccb]2777This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2778default values.
[1c03e14]2779
[34e0c32]2780.. image:: ..\img\olddocs\image164.jpg
[1c03e14]2781
[d4117ccb]2782*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2783
[d4117ccb]2784The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2785scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2786computation.
[1c03e14]2787
[34e0c32]2788.. image:: ..\img\olddocs\image165.gif
[1c03e14]2789
[34e0c32]2790.. image:: ..\img\olddocs\image166.jpg
[1c03e14]2791
2792*Figure. 2D plot using the default values (w/200X200 pixels).*
2793
[d4117ccb]2794REFERENCE
[1c03e14]2795
[d4117ccb]2796Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2797(Original Paper)
[1c03e14]2798
[d4117ccb]2799Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2800(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2801
2802
2803
[d4117ccb]2804.. _BCCrystalModel:
[1c03e14]2805
[d4117ccb]2806**2.1.36. BCCrystalModel**
[1c03e14]2807
[d4117ccb]2808Calculates the scattering from a **body-centered cubic lattice** with paracrystalline distortion. Thermal vibrations
2809are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
2810assumed to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2811
[d4117ccb]2812The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2813
[d4117ccb]2814*2.1.36.1. Definition**
[1c03e14]2815
[d4117ccb]2816The scattering intensity *I(q)* is calculated as
[1c03e14]2817
[34e0c32]2818.. image:: ..\img\olddocs\image167.jpg
[1c03e14]2819
[d4117ccb]2820where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2821correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2822paracrystalline structure factor for a body-centered cubic structure.
[1c03e14]2823
[d4117ccb]2824Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (29)-(31) from the 1987 paper for
2825*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2826
[d4117ccb]2827The lattice correction (the occupied volume of the lattice) for a body-centered cubic structure of particles of radius
2828*R* and nearest neighbor separation *D* is
[1c03e14]2829
[34e0c32]2830.. image:: ..\img\olddocs\image159.jpg
[1c03e14]2831
[d4117ccb]2832The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2833
[34e0c32]2834.. image:: ..\img\olddocs\image160.jpg
[1c03e14]2835
[d4117ccb]2836where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2837
[d4117ccb]2838The body-centered cubic lattice is
[1c03e14]2839
[34e0c32]2840.. image:: ..\img\olddocs\image168.jpg
[1c03e14]2841
[d4117ccb]2842For a crystal, diffraction peaks appear at reduced q-values given by
[1c03e14]2843
[34e0c32]2844.. image:: ..\img\olddocs\image162.jpg
[1c03e14]2845
[d4117ccb]2846where for a body-centered cubic lattice, only reflections where (\ *h* + *k* + *l*\ ) = even are allowed and
2847reflections where (\ *h* + *k* + *l*\ ) = odd are forbidden. Thus the peak positions correspond to (just the first 5)
[1c03e14]2848
[34e0c32]2849.. image:: ..\img\olddocs\image169.jpg
[1c03e14]2850
[d4117ccb]2851**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2852**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2853SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2854makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2855
2856==============  ========  =============
2857Parameter name  Units     Default value
2858==============  ========  =============
2859background      |cm^-1|   0
2860dnn             |Ang|     220
2861scale           None      1
2862sldSolv         |Ang^-2|  6.3e-006
2863radius          |Ang|     40
2864sld_Sph         |Ang^-2|  3e-006
2865d_factor        None      0.06
2866==============  ========  =============
2867
[d4117ccb]2868This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2869default values.
[bf8c07b]2870
[34e0c32]2871.. image:: ..\img\olddocs\image170.jpg
[1c03e14]2872
[d4117ccb]2873*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2874
[d4117ccb]2875The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2876scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2877computation.
[1c03e14]2878
[34e0c32]2879.. image:: ..\img\olddocs\image165.gif
[1c03e14]2880
[34e0c32]2881.. image:: ..\img\olddocs\image171.jpg
[1c03e14]2882
[d4117ccb]2883*Figure. 2D plot using the default values (w/200X200 pixels).*
[1c03e14]2884
[d4117ccb]2885REFERENCE
[1c03e14]2886
[d4117ccb]2887Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2888(Original Paper)
[1c03e14]2889
[d4117ccb]2890Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2891(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2892
2893
2894
2895.. _ParallelepipedModel:
2896
[77cfcf0]2897**2.1.37. ParallelepipedModel**
[1c03e14]2898
[bf8c07b]2899This model provides the form factor, *P(q)*, for a rectangular cylinder (below) where the form factor is normalized by
[6386cd8]2900the volume of the cylinder. If you need to apply polydispersity, see the RectangularPrismModel_.
[1c03e14]2901
[bf8c07b]2902*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2903
[bf8c07b]2904where the volume *V* = *A B C* and the averaging < > is applied over all orientations for 1D.
[1c03e14]2905
[bf8c07b]2906For information about polarised and magnetic scattering, click here_.
[1c03e14]2907
[34e0c32]2908.. image:: ..\img\olddocs\image087.jpg
[1c03e14]2909
[bf8c07b]2910*2.1.37.1. Definition*
[1c03e14]2911
[bf8c07b]2912**The edge of the solid must satisfy the condition that** *A* < *B*. Then, assuming *a* = *A* / *B* < 1,
2913*b* = *B* / *B* = 1, and *c* = *C* / *B* > 1, the form factor is
[1c03e14]2914
[34e0c32]2915.. image:: ..\img\olddocs\image088.PNG
[1c03e14]2916
[bf8c07b]2917and the contrast is defined as
[1c03e14]2918
[34e0c32]2919.. image:: ..\img\olddocs\image089.PNG
[1c03e14]2920
[bf8c07b]2921The scattering intensity per unit volume is returned in units of |cm^-1|; ie, *I(q)* = |phi| *P(q)*\ .
[1c03e14]2922
[bf8c07b]2923NB: The 2nd virial coefficient of the parallelpiped is calculated based on the the averaged effective radius
2924(= sqrt(*short_a* \* *short_b* / |pi|)) and length(= *long_c*) values, and used as the effective radius for
2925*S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2926
[bf8c07b]2927To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles
2928|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the
2929rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is
2930parallel to the *x*-axis of the detector.
[1c03e14]2931
[34e0c32]2932.. image:: ..\img\olddocs\image090.jpg
[1c03e14]2933
2934*Figure. Definition of angles for 2D*.
2935
[34e0c32]2936.. image:: ..\img\olddocs\image091.jpg
[1c03e14]2937
[bf8c07b]2938*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]2939
2940==============  ========  =============
2941Parameter name  Units     Default value
2942==============  ========  =============
2943background      |cm^-1|   0.0
2944contrast        |Ang^-2|  5e-06
2945long_c          |Ang|     400
2946short_a         |Ang^-2|  35
2947short_b         |Ang|     75
2948scale           None      1
2949==============  ========  =============
2950
[34e0c32]2951.. image:: ..\img\olddocs\image092.jpg
[1c03e14]2952
2953*Figure. 1D plot using the default values (w/1000 data point).*
2954
[bf8c07b]2955*2.1.37.2. Validation of the parallelepiped 2D model*
[1c03e14]2956
[bf8c07b]2957Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
2958a 2D calculation over all possible angles. The Figure below shows the comparison where the solid dot refers to averaged
29592D while the line represents the result of the 1D calculation (for the averaging, 76, 180, 76 points are taken for the
2960angles of |theta|, |phi|, and |psi| respectively).
[1c03e14]2961
[34e0c32]2962.. image:: ..\img\olddocs\image093.gif
[1c03e14]2963
2964*Figure. Comparison between 1D and averaged 2D.*
2965
[bf8c07b]2966Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2967(Kline, 2006).
[1c03e14]2968
2969REFERENCE
2970
[93b6fcc]2971P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
[1c03e14]2972Equations (1), (13-14). (in German)
2973
2974
2975
2976.. _CSParallelepipedModel:
2977
[77cfcf0]2978**2.1.38. CSParallelepipedModel**
[1c03e14]2979
[bf8c07b]2980Calculates the form factor for a rectangular solid with a core-shell structure. **The thickness and the scattering**
2981**length density of the shell or "rim" can be different on all three (pairs) of faces.**
2982
2983The form factor is normalized by the particle volume *V* such that
[1c03e14]2984
[bf8c07b]2985*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2986
[bf8c07b]2987where < > is an average over all possible orientations of the rectangular solid.
[1c03e14]2988
[bf8c07b]2989An instrument resolution smeared version of the model is also provided.
[1c03e14]2990
[bf8c07b]2991*2.1.38.1. Definition*
[1c03e14]2992
[bf8c07b]2993The function calculated is the form factor of the rectangular solid below. The core of the solid is defined by the
2994dimensions *A*, *B*, *C* such that *A* < *B* < *C*.
[1c03e14]2995
[34e0c32]2996.. image:: ..\img\olddocs\image087.jpg
[1c03e14]2997
[bf8c07b]2998There are rectangular "slabs" of thickness *tA* that add to the *A* dimension (on the *BC* faces). There are similar
2999slabs on the *AC* (= *tB*) and *AB* (= *tC*) faces. The projection in the *AB* plane is then
[1c03e14]3000
[34e0c32]3001.. image:: ..\img\olddocs\image094.jpg
[1c03e14]3002
[bf8c07b]3003The volume of the solid is
[1c03e14]3004
[34e0c32]3005.. image:: ..\img\olddocs\image095.PNG
[1c03e14]3006
[bf8c07b]3007**meaning that there are "gaps" at the corners of the solid.**
[1c03e14]3008
[bf8c07b]3009The intensity calculated follows the ParallelepipedModel_, with the core-shell intensity being calculated as the
3010square of the sum of the amplitudes of the core and shell, in the same manner as a CoreShellModel_.
[1c03e14]3011
[bf8c07b]3012**For the calculation of the form factor to be valid, the sides of the solid MUST be chosen such that** *A* < *B* < *C*.
3013**If this inequality is not satisfied, the model will not report an error, and the calculation will not be correct.**
[1c03e14]3014
[bf8c07b]3015FITTING NOTES
3016If the scale is set equal to the particle volume fraction, |phi|, the returned value is the scattered intensity per
3017unit volume; ie, *I(q)* = |phi| *P(q)*\ . However, **no interparticle interference effects are included in this**
3018**calculation.**
[1c03e14]3019
[bf8c07b]3020There are many parameters in this model. Hold as many fixed as possible with known values, or you will certainly end
3021up at a solution that is unphysical.
[1c03e14]3022
[bf8c07b]3023Constraints must be applied during fitting to ensure that the inequality *A* < *B* < *C* is not violated. The
3024calculation will not report an error, but the results will not be correct.
[1c03e14]3025
3026The returned value is in units of |cm^-1|, on absolute scale.
3027
[bf8c07b]3028NB: The 2nd virial coefficient of the CSParallelpiped is calculated based on the the averaged effective radius
3029(= sqrt((*short_a* + 2 *rim_a*) \* (*short_b* + 2 *rim_b*) / |pi|)) and length(= *long_c* + 2 *rim_c*) values, and
3030used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]3031
[bf8c07b]3032To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles
3033|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the
3034rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is
3035parallel to the *x*-axis of the detector.
[1c03e14]3036
[34e0c32]3037.. image:: ..\img\olddocs\image090.jpg
[1c03e14]3038
3039*Figure. Definition of angles for 2D*.
3040
[34e0c32]3041.. image:: ..\img\olddocs\image091.jpg
[1c03e14]3042
[bf8c07b]3043*Figure. Examples of the angles for oriented cspp against the detector plane.*
[1c03e14]3044
[bf8c07b]3045This example dataset was produced by running the Macro Plot_CSParallelepiped(), using 100 data points,
3046*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]3047
3048==============  ========  =============
3049Parameter name  Units     Default value
3050==============  ========  =============
3051background      |cm^-1|   0.06
3052sld_pcore       |Ang^-2|  1e-06
3053sld_rimA        |Ang^-2|  2e-06
3054sld_rimB        |Ang^-2|  4e-06
3055sld_rimC        |Ang^-2|  2e-06
3056sld_solv        |Ang^-2|  6e-06
3057rimA            |Ang|     10
3058rimB            |Ang|     10
3059rimC            |Ang|     10
3060longC           |Ang|     400
3061shortA          |Ang|     35
3062midB            |Ang|     75
3063scale           None      1
3064==============  ========  =============
3065
[34e0c32]3066.. image:: ..\img\olddocs\image096.jpg
[1c03e14]3067
3068*Figure. 1D plot using the default values (w/256 data points).*
3069
[34e0c32]3070.. image:: ..\img\olddocs\image097.jpg
[1c03e14]3071
[bf8c07b]3072*Figure. 2D plot using the default values (w/(256X265) data points).*
[1c03e14]3073
[bf8c07b]3074Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
3075(Kline, 2006).
[1c03e14]3076
3077REFERENCE
3078
[93b6fcc]3079P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
[bf8c07b]3080Equations (1), (13-14). (in German)
[1c03e14]3081
3082
3083
[6386cd8]3084.. _RectangularPrismModel:
3085
3086**2.1.39. RectangularPrismModel**
3087
3088This model provides the form factor, *P(q)*, for a rectangular prism.
3089
3090Note that this model is almost totally equivalent to the existing ParallelepipedModel_. The only difference is that the
3091way the relevant parameters are defined here (*a*, *b/a*, *c/a* instead of *a*, *b*, *c*) allows to use polydispersity
3092with this model while keeping the shape of the prism (e.g. setting *b/a* = 1 and *c/a* = 1 and applying polydispersity
3093to *a* will generate a distribution of cubes of different sizes).
3094
3095*2.1.39.1. Definition*
3096
3097The 1D scattering intensity for this model was calculated by Mittelbach and Porod (Mittelbach, 1961), but the
3098implementation here is closer to the equations given by Nayuk and Huber (Nayuk, 2012).
3099
3100The scattering from a massive parallelepiped with an orientation with respect to the scattering vector given by |theta|
3101and |phi| is given by
3102
3103.. math::
3104  A_P\,(q) =  \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \, \times \,
3105  \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \, \times \,
3106  \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi}
3107
3108where *A*, *B* and *C* are the sides of the parallelepiped and must fulfill :math:`A \le B \le C`, |theta| is the angle
3109between the *z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering
3110vector (lying in the *xy* plane) and the *y* axis.
3111
3112The normalized form factor in 1D is obtained averaging over all possible orientations
3113
3114.. math::
3115  P(q) =  \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_P^2(q) \, \sin\theta \, d\theta \, d\phi
3116
3117The 1D scattering intensity is then calculated as
3118
3119.. math::
3120  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3121
3122where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the
3123parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute
3124units) *scale* represents the volume fraction (which is unitless).
3125
3126**The 2D scattering intensity is not computed by this model.**
3127
3128The returned value is scaled to units of |cm^-1| and the parameters of the RectangularPrismModel are the following
3129
3130==============  ========  =============
3131Parameter name  Units     Default value
3132==============  ========  =============
3133scale           None      1
3134short_side      |Ang|     35
3135b2a_ratio       None      1
3136c2a_ratio       None      1
3137sldPipe         |Ang^-2|  6.3e-6
3138sldSolv         |Ang^-2|  1.0e-6
3139background      |cm^-1|   0
3140==============  ========  =============
3141
3142*2.1.39.2. Validation of the RectangularPrismModel*
3143
3144Validation of the code was conducted by comparing the output of the 1D model to the output of the existing
3145parallelepiped model.
3146
3147REFERENCES
3148
3149P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
3150
3151R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3152
3153
3154
3155.. _RectangularHollowPrismModel:
3156
3157**2.1.40. RectangularHollowPrismModel**
3158
3159This model provides the form factor, *P(q)*, for a hollow rectangular parallelepiped with a wall thickness |bigdelta|.
3160
3161*2.1.40.1. Definition*
3162
3163The 1D scattering intensity for this model is calculated by forming the difference of the amplitudes of two massive
3164parallelepipeds differing in their outermost dimensions in each direction by the same length increment 2 |bigdelta|
3165(Nayuk, 2012).
3166
3167As in the case of the massive parallelepiped, the scattering amplitude is computed for a particular orientation of the
3168parallelepiped with respect to the scattering vector and then averaged over all possible orientations, giving
3169
3170.. math::
3171  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_{P\Delta}^2(q) \,
3172  \sin\theta \, d\theta \, d\phi
3173
3174where |theta| is the angle between the *z* axis and the longest axis of the parallelepiped, |phi| is the angle between
3175the scattering vector (lying in the *xy* plane) and the *y* axis, and
3176
3177.. math::
3178  A_{P\Delta}\,(q) =  A \, B \, C \, \times
3179                      \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \,
3180                      \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \,
3181                      \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi} -
3182                      8 \, \bigl( \frac{A}{2} - \Delta \bigr) \, \bigl( \frac{B}{2} - \Delta \bigr) \,
3183                      \bigl( \frac{C}{2} - \Delta \bigr) \, \times
3184                      \frac{\sin \bigl[ q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta \bigr]}
3185                      {q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta} \,
3186                      \frac{\sin \bigl[ q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi \bigr]}
3187                      {q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi} \,
3188                      \frac{\sin \bigl[ q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi \bigr]}
3189                      {q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi} \,
3190
3191where *A*, *B* and *C* are the external sides of the parallelepiped fulfilling :math:`A \le B \le C`, and the volume *V*
3192of the parallelepiped is
3193
3194.. math::
3195  V = A B C \, - \, (A - 2\Delta) (B - 2\Delta) (C - 2\Delta)
3196
3197The 1D scattering intensity is then calculated as
3198
3199.. math::
3200  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3201
3202where :math:`\rho_{\mbox{pipe}}` is the scattering length of the parallelepiped, :math:`\rho_{\mbox{solvent}}` is the
3203scattering length of the solvent, and (if the data are in absolute units) *scale* represents the volume fraction (which
3204is unitless).
3205
3206**The 2D scattering intensity is not computed by this model.**
3207
3208The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismModel are the
3209following
3210
3211==============  ========  =============
3212Parameter name  Units     Default value
3213==============  ========  =============
3214scale           None      1
3215short_side      |Ang|     35
3216b2a_ratio       None      1
3217c2a_ratio       None      1
3218thickness       |Ang|     1
3219sldPipe         |Ang^-2|  6.3e-6
3220sldSolv         |Ang^-2|  1.0e-6
3221background      |cm^-1|   0
3222==============  ========  =============
3223
3224*2.1.40.2. Validation of the RectangularHollowPrismModel*
3225
3226Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown in
3227(Nayuk, 2012).
3228
3229REFERENCES
3230
3231R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3232
3233
3234
3235.. _RectangularHollowPrismInfThinWallsModel:
3236
3237**2.1.41. RectangularHollowPrismInfThinWallsModel**
3238
3239This model provides the form factor, *P(q)*, for a hollow rectangular prism with infinitely thin walls.
3240
3241*2.1.41.1. Definition*
3242
3243The 1D scattering intensity for this model is calculated according to the equations given by Nayuk and Huber
3244(Nayuk, 2012).
3245
3246Assuming a hollow parallelepiped with infinitely thin walls, edge lengths :math:`A \le B \le C` and presenting an
3247orientation with respect to the scattering vector given by |theta| and |phi|, where |theta| is the angle between the
3248*z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering vector
3249(lying in the *xy* plane) and the *y* axis, the form factor is given by
3250
3251.. math::
3252  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} [A_L(q)+A_T(q)]^2
3253  \, \sin\theta \, d\theta \, d\phi
3254
3255where
3256
3257.. math::
3258  V = 2AB + 2AC + 2BC
3259
3260.. math::
3261  A_L\,(q) =  8 \times \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3262                              \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr)
3263                              \cos \bigl( q \frac{C}{2} \cos\theta \bigr) }
3264                            {q^2 \, \sin^2\theta \, \sin\phi \cos\phi}
3265
3266.. math::
3267  A_T\,(q) =  A_F\,(q) \times \frac{2 \, \sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \, \cos\theta}
3268
3269and
3270
3271.. math::
3272  A_F\,(q) =  4 \frac{ \cos \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3273                       \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) }
3274                     {q \, \cos\phi \, \sin\theta} +
3275              4 \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3276                       \cos \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) }
3277                     {q \, \sin\phi \, \sin\theta}
3278
3279The 1D scattering intensity is then calculated as
3280
3281.. math::
3282  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3283
3284where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the
3285parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute
3286units) *scale* represents the volume fraction (which is unitless).
3287
3288**The 2D scattering intensity is not computed by this model.**
3289
3290The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismInfThinWallModel
3291are the following
3292
3293==============  ========  =============
3294Parameter name  Units     Default value
3295==============  ========  =============
3296scale           None      1
3297short_side      |Ang|     35
3298b2a_ratio       None      1
3299c2a_ratio       None      1
3300sldPipe         |Ang^-2|  6.3e-6
3301sldSolv         |Ang^-2|  1.0e-6
3302background      |cm^-1|   0
3303==============  ========  =============
3304
3305*2.1.41.2. Validation of the RectangularHollowPrismInfThinWallsModel*
3306
3307Validation of the code was conducted  by qualitatively comparing the output of the 1D model to the curves shown in
3308(Nayuk, 2012).
3309
3310REFERENCES
3311
3312R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3313
3314
3315
[7072ce6]3316.. _MicelleSphCoreModel:
3317
3318**2.1.42. MicelleSphCoreModel**
3319
3320This model provides the form factor, *P(q)*, for a micelle with a spherical core
3321and Gaussian polymer chains attached to the surface.
3322
3323*2.1.42.1. Definition*
3324
3325The 1D scattering intensity for this model is calculated according to the equations given by Pedersen
3326(Pedersen, 2000).
3327
3328*2.1.42.2. Validation of the MicelleSphCoreModel*
3329
3330This model has not yet been validated. Feb2015
3331
3332REFERENCES
3333
3334J Pedersen, *J. Appl. Cryst.*, 33 (2000) 637-640
3335
3336
3337
[1c03e14]33382.2 Shape-independent Functions
3339-------------------------------
3340
[6386cd8]3341The following are models used for shape-independent SAS analysis.
[1c03e14]3342
[4ed2d0a1]3343.. _Debye:
[1c03e14]3344
[58eccf6]3345**2.2.1. Debye (Gaussian Coil Model)**
[1c03e14]3346
[6386cd8]3347The Debye model is a form factor for a linear polymer chain obeying Gaussian statistics (ie, it is in the theta state).
3348In addition to the radius-of-gyration, *Rg*, a scale factor *scale*, and a constant background term are included in the
3349calculation. **NB: No size polydispersity is included in this model, use the** Poly_GaussCoil_ **Model instead**
[1c03e14]3350
[34e0c32]3351.. image:: ..\img\olddocs\image172.PNG
[1c03e14]3352
[93b6fcc]3353For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3354
[34e0c32]3355.. image:: ..\img\olddocs\image040.gif
[1c03e14]3356
[4ed2d0a1]3357==============  ========  =============
3358Parameter name  Units     Default value
3359==============  ========  =============
[58eccf6]3360scale           None      1.0
3361rg              |Ang|     50.0
3362background      |cm^-1|   0.0
[4ed2d0a1]3363==============  ========  =============
[1c03e14]3364
[34e0c32]3365.. image:: ..\img\olddocs\image173.jpg
[1c03e14]3366
[4ed2d0a1]3367*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3368
[4ed2d0a1]3369REFERENCE
[1c03e14]3370
[93b6fcc]3371R J Roe, *Methods of X-Ray and Neutron Scattering in Polymer Science*, Oxford University Press, New York (2000)
[1c03e14]3372
3373
3374
[4ed2d0a1]3375.. _BroadPeakModel:
[1c03e14]3376
[58eccf6]3377**2.2.2. BroadPeakModel**
[1c03e14]3378
[6386cd8]3379This model calculates an empirical functional form for SAS data characterized by a broad scattering peak. Many SAS
[93b6fcc]3380spectra are characterized by a broad peak even though they are from amorphous soft materials. For example, soft systems
[6386cd8]3381that show a SAS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc.
[93b6fcc]3382
3383The d-spacing corresponding to the broad peak is a characteristic distance between the scattering inhomogeneities (such
3384as in lamellar, cylindrical, or spherical morphologies, or for bicontinuous structures).
[1c03e14]3385
[4ed2d0a1]3386The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3387
[93b6fcc]3388*2.2.2.1. Definition*
3389
3390The scattering intensity *I(q)* is calculated as
[1c03e14]3391
[34e0c32]3392.. image:: ..\img\olddocs\image174.jpg
[1c03e14]3393
[93b6fcc]3394Here the peak position is related to the d-spacing as *Q0* = 2|pi| / *d0*.
[1c03e14]3395
[93b6fcc]3396For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3397
[34e0c32]3398.. image:: ..\img\olddocs\image040.gif
[1c03e14]3399
[93b6fcc]3400==================  ========  =============
3401Parameter name      Units     Default value
3402==================  ========  =============
3403scale_l    (=C)     None      10
3404scale_p    (=A)     None      1e-05
3405length_l (= |xi| )  |Ang|     50
3406q_peak    (=Q0)     |Ang^-1|  0.1
3407exponent_p (=n)     None      2
3408exponent_l (=m)     None      3
3409Background (=B)     |cm^-1|   0.1
3410==================  ========  =============
[1c03e14]3411
[34e0c32]3412.. image:: ..\img\olddocs\image175.jpg
[1c03e14]3413
[4ed2d0a1]3414*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3415
[4ed2d0a1]3416REFERENCE
[1c03e14]3417
[4ed2d0a1]3418None.
[1c03e14]3419
[93b6fcc]3420*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3421
3422
3423
[4ed2d0a1]3424.. _CorrLength:
[1c03e14]3425
[58eccf6]3426**2.2.3. CorrLength (Correlation Length Model)**
[1c03e14]3427
[6386cd8]3428Calculates an empirical functional form for SAS data characterized by a low-Q signal and a high-Q signal.
[1c03e14]3429
[4ed2d0a1]3430The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3431
[93b6fcc]3432*2.2.3. Definition*
3433
3434The scattering intensity *I(q)* is calculated as
[1c03e14]3435
[34e0c32]3436.. image:: ..\img\olddocs\image176.jpg
[1c03e14]3437
[93b6fcc]3438The first term describes Porod scattering from clusters (exponent = n) and the second term is a Lorentzian function
3439describing scattering from polymer chains (exponent = *m*). This second term characterizes the polymer/solvent
3440interactions and therefore the thermodynamics. The two multiplicative factors *A* and *C*, the incoherent
3441background *B* and the two exponents *n* and *m* are used as fitting parameters. The final parameter |xi| is a
3442correlation length for the polymer chains. Note that when *m*\ =2 this functional form becomes the familiar Lorentzian
3443function. 
[1c03e14]3444
[93b6fcc]3445For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3446
[34e0c32]3447.. image:: ..\img\olddocs\image040.gif
[1c03e14]3448
[93b6fcc]3449====================  ========  =============
3450Parameter name        Units     Default value
3451====================  ========  =============
3452scale_l    (=C)       None      10
3453scale_p    (=A)       None      1e-06
3454length_l   (= |xi| )  |Ang|     50
3455exponent_p (=n)       None      2
3456exponent_l (=m)       None      3
3457Background (=B)       |cm^-1|   0.1
3458====================  ========  =============
[1c03e14]3459
[34e0c32]3460.. image:: ..\img\olddocs\image177.jpg
[1c03e14]3461
[4ed2d0a1]3462*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3463
[4ed2d0a1]3464REFERENCE
[1c03e14]3465
[93b6fcc]3466B Hammouda, D L Ho and S R Kline, *Insight into Clustering in Poly(ethylene oxide) Solutions*, *Macromolecules*, 37
3467(2004) 6932-6937
[1c03e14]3468
[93b6fcc]3469*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3470
3471
3472
[ad25dc2]3473.. _LorentzOZ:
[1c03e14]3474
[58eccf6]3475**2.2.4. Lorentz (Ornstein-Zernicke Model)**
[1c03e14]3476
[93b6fcc]3477*2.2.4.1. Definition*
3478
3479The Ornstein-Zernicke model is defined by
[1c03e14]3480
[34e0c32]3481.. image:: ..\img\olddocs\image178.PNG
[1c03e14]3482
[93b6fcc]3483The parameter *L* is the screening length.
[1c03e14]3484
[93b6fcc]3485For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3486
[34e0c32]3487.. image:: ..\img\olddocs\image040.gif
[bf8c07b]3488
[4ed2d0a1]3489==============  ========  =============
3490Parameter name  Units     Default value
3491==============  ========  =============
[58eccf6]3492scale           None      1.0
3493length          |Ang|     50.0
3494background      |cm^-1|   0.0
[4ed2d0a1]3495==============  ========  =============
[1c03e14]3496
[34e0c32]3497.. image:: ..\img\olddocs\image179.jpg
[1c03e14]3498
[93b6fcc]3499* Figure. 1D plot using the default values (w/200 data point).*
3500
3501REFERENCE
3502
3503None.
[1c03e14]3504
3505
3506
[4ed2d0a1]3507.. _DABModel:
[1c03e14]3508
[58eccf6]3509**2.2.5. DABModel (Debye-Anderson-Brumberger Model)**
[1c03e14]3510
[93b6fcc]3511Calculates the scattering from a randomly distributed, two-phase system based on the Debye-Anderson-Brumberger (DAB)
3512model for such systems. The two-phase system is characterized by a single length scale, the correlation length, which
3513is a measure of the average spacing between regions of phase 1 and phase 2. **The model also assumes smooth interfaces**
3514**between the phases** and hence exhibits Porod behavior (I ~ *q*\ :sup:`-4`) at large *q* (*QL* >> 1).
3515
3516The DAB model is ostensibly a development of the earlier Debye-Bueche model.
3517
3518*2.2.5.1. Definition*
[1c03e14]3519
[34e0c32]3520.. image:: ..\img\olddocs\image180_corrected.PNG
[1c03e14]3521
[93b6fcc]3522The parameter *L* is the correlation length.
[1c03e14]3523
[93b6fcc]3524For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3525
[34e0c32]3526.. image:: ..\img\olddocs\image040.gif
[1c03e14]3527
[4ed2d0a1]3528==============  ========  =============
3529Parameter name  Units     Default value
3530==============  ========  =============
[58eccf6]3531scale           None      1.0
3532length          |Ang|     50.0
3533background      |cm^-1|   0.0
[4ed2d0a1]3534==============  ========  =============
[1c03e14]3535
[34e0c32]3536.. image:: ..\img\olddocs\image181.jpg
[1c03e14]3537
[93b6fcc]3538* Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3539
[4ed2d0a1]3540REFERENCE
[1c03e14]3541
[93b6fcc]3542P Debye, H R Anderson, H Brumberger, *Scattering by an Inhomogeneous Solid. II. The Correlation Function*
3543*and its Application*, *J. Appl. Phys.*, 28(6) (1957) 679
[1c03e14]3544
[93b6fcc]3545P Debye, A M Bueche, *Scattering by an Inhomogeneous Solid*, *J. Appl. Phys.*, 20 (1949) 518
[1c03e14]3546
[93b6fcc]3547*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3548
3549
3550
[4ed2d0a1]3551.. _AbsolutePower_Law:
[1c03e14]3552
[58eccf6]3553**2.2.6. AbsolutePower_Law**
[1c03e14]3554
[93b6fcc]3555This model describes a simple power law with background.
[1c03e14]3556
[34e0c32]3557.. image:: ..\img\olddocs\image182.PNG
[1c03e14]3558
[93b6fcc]3559Note the minus sign in front of the exponent. The parameter *m* should therefore be entered as a **positive** number.
[1c03e14]3560
[4ed2d0a1]3561==============  ========  =============
3562Parameter name  Units     Default value
3563==============  ========  =============
[58eccf6]3564Scale           None      1.0
3565m               None      4
3566Background      |cm^-1|   0.0
[4ed2d0a1]3567==============  ========  =============
[1c03e14]3568
[34e0c32]3569.. image:: ..\img\olddocs\image183.jpg
[1c03e14]3570
[4ed2d0a1]3571*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3572
[93b6fcc]3573REFERENCE
3574
3575None.
3576
[1c03e14]3577
3578
[93b6fcc]3579.. _TeubnerStrey:
[1c03e14]3580
[93b6fcc]3581**2.2.7. TeubnerStrey (Model)**
[1c03e14]3582
[93b6fcc]3583This function calculates the scattered intensity of a two-component system using the Teubner-Strey model. Unlike the
3584DABModel_ this function generates a peak.
3585
3586*2.2.7.1. Definition*
[1c03e14]3587
[34e0c32]3588.. image:: ..\img\olddocs\image184.PNG
[1c03e14]3589
[93b6fcc]3590For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3591
[34e0c32]3592.. image:: ..\img\olddocs\image040.gif
[1c03e14]3593
[4ed2d0a1]3594==============  ========  =============
3595Parameter name  Units     Default value
3596==============  ========  =============
[58eccf6]3597scale           None      0.1
3598c1              None      -30.0
3599c2              None      5000.0
3600background      |cm^-1|   0.0
[4ed2d0a1]3601==============  ========  =============
[1c03e14]3602
[34e0c32]3603.. image:: ..\img\olddocs\image185.jpg
[1c03e14]3604
[4ed2d0a1]3605*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3606
[4ed2d0a1]3607REFERENCE
[1c03e14]3608
[93b6fcc]3609M Teubner, R Strey, *J. Chem. Phys.*, 87 (1987) 3195
[1c03e14]3610
[93b6fcc]3611K V Schubert, R Strey, S R Kline and E W Kaler, *J. Chem. Phys.*, 101 (1994) 5343
[1c03e14]3612
3613
3614
[4ed2d0a1]3615.. _FractalModel:
[1c03e14]3616
[58eccf6]3617**2.2.8. FractalModel**
[1c03e14]3618
[93b6fcc]3619Calculates the scattering from fractal-like aggregates built from spherical building blocks following the Texiera
3620reference.
3621
3622The value returned is in |cm^-1|\ .
3623
3624*2.2.8.1. Definition*
[1c03e14]3625
[34e0c32]3626.. image:: ..\img\olddocs\image186.PNG
[1c03e14]3627
[93b6fcc]3628The *scale* parameter is the volume fraction of the building blocks, *R0* is the radius of the building block, *Df* is
3629the fractal dimension, |xi| is the correlation length, |rho|\ *solvent* is the scattering length density of the
3630solvent, and |rho|\ *block* is the scattering length density of the building blocks.
[1c03e14]3631
[93b6fcc]3632**Polydispersity on the radius is provided for.**
[1c03e14]3633
[93b6fcc]3634For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3635
[34e0c32]3636.. image:: ..\img\olddocs\image040.gif
[1c03e14]3637
[4ed2d0a1]3638==============  ========  =============
3639Parameter name  Units     Default value
3640==============  ========  =============
[58eccf6]3641scale           None      0.05
3642radius          |Ang|     5.0
3643fractal_dim     None      2
3644corr_length     |Ang|     100.0
3645block_sld       |Ang^-2|  2e-6
3646solvent_sld     |Ang^-2|  6e-6
3647background      |cm^-1|   0.0
[4ed2d0a1]3648==============  ========  =============
[1c03e14]3649
[34e0c32]3650.. image:: ..\img\olddocs\image187.jpg
[1c03e14]3651
3652*Figure. 1D plot using the default values (w/200 data point).*
3653
[4ed2d0a1]3654REFERENCE
[1c03e14]3655
[93b6fcc]3656J Teixeira, *J. Appl. Cryst.*, 21 (1988) 781-785
[1c03e14]3657
3658
3659
[4ed2d0a1]3660.. _MassFractalModel:
[1c03e14]3661
[4ed2d0a1]3662**2.2.9. MassFractalModel**
[1c03e14]3663
[93b6fcc]3664Calculates the scattering from fractal-like aggregates based on the Mildner reference.
3665
3666*2.2.9.1. Definition*
[1c03e14]3667
[34e0c32]3668.. image:: ..\img\olddocs\mass_fractal_eq1.jpg
[1c03e14]3669
[93b6fcc]3670where *R* is the radius of the building block, *Dm* is the **mass** fractal dimension, |zeta| is the cut-off length,
3671|rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *particle* is the scattering length
3672density of particles.
[1c03e14]3673
[93b6fcc]3674Note:  The mass fractal dimension *Dm* is only valid if 1 < mass_dim < 6. It is also only valid over a limited
3675*q* range (see the reference for details).
[1c03e14]3676
[4ed2d0a1]3677==============  ========  =============
3678Parameter name  Units     Default value
3679==============  ========  =============
[58eccf6]3680scale           None      1
3681radius          |Ang|     10.0
3682mass_dim        None      1.9
3683co_length       |Ang|     100.0
3684background      |cm^-1|   0.0
[4ed2d0a1]3685==============  ========  =============
[1c03e14]3686
[34e0c32]3687.. image:: ..\img\olddocs\mass_fractal_fig1.jpg
[1c03e14]3688
[93b6fcc]3689*Figure. 1D plot using default values.*
[1c03e14]3690
[4ed2d0a1]3691REFERENCE
[1c03e14]3692
[93b6fcc]3693D Mildner and P Hall, *J. Phys. D: Appl. Phys.*,  19 (1986) 1535-1545
3694Equation(9)
[1c03e14]3695
[93b6fcc]3696*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3697
3698
3699
[4ed2d0a1]3700.. _SurfaceFractalModel:
[1c03e14]3701
[4ed2d0a1]3702**2.2.10. SurfaceFractalModel**
[1c03e14]3703
[93b6fcc]3704Calculates the scattering from fractal-like aggregates based on the Mildner reference.
3705
3706*2.2.10.1. Definition*
[1c03e14]3707
[34e0c32]3708.. image:: ..\img\olddocs\surface_fractal_eq1.gif
[1c03e14]3709
[93b6fcc]3710where *R* is the radius of the building block, *Ds* is the **surface** fractal dimension, |zeta| is the cut-off length,
3711|rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *particle* is the scattering length
3712density of particles.
[1c03e14]3713
[93b6fcc]3714Note:  The surface fractal dimension *Ds* is only valid if 1 < surface_dim < 3. It is also only valid over a limited
3715*q* range (see the reference for details).
[1c03e14]3716
[4ed2d0a1]3717==============  ========  =============
3718Parameter name  Units     Default value
3719==============  ========  =============
[58eccf6]3720scale           None      1
3721radius          |Ang|     10.0
3722surface_dim     None      2.0
3723co_length       |Ang|     500.0
3724background      |cm^-1|   0.0
[4ed2d0a1]3725==============  ========  =============
[1c03e14]3726
[34e0c32]3727.. image:: ..\img\olddocs\surface_fractal_fig1.jpg
[1c03e14]3728
[93b6fcc]3729*Figure. 1D plot using default values.*
[1c03e14]3730
[4ed2d0a1]3731REFERENCE
[1c03e14]3732
[93b6fcc]3733D Mildner and P Hall, *J. Phys. D: Appl. Phys.*,  19 (1986) 1535-1545
3734Equation(13)
[1c03e14]3735
3736
3737
[4ed2d0a1]3738.. _MassSurfaceFractal:
[1c03e14]3739
[58eccf6]3740**2.2.11. MassSurfaceFractal (Model)**
[1c03e14]3741
[93b6fcc]3742A number of natural and commercial processes form high-surface area materials as a result of the vapour-phase
3743aggregation of primary particles. Examples of such materials include soots, aerosols, and fume or pyrogenic silicas.
3744These are all characterised by cluster mass distributions (sometimes also cluster size distributions) and internal
3745surfaces that are fractal in nature. The scattering from such materials displays two distinct breaks in log-log
3746representation, corresponding to the radius-of-gyration of the primary particles, *rg*, and the radius-of-gyration of
3747the clusters (aggregates), *Rg*. Between these boundaries the scattering follows a power law related to the mass
3748fractal dimension, *Dm*, whilst above the high-Q boundary the scattering follows a power law related to the surface
3749fractal dimension of the primary particles, *Ds*.
3750
3751*2.2.11.1. Definition*
3752
3753The scattered intensity *I(q)* is  calculated using a modified Ornstein-Zernicke equation
[1c03e14]3754
[34e0c32]3755.. image:: ..\img\olddocs\masssurface_fractal_eq1.jpg
[1c03e14]3756
[93b6fcc]3757where *Rg* is the size of the cluster, *rg* is the size of the primary particle, *Ds* is the surface fractal dimension,
3758*Dm* is the mass fractal dimension, |rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *p* is
3759the scattering length density of particles.
[1c03e14]3760
[93b6fcc]3761Note:  The surface (*Ds*) and mass (*Dm*) fractal dimensions are only valid if 0 < *surface_dim* < 6,
37620 < *mass_dim* < 6, and (*surface_dim*+*mass_dim*) < 6. 
[1c03e14]3763
[4ed2d0a1]3764==============  ========  =============
3765Parameter name  Units     Default value
3766==============  ========  =============
[58eccf6]3767scale           None      1
3768primary_rg      |Ang|     4000.0
3769cluster_rg      |Ang|     86.7
3770surface_dim     None      2.3
3771mass_dim        None      1.8
3772background      |cm^-1|   0.0
[4ed2d0a1]3773==============  ========  =============
[1c03e14]3774
[34e0c32]3775.. image:: ..\img\olddocs\masssurface_fractal_fig1.jpg
[1c03e14]3776
[93b6fcc]3777*Figure. 1D plot using default values.*
[1c03e14]3778
[4ed2d0a1]3779REFERENCE
[1c03e14]3780
[93b6fcc]3781P Schmidt, *J Appl. Cryst.*, 24 (1991) 414-435
3782Equation(19)
[1c03e14]3783
[93b6fcc]3784A J Hurd, D W Schaefer, J E Martin, *Phys. Rev. A*, 35 (1987) 2361-2364
3785Equation(2)
[1c03e14]3786
3787
3788
[4ed2d0a1]3789.. _FractalCoreShell:
[1c03e14]3790
[58eccf6]3791**2.2.12. FractalCoreShell (Model)**
[1c03e14]3792
[93b6fcc]3793Calculates the scattering from a fractal structure with a primary building block of core-shell spheres, as opposed to
3794just homogeneous spheres in the FractalModel_. This model could find use for aggregates of coated particles, or
3795aggregates of vesicles.
3796
3797The returned value is scaled to units of |cm^-1|, absolute scale.
3798
3799*2.2.12.1. Definition*
[1c03e14]3800
[34e0c32]3801.. image:: ..\img\olddocs\fractcore_eq1.gif
[1c03e14]3802
[93b6fcc]3803The form factor *P(q)* is that from CoreShellModel_ with *bkg* = 0
[1c03e14]3804
[34e0c32]3805.. image:: ..\img\olddocs\image013.PNG
[1c03e14]3806
[93b6fcc]3807while the fractal structure factor S(q) is
[1c03e14]3808
[34e0c32]3809.. image:: ..\img\olddocs\fractcore_eq3.gif
[1c03e14]3810
[93b6fcc]3811where *Df* = frac_dim, |xi| = cor_length, *rc* = (core) radius, and *scale* = volume fraction.
[1c03e14]3812
[93b6fcc]3813The fractal structure is as documented in the FractalModel_. Polydispersity of radius and thickness is provided for.
[1c03e14]3814
[93b6fcc]3815For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3816
[34e0c32]3817.. image:: ..\img\olddocs\image040.gif
[1c03e14]3818
[4ed2d0a1]3819==============  ========  =============
3820Parameter name  Units     Default value
3821==============  ========  =============
[58eccf6]3822volfraction     None      0.05
3823frac_dim        None      2
3824thickness       |Ang|     5.0
3825radius          |Ang|     20.0
3826cor_length      |Ang|     100.0
3827core_sld        |Ang^-2|  3.5e-6
3828shell_sld       |Ang^-2|  1e-6
3829solvent_sld     |Ang^-2|  6.35e-6
3830background      |cm^-1|   0.0
[4ed2d0a1]3831==============  ========  =============
[1c03e14]3832
[34e0c32]3833.. image:: ..\img\olddocs\image188.jpg
[1c03e14]3834
[4ed2d0a1]3835*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3836
[4ed2d0a1]3837REFERENCE
[1c03e14]3838
[93b6fcc]3839See the CoreShellModel_ and FractalModel_ descriptions.
[1c03e14]3840
3841
3842
[4ed2d0a1]3843.. _GaussLorentzGel:
[1c03e14]3844
[58eccf6]3845**2.2.13. GaussLorentzGel(Model)**
[1c03e14]3846
[93b6fcc]3847Calculates the scattering from a gel structure, but typically a physical rather than chemical network. It is modeled as
3848a sum of a low-*q* exponential decay plus a lorentzian at higher *q*-values.
[1c03e14]3849
[6386cd8]3850Also see the GelFitModel_.
3851
[4ed2d0a1]3852The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3853
[93b6fcc]3854*2.2.13.1. Definition*
3855
3856The scattering intensity *I(q)* is calculated as (eqn 5 from the reference)
[1c03e14]3857
[34e0c32]3858.. image:: ..\img\olddocs\image189.jpg
[1c03e14]3859
[93b6fcc]3860|bigzeta| is the length scale of the static correlations in the gel, which can be attributed to the "frozen-in"
3861crosslinks. |xi| is the dynamic correlation length, which can be attributed to the fluctuating polymer chains between
3862crosslinks. *I*\ :sub:`G`\ *(0)* and *I*\ :sub:`L`\ *(0)* are the scaling factors for each of these structures. **Think carefully about how**
3863**these map to your particular system!**
[1c03e14]3864
[93b6fcc]3865NB: The peaked structure at higher *q* values (Figure 2 from the reference) is not reproduced by the model. Peaks can
3866be introduced into the model by summing this model with the PeakGaussModel_ function.
[1c03e14]3867
[93b6fcc]3868For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3869
[34e0c32]3870.. image:: ..\img\olddocs\image040.gif
[1c03e14]3871
[58eccf6]3872===================================  ========  =============
3873Parameter name                       Units     Default value
3874===================================  ========  =============
3875dyn_colength (=dynamic corr length)  |Ang|     20.0
3876scale_g       (=Gauss scale factor)  None      100
3877scale_l  (=Lorentzian scale factor)  None      50
3878stat_colength (=static corr length)  |Ang|     100.0
3879background                           |cm^-1|   0.0
3880===================================  ========  =============
[1c03e14]3881
[34e0c32]3882.. image:: ..\img\olddocs\image190.jpg
[1c03e14]3883
[4ed2d0a1]3884*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3885
[4ed2d0a1]3886REFERENCE
[1c03e14]3887
[93b6fcc]3888G Evmenenko, E Theunissen, K Mortensen, H Reynaers, *Polymer*, 42 (2001) 2907-2913
[1c03e14]3889
3890
3891
[4ed2d0a1]3892.. _BEPolyelectrolyte:
[1c03e14]3893
[58eccf6]3894**2.2.14. BEPolyelectrolyte (Model)**
[1c03e14]3895
[93b6fcc]3896Calculates the structure factor of a polyelectrolyte solution with the RPA expression derived by Borue and Erukhimovich.
3897
3898The value returned is in |cm^-1|.
3899
3900*2.2.14.1. Definition*
[1c03e14]3901
[34e0c32]3902.. image:: ..\img\olddocs\image191.PNG
[1c03e14]3903
[93b6fcc]3904where *K* is the contrast factor for the polymer, *Lb* is the Bjerrum length, *h* is the virial parameter, *b* is the
3905monomer length, *Cs* is the concentration of monovalent salt, |alpha| is the ionization degree, *Ca* is the polymer
3906molar concentration, and *background* is the incoherent background.
[1c03e14]3907
[93b6fcc]3908For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3909
[34e0c32]3910.. image:: ..\img\olddocs\image040.gif
[1c03e14]3911
[4ed2d0a1]3912==============  ========  =============
3913Parameter name  Units     Default value
3914==============  ========  =============
[58eccf6]3915K               barns     10
3916Lb              |Ang|     7.1
3917h               |Ang^-3|  12
3918b               |Ang|     10
3919Cs              mol/L     0
3920alpha           None      0.05
3921Ca              mol/L     0.7
3922background      |cm^-1|   0.0
[4ed2d0a1]3923==============  ========  =============
[1c03e14]3924
[58eccf6]3925NB: 1 barn = 10\ :sup:`-24` |cm^2|
3926
[4ed2d0a1]3927REFERENCE
[1c03e14]3928
[93b6fcc]3929V Y Borue, I Y Erukhimovich, *Macromolecules*, 21 (1988) 3240
[1c03e14]3930
[93b6fcc]3931J F Joanny, L Leibler, *Journal de Physique*, 51 (1990) 545
[1c03e14]3932
[93b6fcc]3933A Moussaid, F Schosseler, J P Munch, S Candau, *J. Journal de Physique II France*, 3 (1993) 573
[1c03e14]3934
[93b6fcc]3935E Raphael, J F Joanny, *Europhysics Letters*, 11 (1990) 179
[1c03e14]3936
3937
3938
[ad25dc2]3939.. _GuinierLaw:
[1c03e14]3940
[4ed2d0a1]3941**2.2.15. Guinier (Model)**
[1c03e14]3942
[93b6fcc]3943This model fits the Guinier function
[1c03e14]3944
[34e0c32]3945.. image:: ..\img\olddocs\image192.PNG
[1c03e14]3946
[93b6fcc]3947to the data directly without any need for linearisation (*cf*. Ln *I(q)* vs *q*\ :sup:`2`).
3948
3949For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3950
[34e0c32]3951.. image:: ..\img\olddocs\image040.gif
[1c03e14]3952
[4ed2d0a1]3953==============  ========  =============
3954Parameter name  Units     Default value
3955==============  ========  =============
[58eccf6]3956scale           |cm^-1|   1.0
3957Rg              |Ang|     0.1
[4ed2d0a1]3958==============  ========  =============
[1c03e14]3959
[93b6fcc]3960REFERENCE
3961
3962A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley & Sons, New York (1955)
3963
[1c03e14]3964
3965
[4ed2d0a1]3966.. _GuinierPorod:
[1c03e14]3967
[4ed2d0a1]3968**2.2.16. GuinierPorod (Model)**
[1c03e14]3969
[93b6fcc]3970Calculates the scattering for a generalized Guinier/power law object. This is an empirical model that can be used to
3971determine the size and dimensionality of scattering objects, including asymmetric objects such as rods or platelets, and
3972shapes intermediate between spheres and rods or between rods and platelets.
[1c03e14]3973
[93b6fcc]3974The result is in the units of |cm^-1|, absolute scale.
[1c03e14]3975
[93b6fcc]3976*2.2.16.1 Definition*
[1c03e14]3977
[93b6fcc]3978The following functional form is used
[1c03e14]3979
[34e0c32]3980.. image:: ..\img\olddocs\image193.jpg
[1c03e14]3981
[93b6fcc]3982This is based on the generalized Guinier law for such elongated objects (see the Glatter reference below). For 3D
[02d7952]3983globular objects (such as spheres), *s* = 0 and one recovers the standard GuinierLaw_ formula. For 2D symmetry (such as
[93b6fcc]3984for rods) *s* = 1, and for 1D symmetry (such as for lamellae or platelets) *s* = 2. A dimensionality parameter (3-*s*)
3985is thus defined, and is 3 for spherical objects, 2 for rods, and 1 for plates.
3986
3987Enforcing the continuity of the Guinier and Porod functions and their derivatives yields
[1c03e14]3988
[34e0c32]3989.. image:: ..\img\olddocs\image194.jpg
[1c03e14]3990
[4ed2d0a1]3991and
[1c03e14]3992
[34e0c32]3993.. image:: ..\img\olddocs\image195.jpg
[1c03e14]3994
[93b6fcc]3995Note that
[1c03e14]3996
[6386cd8]3997 the radius-of-gyration for a sphere of radius *R* is given by *Rg* = *R* sqrt(3/5)
[1c03e14]3998
[6386cd8]3999 the cross-sectional radius-of-gyration for a randomly oriented cylinder of radius *R* is given by *Rg* = *R* / sqrt(2)
[1c03e14]4000
[6386cd8]4001 the cross-sectional radius-of-gyration of a randomly oriented lamella of thickness *T* is given by *Rg* = *T* / sqrt(12)
[1c03e14]4002
[93b6fcc]4003For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4004
[34e0c32]4005.. image:: ..\img\olddocs\image008.PNG
[1c03e14]4006
[58eccf6]4007==============================  ========  =============
4008Parameter name                  Units     Default value
4009==============================  ========  =============
4010scale      (=Guinier scale, G)  |cm^-1|   1.0
4011rg                              |Ang|     100
4012dim (=dimensional variable, s)  None      1
4013m            (=Porod exponent)  None      3
4014background                      |cm^-1|   0.1
4015==============================  ========  =============
[1c03e14]4016
[34e0c32]4017.. image:: ..\img\olddocs\image196.jpg
[1c03e14]4018
[4ed2d0a1]4019*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4020
[93b6fcc]4021REFERENCE
4022
4023A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
4024
4025O Glatter, O Kratky, *Small-Angle X-Ray Scattering*, Academic Press (1982)
4026Check out Chapter 4 on Data Treatment, pages 155-156.
4027
[1c03e14]4028
4029
[4ed2d0a1]4030.. _PorodModel:
[1c03e14]4031
[4ed2d0a1]4032**2.2.17. PorodModel**
[1c03e14]4033
[6386cd8]4034This model fits the Porod function
[1c03e14]4035
[34e0c32]4036.. image:: ..\img\olddocs\image197_corrected.PNG
[1c03e14]4037
[6386cd8]4038to the data directly without any need for linearisation (*cf*. Log *I(q)* vs Log *q*).
[1c03e14]4039
[6386cd8]4040Here *C* is the scale factor and *Sv* is the specific surface area (ie, surface area / volume) of the sample, and
4041|drho| is the contrast factor.
[1c03e14]4042
[93b6fcc]4043For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4044
[34e0c32]4045.. image:: ..\img\olddocs\image040.gif
[1c03e14]4046
[4ed2d0a1]4047==============  ========  =============
4048Parameter name  Units     Default value
4049==============  ========  =============
[58eccf6]4050scale           |Ang^-4|  0.1
4051background      |cm^-1|   0
[4ed2d0a1]4052==============  ========  =============
[1c03e14]4053
[6386cd8]4054REFERENCE
4055
4056None.
4057
[1c03e14]4058
4059
[4ed2d0a1]4060.. _PeakGaussModel:
[1c03e14]4061
[4ed2d0a1]4062**2.2.18. PeakGaussModel**
[1c03e14]4063
[6386cd8]4064This model describes a Gaussian shaped peak on a flat background
[1c03e14]4065
[34e0c32]4066.. image:: ..\img\olddocs\image198.PNG
[1c03e14]4067
[6386cd8]4068with the peak having height of *I0* centered at *q0* and having a standard deviation of *B*.  The FWHM (full-width
4069half-maximum) is 2.354 B.  
[1c03e14]4070
[93b6fcc]4071For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4072
[34e0c32]4073.. image:: ..\img\olddocs\image040.gif
[1c03e14]4074
[4ed2d0a1]4075==============  ========  =============
4076Parameter name  Units     Default value
4077==============  ========  =============
[58eccf6]4078scale           |cm^-1|   100
4079q0              |Ang^-1|  0.05
4080B               |Ang^-1|  0.005
4081background      |cm^-1|   1
[4ed2d0a1]4082==============  ========  =============
[1c03e14]4083
[34e0c32]4084.. image:: ..\img\olddocs\image199.jpg
[1c03e14]4085
[4ed2d0a1]4086*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4087
[6386cd8]4088REFERENCE
4089
4090None.
4091
[1c03e14]4092
4093
[4ed2d0a1]4094.. _PeakLorentzModel:
[1c03e14]4095
[4ed2d0a1]4096**2.2.19. PeakLorentzModel**
[1c03e14]4097
[6386cd8]4098This model describes a Lorentzian shaped peak on a flat background
[1c03e14]4099
[34e0c32]4100.. image:: ..\img\olddocs\image200.PNG
[1c03e14]4101
[6386cd8]4102with the peak having height of *I0* centered at *q0* and having a HWHM (half-width half-maximum) of B. 
[1c03e14]4103
[93b6fcc]4104For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4105
[34e0c32]4106.. image:: ..\img\olddocs\image040.gif
[1c03e14]4107
[4ed2d0a1]4108==============  ========  =============
4109Parameter name  Units     Default value
4110==============  ========  =============
[58eccf6]4111scale           |cm^-1|   100
4112q0              |Ang^-1|  0.05
4113B               |Ang^-1|  0.005
4114background      |cm^-1|     1
[4ed2d0a1]4115==============  ========  =============
[1c03e14]4116
[34e0c32]4117.. image:: ..\img\olddocs\image201.jpg
[1c03e14]4118
[4ed2d0a1]4119*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4120
[6386cd8]4121REFERENCE
4122
4123None.
4124
[1c03e14]4125
4126
[4ed2d0a1]4127.. _Poly_GaussCoil:
[1c03e14]4128
[4ed2d0a1]4129**2.2.20. Poly_GaussCoil (Model)**
[1c03e14]4130
[6386cd8]4131This model calculates an empirical functional form for the scattering from a **polydisperse** polymer chain in the
4132theta state assuming a Schulz-Zimm type molecular weight distribution. Polydispersity on the radius-of-gyration is also
4133provided for.
[1c03e14]4134
[4ed2d0a1]4135The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4136
[6386cd8]4137*2.2.20.1. Definition*
4138
4139The scattering intensity *I(q)* is calculated as
4140
[34e0c32]4141.. image:: ..\img\olddocs\image202.PNG
[1c03e14]4142
[6386cd8]4143where the dimensionless chain dimension is
[1c03e14]4144
[34e0c32]4145.. image:: ..\img\olddocs\image203.PNG
[1c03e14]4146
[6386cd8]4147and the polydispersity is
[1c03e14]4148
[34e0c32]4149.. image:: ..\img\olddocs\image204.PNG
[1c03e14]4150
[93b6fcc]4151For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4152
[34e0c32]4153.. image:: ..\img\olddocs\image040.gif
[1c03e14]4154
[6386cd8]4155This example dataset is produced using 200 data points, using 200 data points,
4156*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]4157
[4ed2d0a1]4158==============  ========  =============
4159Parameter name  Units     Default value
4160==============  ========  =============
[58eccf6]4161scale           None      1.0
4162rg              |Ang|     60.0
4163poly_m (Mw/Mn)  None      2
4164background      |cm^-1|   0.001
[4ed2d0a1]4165==============  ========  =============
[1c03e14]4166
[34e0c32]4167.. image:: ..\img\olddocs\image205.jpg
[1c03e14]4168
4169*Figure. 1D plot using the default values (w/200 data point).*
4170
[bf8c07b]4171REFERENCE
[1c03e14]4172
[6386cd8]4173O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982)
4174Page 404
[1c03e14]4175
[93b6fcc]4176J S Higgins, and H C Benoit, Polymers and Neutron Scattering, Oxford Science Publications (1996)
[4ed2d0a1]4177
[1c03e14]4178
[4ed2d0a1]4179
4180.. _PolyExclVolume:
4181
4182**2.2.21. PolymerExclVolume (Model)**
[1c03e14]4183
[6386cd8]4184This model describes the scattering from polymer chains subject to excluded volume effects, and has been used as a
4185template for describing mass fractals.
[1c03e14]4186
[4ed2d0a1]4187The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4188
[6386cd8]4189*2.2.21.1 Definition*
[1c03e14]4190
[6386cd8]4191The form factor  was originally presented in the following integral form (Benoit, 1957)
[1c03e14]4192
[34e0c32]4193.. image:: ..\img\olddocs\image206.jpg
[1c03e14]4194
[6386cd8]4195where |nu| is the excluded volume parameter (which is related to the Porod exponent *m* as |nu| = 1 / *m*), *a* is the
4196statistical segment length of the polymer chain, and *n* is the degree of polymerization. This integral was later put
4197into an almost analytical form as follows (Hammouda, 1993)
[1c03e14]4198
[34e0c32]4199.. image:: ..\img\olddocs\image207.jpg
[1c03e14]4200
[6386cd8]4201where |gamma|\ *(x,U)* is the incomplete gamma function
[1c03e14]4202
[34e0c32]4203.. image:: ..\img\olddocs\image208.jpg
[1c03e14]4204
[6386cd8]4205and the variable *U* is given in terms of the scattering vector *Q* as
[1c03e14]4206
[34e0c32]4207.. image:: ..\img\olddocs\image209.jpg
[1c03e14]4208
[6386cd8]4209The square of the radius-of-gyration is defined as
[1c03e14]4210
[34e0c32]4211.. image:: ..\img\olddocs\image210.jpg
[1c03e14]4212
[6386cd8]4213Note that this model applies only in the mass fractal range (ie, 5/3 <= *m* <= 3) and **does not** apply to surface
4214fractals (3 < *m* <= 4). It also does not reproduce the rigid rod limit (*m* = 1) because it assumes chain flexibility
4215from the outset. It may cover a portion of the semi-flexible chain range (1 < *m* < 5/3).
[1c03e14]4216
[6386cd8]4217A low-*Q* expansion yields the Guinier form and a high-*Q* expansion yields the Porod form which is given by
[1c03e14]4218
[34e0c32]4219.. image:: ..\img\olddocs\image211.jpg
[1c03e14]4220
[6386cd8]4221Here |biggamma|\ *(x)* = |gamma|\ *(x,inf)* is the gamma function.
4222
4223The asymptotic limit is dominated by the first term
[1c03e14]4224
[34e0c32]4225.. image:: ..\img\olddocs\image212.jpg
[1c03e14]4226
[6386cd8]4227The special case when |nu| = 0.5 (or *m* = 1/|nu| = 2) corresponds to Gaussian chains for which the form factor is given
4228by the familiar Debye_ function.
[1c03e14]4229
[34e0c32]4230.. image:: ..\img\olddocs\image213.jpg
[1c03e14]4231
[93b6fcc]4232For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4233
[34e0c32]4234.. image:: ..\img\olddocs\image040.gif
[1c03e14]4235
[6386cd8]4236This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.2 |Ang^-1| and the default
4237values
[1c03e14]4238
[58eccf6]4239===================  ========  =============
4240Parameter name       Units     Default value
4241===================  ========  =============
4242scale                None      1.0
4243rg                   |Ang|     60.0
4244m (=Porod exponent)  None      3
4245background           |cm^-1|   0.0
4246===================  ========  =============
[1c03e14]4247
[34e0c32]4248.. image:: ..\img\olddocs\image214.jpg
[1c03e14]4249
4250*Figure. 1D plot using the default values (w/500 data points).*
4251
[6386cd8]4252REFERENCE
[1c03e14]4253
[6386cd8]4254H Benoit, *Comptes Rendus*, 245 (1957) 2244-2247
[1c03e14]4255
[6386cd8]4256B Hammouda, *SANS from Homogeneous Polymer Mixtures ­ A Unified Overview*, *Advances in Polym. Sci.*, 106 (1993) 87-133
[4ed2d0a1]4257
[1c03e14]4258
4259
[6386cd8]4260.. _RPA10Model:
[1c03e14]4261
[6386cd8]4262**2.2.22. RPA10Model**
[1c03e14]4263
[6386cd8]4264Calculates the macroscopic scattering intensity (units of |cm^-1|) for a multicomponent homogeneous mixture of polymers
4265using the Random Phase Approximation. This general formalism contains 10 specific cases
[1c03e14]4266
[6386cd8]4267Case 0: C/D binary mixture of homopolymers
[1c03e14]4268
[6386cd8]4269Case 1: C-D diblock copolymer
[1c03e14]4270
[6386cd8]4271Case 2: B/C/D ternary mixture of homopolymers
[1c03e14]4272
[6386cd8]4273Case 3: C/C-D mixture of a homopolymer B and a diblock copolymer C-D
[1c03e14]4274
[6386cd8]4275Case 4: B-C-D triblock copolymer
[1c03e14]4276
[6386cd8]4277Case 5: A/B/C/D quaternary mixture of homopolymers
[1c03e14]4278
[6386cd8]4279Case 6: A/B/C-D mixture of two homopolymers A/B and a diblock C-D
[1c03e14]4280
[6386cd8]4281Case 7: A/B-C-D mixture of a homopolymer A and a triblock B-C-D
[1c03e14]4282
[6386cd8]4283Case 8: A-B/C-D mixture of two diblock copolymers A-B and C-D
[1c03e14]4284
[6386cd8]4285Case 9: A-B-C-D tetra-block copolymer
[1c03e14]4286
[6386cd8]4287**NB: these case numbers are different from those in the NIST SANS package!**
[1c03e14]4288
[6386cd8]4289Only one case can be used at any one time.
[1c03e14]4290
[6386cd8]4291The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4292
[6386cd8]4293The RPA (mean field) formalism only applies only when the multicomponent polymer mixture is in the homogeneous
4294mixed-phase region.
[1c03e14]4295
[6386cd8]4296**Component D is assumed to be the "background" component (ie, all contrasts are calculated with respect to**
4297**component D).** So the scattering contrast for a C/D blend = [SLD(component C) - SLD(component D)]\ :sup:`2`.
[1c03e14]4298
[6386cd8]4299Depending on which case is being used, the number of fitting parameters - the segment lengths (ba, bb, etc) and |chi|
4300parameters (Kab, Kac, etc) - vary. The *scale* parameter should be held equal to unity.
[1c03e14]4301
[6386cd8]4302The input parameters are the degrees of polymerization, the volume fractions, the specific volumes, and the neutron
4303scattering length densities for each component.
[1c03e14]4304
[6386cd8]4305Fitting parameters for a Case 0 Model
[1c03e14]4306
[58eccf6]4307=======================  ========  =============
4308Parameter name           Units     Default value
4309=======================  ========  =============
4310background               |cm^-1|   0.0
4311scale                    None      1
4312bc (=segment Length_bc)  **unit**  5
4313bd (=segment length_bd)  **unit**  5
4314Kcd (=chi_cd)            **unit**  -0.0004
4315=======================  ========  =============
[1c03e14]4316
[6386cd8]4317Fixed parameters for a Case 0 Model
[1c03e14]4318
[58eccf6]4319=======================  ========  =============
4320Parameter name           Units     Default value
4321=======================  ========  =============
4322Lc (=scatter. length_c)  **unit**  1e-12
4323Ld (=scatter. length_d)  **unit**  0
4324Nc    (=degree polym_c)  None      1000
4325Nd    (=degree polym_d)  None      1000
4326Phic (=vol. fraction_c)  None      0.25
4327Phid (=vol. fraction_d)  None      0.25
4328vc (=specific volume_c)  **unit**  100
4329vd (=specific volume_d)  **unit**  100
4330=======================  ========  =============
[1c03e14]4331
[34e0c32]4332.. image:: ..\img\olddocs\image215.jpg
[1c03e14]4333
4334*Figure. 1D plot using the default values (w/500 data points).*
4335
[6386cd8]4336REFERENCE
4337
4338A Z Akcasu, R Klein and B Hammouda, *Macromolecules*, 26 (1993) 4136
[1c03e14]4339
4340
4341
[4ed2d0a1]4342.. _TwoLorentzian:
[1c03e14]4343
[58eccf6]4344**2.2.23. TwoLorentzian (Model)**
[1c03e14]4345
[6386cd8]4346This model calculates an empirical functional form for SAS data characterized by two Lorentzian-type functions.
[1c03e14]4347
[4ed2d0a1]4348The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4349
[6386cd8]4350*2.2.23.1. Definition*
[1c03e14]4351
[6386cd8]4352The scattering intensity *I(q)* is calculated as
[1c03e14]4353
[34e0c32]4354.. image:: ..\img\olddocs\image216.jpg 
[1c03e14]4355
[6386cd8]4356where *A* = Lorentzian scale factor #1, *C* = Lorentzian scale #2, |xi|\ :sub:`1` and |xi|\ :sub:`2` are the
4357corresponding correlation lengths, and *n* and *m* are the respective power law exponents (set *n* = *m* = 2 for
4358Ornstein-Zernicke behaviour).
[1c03e14]4359
[93b6fcc]4360For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4361
[34e0c32]4362.. image:: ..\img\olddocs\image040.gif
[1c03e14]4363
[58eccf6]4364===============================  ========  =============
4365Parameter name                   Units     Default value
4366===============================  ========  =============
4367scale_1 (=A)                     None      10
4368scale_2 (=C)                     None      1
43691ength_1 (=correlation length1)  |Ang|     100
43701ength_2 (=correlation length2)  |Ang|     10
4371exponent_1 (=n)                  None      3
4372exponent_2 (=m)                  None      2
4373background (=B)                  |cm^-1|   0.1
4374===============================  ========  =============
[1c03e14]4375
[34e0c32]4376.. image:: ..\img\olddocs\image217.jpg
[1c03e14]4377
4378*Figure. 1D plot using the default values (w/500 data points).*
4379
[bf8c07b]4380REFERENCE
4381
[6386cd8]4382None.
[1c03e14]4383
4384
4385
[4ed2d0a1]4386.. _TwoPowerLaw:
[1c03e14]4387
[58eccf6]4388**2.2.24. TwoPowerLaw (Model)**
[1c03e14]4389
[6386cd8]4390This model calculates an empirical functional form for SAS data characterized by two power laws.
[1c03e14]4391
[4ed2d0a1]4392The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4393
[6386cd8]4394*2.2.24.1. Definition*
4395
4396The scattering intensity *I(q)* is calculated as
[1c03e14]4397
[34e0c32]4398.. image:: ..\img\olddocs\image218.jpg
[1c03e14]4399
[6386cd8]4400where *qc* is the location of the crossover from one slope to the other. The scaling *coef_A* sets the overall
4401intensity of the lower *q* power law region. The scaling of the second power law region is then automatically scaled to
4402match the first.
4403
4404**NB: Be sure to enter the power law exponents as positive values!**
[1c03e14]4405
[93b6fcc]4406For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4407
[34e0c32]4408.. image:: ..\img\olddocs\image040.gif
[1c03e14]4409
[4ed2d0a1]4410==============  ========  =============
4411Parameter name  Units     Default value
4412==============  ========  =============
[58eccf6]4413coef_A          None      1.0
4414qc              |Ang^-1|  0.04
4415power_1 (=m1)   None      4
4416power_2 (=m2)   None      4
4417background      |cm^-1|   0.0
[4ed2d0a1]4418==============  ========  =============
[1c03e14]4419
[34e0c32]4420.. image:: ..\img\olddocs\image219.jpg
[1c03e14]4421
4422*Figure. 1D plot using the default values (w/500 data points).*
4423
[6386cd8]4424REFERENCE
4425
4426None.
4427
[1c03e14]4428
4429
[4ed2d0a1]4430.. _UnifiedPowerRg:
[1c03e14]4431
[58eccf6]4432**2.2.25. UnifiedPowerRg (Beaucage Model)**
[1c03e14]4433
[6386cd8]4434This model deploys the empirical multiple level unified Exponential/Power-law fit method developed by G Beaucage. Four
4435functions are included so that 1, 2, 3, or 4 levels can be used. In addition a 0 level has been added which simply
4436calculates
4437
4438*I(q)* = *scale* / *q* + *background*
4439
[4ed2d0a1]4440The returned value is scaled to units of |cm^-1|, absolute scale. 
4441
[6386cd8]4442The Beaucage method is able to reasonably approximate the scattering from many different types of particles, including
4443fractal clusters, random coils (Debye equation), ellipsoidal particles, etc. 
[1c03e14]4444
[6386cd8]4445*2.2.25.1 Definition*
[1c03e14]4446
[4ed2d0a1]4447The empirical fit function is 
[1c03e14]4448
[34e0c32]4449.. image:: ..\img\olddocs\image220.jpg
[1c03e14]4450
[6386cd8]4451For each level, the four parameters *Gi*, *Rg,i*, *Bi* and *Pi* must be chosen. 
[1c03e14]4452
[6386cd8]4453For example, to approximate the scattering from random coils (Debye_ equation), set *Rg,i* as the Guinier radius,
4454*Pi* = 2, and *Bi* = 2 *Gi* / *Rg,i* 
[1c03e14]4455
[6386cd8]4456See the references for further information on choosing the parameters.
[1c03e14]4457
[93b6fcc]4458For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4459
[34e0c32]4460.. image:: ..\img\olddocs\image040.gif
[1c03e14]4461
[4ed2d0a1]4462==============  ========  =============
4463Parameter name  Units     Default value
4464==============  ========  =============
[58eccf6]4465scale           None      1.0
4466Rg2             |Ang|     21
4467power2          None      2
4468G2              |cm^-1|   3
4469B2              |cm^-1|   0.0006
4470Rg1             |Ang|     15.8
4471power1          None      4
4472G1              |cm^-1|   400
4473B1              |cm^-1|   4.5e-6                |
4474background      |cm^-1|   0.0
[4ed2d0a1]4475==============  ========  =============
[1c03e14]4476
[34e0c32]4477.. image:: ..\img\olddocs\image221.jpg
[1c03e14]4478
4479*Figure. 1D plot using the default values (w/500 data points).*
4480
4481REFERENCE
4482
[6386cd8]4483G Beaucage, *J. Appl. Cryst.*, 28 (1995) 717-728
[1c03e14]4484
[6386cd8]4485G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146
[1c03e14]4486
4487
4488
[4ed2d0a1]4489.. _LineModel:
[1c03e14]4490
[4ed2d0a1]4491**2.2.26. LineModel**
[1c03e14]4492
[6386cd8]4493This calculates the simple linear function
[1c03e14]4494
[34e0c32]4495.. image:: ..\img\olddocs\image222.PNG
[1c03e14]4496
[6386cd8]4497**NB: For 2D plots,** *I(q)* = *I(qx)*\ *\ *I(qy)*, **which is a different definition to other shape independent models.**
[1c03e14]4498
[6386cd8]4499==============  ==============  =============
4500Parameter name  Units           Default value
4501==============  ==============  =============
4502A               |cm^-1|         1.0
4503B               |Ang|\ |cm^-1|  1.0
4504==============  ==============  =============
[1c03e14]4505
[6386cd8]4506REFERENCE
[1c03e14]4507
[6386cd8]4508None.
[1c03e14]4509
4510
4511
[6386cd8]4512.. _GelFitModel:
[1c03e14]4513
[6386cd8]4514**2.2.27. GelFitModel**
[1c03e14]4515
[6386cd8]4516*This model was implemented by an interested user!*
[1c03e14]4517
[6386cd8]4518Unlike a concentrated polymer solution, the fine-scale polymer distribution in a gel involves at least two
4519characteristic length scales, a shorter correlation length (*a1*) to describe the rapid fluctuations in the position
4520of the polymer chains that ensure thermodynamic equilibrium, and a longer distance (denoted here as *a2*) needed to
4521account for the static accumulations of polymer pinned down by junction points or clusters of such points. The latter
4522is derived from a simple Guinier function.
[1c03e14]4523
[6386cd8]4524Also see the GaussLorentzGel_ Model.
[1c03e14]4525
[6386cd8]4526*2.2.27.1. Definition*
4527
4528The scattered intensity *I(q)* is calculated as
[1c03e14]4529
[34e0c32]4530.. image:: ..\img\olddocs\image233.gif
[1c03e14]4531
[6386cd8]4532where
[1c03e14]4533
[34e0c32]4534.. image:: ..\img\olddocs\image234.gif
[1c03e14]4535
[6386cd8]4536Note that the first term reduces to the Ornstein-Zernicke equation when *D* = 2; ie, when the Flory exponent is 0.5
4537(theta conditions). In gels with significant hydrogen bonding *D* has been reported to be ~2.6 to 2.8.
[1c03e14]4538
[6386cd8]4539============================  ========  =============
4540Parameter name                Units     Default value
4541============================  ========  =============
4542Background                    |cm^-1|   0.01
4543Guinier scale    (= *I(0)G*)  |cm^-1|   1.7
4544Lorentzian scale (= *I(0)L*)  |cm^-1|   3.5
4545Radius of gyration  (= *Rg*)  |Ang|     104
4546Fractal exponent     (= *D*)  None      2
4547Correlation length  (= *a1*)  |Ang|     16
4548============================  ========  =============
[1c03e14]4549
[34e0c32]4550.. image:: ..\img\olddocs\image235.gif
[1c03e14]4551
[6386cd8]4552*Figure. 1D plot using the default values (w/300 data points).*
[1c03e14]4553
[6386cd8]4554REFERENCE
[1c03e14]4555
[6386cd8]4556Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, J. Chem. Phys. 1992, 97 (9), 6829-6841
[1c03e14]4557
[6386cd8]4558Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, Macromolecules 1991, 24, 543-548
[1c03e14]4559
4560
4561
[6386cd8]4562.. _StarPolymer:
[1c03e14]4563
[6386cd8]4564**2.2.28. Star Polymer with Gaussian Statistics**
[1c03e14]4565
[6386cd8]4566This model is also known as the Benoit Star model.
[1c03e14]4567
[6386cd8]4568*2.2.28.1. Definition*
4569
4570For a star with *f* arms:
[1c03e14]4571
[34e0c32]4572.. image:: ..\img\olddocs\star1.png
[1c03e14]4573
[6386cd8]4574where
[1c03e14]4575
[34e0c32]4576.. image:: ..\img\olddocs\star2.png
[1c03e14]4577
[6386cd8]4578and
4579
[34e0c32]4580.. image:: ..\img\olddocs\star3.png
[1c03e14]4581
[6386cd8]4582is the square of the ensemble average radius-of-gyration of an arm.
[1c03e14]4583
[6386cd8]4584REFERENCE
[1c03e14]4585
[6386cd8]4586H Benoit,   J. Polymer Science.,  11, 596-599  (1953)
[1c03e14]4587
4588
4589
[6386cd8]4590.. _ReflectivityModel:
[1c03e14]4591
[6386cd8]4592**2.2.29. ReflectivityModel**
[1c03e14]4593
[6386cd8]4594*This model was contributed by an interested user!*
4595
4596This model calculates **reflectivity** using the Parrett algorithm.
4597
4598Up to nine film layers are supported between Bottom(substrate) and Medium(Superstrate) where the neutron enters the
4599first top film. Each of the layers are composed of
4600
4601[œ of the interface (from the previous layer or substrate) + flat portion + œ of the interface (to the next layer or medium)]
4602
4603Two simple functions are provided to describe the interfacial density distribution; a linear function and an error
4604function. The interfacial thickness is equivalent to (-2.5 |sigma| to +2.5 |sigma| for the error function, where
4605|sigma| = roughness).
4606
4607Also see ReflectivityIIModel_.
4608
[34e0c32]4609.. image:: ..\img\olddocs\image231.bmp
[6386cd8]4610
4611*Figure. Comparison (using the SLD profile below) with the NIST web calculation (circles)*
4612http://www.ncnr.nist.gov/resources/reflcalc.html
4613
[34e0c32]4614.. image:: ..\img\olddocs\image232.gif
[6386cd8]4615
4616*Figure. SLD profile used for the calculation (above).*
[1c03e14]4617
4618REFERENCE
4619
[6386cd8]4620None.
[1c03e14]4621
4622
4623
[6386cd8]4624.. _ReflectivityIIModel:
[1c03e14]4625
[6386cd8]4626**2.2.30. ReflectivityIIModel**
[1c03e14]4627
[6386cd8]4628*This model was contributed by an interested user!*
[1c03e14]4629
[6386cd8]4630This **reflectivity** model is a more flexible version of ReflectivityModel_. More interfacial density
4631functions are supported, and the number of points (*npts_inter*) for each interface can be chosen.
[1c03e14]4632
[6386cd8]4633The SLD at the interface between layers, |rho|\ *inter_i*, is calculated with a function chosen by a user, where the
4634available functions are
[1c03e14]4635
[6386cd8]46361) Erf
[1c03e14]4637
[34e0c32]4638.. image:: ..\img\olddocs\image051.gif
[1c03e14]4639
[6386cd8]46402) Power-Law
4641
[34e0c32]4642.. image:: ..\img\olddocs\image050.gif
[6386cd8]4643
46443) Exp
4645
[34e0c32]4646.. image:: ..\img\olddocs\image049.gif
[6386cd8]4647
4648The constant *A* in the expressions above (but the parameter *nu* in the model!) is an input.
[1c03e14]4649
4650REFERENCE
[bf8c07b]4651
[6386cd8]4652None.
[1c03e14]4653
4654
4655
46562.3 Structure-factor Functions
4657------------------------------
4658
[6386cd8]4659The information in this section originated from NIST SANS package.
[1c03e14]4660
4661.. _HardSphereStructure:
4662
4663**2.3.1. HardSphereStructure Factor**
4664
4665This calculates the interparticle structure factor for monodisperse spherical particles interacting through hard
4666sphere (excluded volume) interactions.
4667
4668The calculation uses the Percus-Yevick closure where the interparticle potential is
4669
[34e0c32]4670.. image:: ..\img\olddocs\image223.PNG
[1c03e14]4671
4672where *r* is the distance from the center of the sphere of a radius *R*.
4673
4674For a 2D plot, the wave transfer is defined as
4675
[34e0c32]4676.. image:: ..\img\olddocs\image040.gif
[1c03e14]4677
4678==============  ========  =============
4679Parameter name  Units     Default value
4680==============  ========  =============
4681effect_radius   |Ang|     50.0
4682volfraction     None      0.2
4683==============  ========  =============
4684
[34e0c32]4685.. image:: ..\img\olddocs\image224.jpg
[1c03e14]4686
4687*Figure. 1D plot using the default values (in linear scale).*
4688
4689REFERENCE
[bf8c07b]4690
[93b6fcc]4691J K Percus, J Yevick, *J. Phys. Rev.*, 110, (1958) 1
[1c03e14]4692
4693
4694
4695.. _SquareWellStructure:
4696
4697**2.3.2. SquareWellStructure Factor**
4698
4699This calculates the interparticle structure factor for a square well fluid spherical particles. The mean spherical
4700approximation (MSA) closure was used for this calculation, and is not the most appropriate closure for an attractive
4701interparticle potential. This solution has been compared to Monte Carlo simulations for a square well fluid, showing
4702this calculation to be limited in applicability to well depths |epsilon| < 1.5 kT and volume fractions |phi| < 0.08.
4703
4704Positive well depths correspond to an attractive potential well. Negative well depths correspond to a potential
4705"shoulder", which may or may not be physically reasonable.
4706
4707The well width (*l*\ ) is defined as multiples of the particle diameter (2\*\ *R*\ )
4708
4709The interaction potential is:
4710
[34e0c32]4711.. image:: ..\img\olddocs\image225.PNG
[1c03e14]4712
4713where *r* is the distance from the center of the sphere of a radius *R*.
4714
[93b6fcc]4715For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4716
[34e0c32]4717.. image:: ..\img\olddocs\image040.gif
[1c03e14]4718
4719==============  =========  =============
4720Parameter name  Units      Default value
4721==============  =========  =============
4722effect_radius   |Ang|      50.0
4723volfraction     None       0.04
4724welldepth       kT         1.5
4725wellwidth       diameters  1.2
4726==============  =========  =============
4727
[34e0c32]4728.. image:: ..\img\olddocs\image226.jpg
[1c03e14]4729
4730*Figure. 1D plot using the default values (in linear scale).*
4731
4732REFERENCE
[bf8c07b]4733
[93b6fcc]4734R V Sharma, K C Sharma, *Physica*, 89A (1977) 213
[1c03e14]4735
4736
4737
4738.. _HayterMSAStructure:
4739
4740**2.3.3. HayterMSAStructure Factor**
4741
[906a325]4742This is an implementation of the Rescaled Mean Spherical Approximation which calculates the structure factor (the
4743Fourier transform of the pair correlation function *g(r)*) for a system of charged, spheroidal objects in a
4744dielectric medium. When combined with an appropriate form factor (such as sphere,core+shell, ellipsoid, etc), this
4745allows for inclusion of the interparticle interference effects due to screened coulomb repulsion between charged particles.
[1c03e14]4746
4747**This routine only works for charged particles**. If the charge is set to zero the routine will self-destruct!
4748For non-charged particles use a hard sphere potential.
4749
4750The salt concentration is used to compute the ionic strength of the solution which in turn is used to compute the Debye
4751screening length. At present there is no provision for entering the ionic strength directly nor for use of any
4752multivalent salts. The counterions are also assumed to be monovalent.
4753
[93b6fcc]4754For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4755
[34e0c32]4756.. image:: ..\img\olddocs\image040.gif
[1c03e14]4757
4758==============  ========  =============
4759Parameter name  Units     Default value
4760==============  ========  =============
4761effect_radius   |Ang|     20.8
4762charge          *e*       19
4763volfraction     None      0.2
4764temperature     K         318
4765salt conc       M         0
4766dielectconst    None      71.1
4767==============  ========  =============
4768
[34e0c32]4769.. image:: ..\img\olddocs\image227.jpg
[1c03e14]4770
4771*Figure. 1D plot using the default values (in linear scale).*
4772
4773REFERENCE
[bf8c07b]4774
[93b6fcc]4775J B Hayter and J Penfold, *Molecular Physics*, 42 (1981) 109-118
[bf8c07b]4776
[93b6fcc]4777J P Hansen and J B Hayter, *Molecular Physics*, 46 (1982) 651-656
[1c03e14]4778
4779
4780.. _StickyHSStructure:
4781
4782**2.3.4. StickyHSStructure Factor**
4783
4784This calculates the interparticle structure factor for a hard sphere fluid with a narrow attractive well. A perturbative
4785solution of the Percus-Yevick closure is used. The strength of the attractive well is described in terms of "stickiness"
4786as defined below. The returned value is a dimensionless structure factor, *S(q)*.
4787
4788The perturb (perturbation parameter), |epsilon|, should be held between 0.01 and 0.1. It is best to hold the
4789perturbation parameter fixed and let the "stickiness" vary to adjust the interaction strength. The stickiness, |tau|,
4790is defined in the equation below and is a function of both the perturbation parameter and the interaction strength.
4791|tau| and |epsilon| are defined in terms of the hard sphere diameter (|sigma| = 2\*\ *R*\ ), the width of the square
4792well, |bigdelta| (same units as *R*), and the depth of the well, *Uo*, in units of kT. From the definition, it is clear
4793that smaller |tau| means stronger attraction.
4794
[34e0c32]4795.. image:: ..\img\olddocs\image228.PNG
[1c03e14]4796
4797where the interaction potential is
4798
[34e0c32]4799.. image:: ..\img\olddocs\image229.PNG
[1c03e14]4800
4801The Percus-Yevick (PY) closure was used for this calculation, and is an adequate closure for an attractive interparticle
4802potential. This solution has been compared to Monte Carlo simulations for a square well fluid, with good agreement.
4803
4804The true particle volume fraction, |phi|, is not equal to *h*, which appears in most of the reference. The two are
4805related in equation (24) of the reference. The reference also describes the relationship between this perturbation
4806solution and the original sticky hard sphere (or adhesive sphere) model by Baxter.
4807
4808NB: The calculation can go haywire for certain combinations of the input parameters, producing unphysical solutions - in
4809this case errors are reported to the command window and the *S(q)* is set to -1 (so it will disappear on a log-log
4810plot). Use tight bounds to keep the parameters to values that you know are physical (test them) and keep nudging them
4811until the optimization does not hit the constraints.
4812
[93b6fcc]4813For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4814
[34e0c32]4815.. image:: ..\img\olddocs\image040.gif
[1c03e14]4816
4817==============  ========  =============
4818Parameter name  Units     Default value
4819==============  ========  =============
4820effect_radius   |Ang|     50
4821perturb         None      0.05
4822volfraction     None      0.1
4823stickiness      K         0.2
4824==============  ========  =============
4825
[34e0c32]4826.. image:: ..\img\olddocs\image230.jpg
[1c03e14]4827
4828*Figure. 1D plot using the default values (in linear scale).*
4829
4830REFERENCE
[bf8c07b]4831
[93b6fcc]4832S V G Menon, C Manohar, and K S Rao, *J. Chem. Phys.*, 95(12) (1991) 9186-9190
[1c03e14]4833
4834
4835
48362.4 Customised Functions
4837------------------------------
4838
4839
4840Customized model functions can be redefined or added to by users (See SansView tutorial for details).
4841
4842.. _testmodel:
4843
4844**2.4.1. testmodel**
4845
4846This function, as an example of a user defined function, calculates
4847
4848*I(q)* = *A* + *B* cos(2\ *q*\ ) + *C* sin(2\ *q*\ )
4849
4850
4851
4852.. _testmodel_2:
4853
4854**2.4.2. testmodel_2**
4855
4856This function, as an example of a user defined function, calculates
4857
4858*I(q)* = *scale* * sin(*f*\ )/*f*
4859
4860where
4861
4862*f* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5`
4863
4864
4865
4866.. _sum_p1_p2:
4867
4868**2.4.3. sum_p1_p2**
4869
4870This function, as an example of a user defined function, calculates
4871
4872*I(q)* = *scale_factor* \* (CylinderModel + PolymerExclVolumeModel)
4873
4874To make your own (*p1 + p2*) model, select 'Easy Custom Sum' from the Fitting menu, or modify and compile the file
4875named 'sum_p1_p2.py' from 'Edit Custom Model' in the 'Fitting' menu.
4876
4877NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc).
4878
4879
4880
4881.. _sum_Ap1_1_Ap2:
4882
4883**2.4.4. sum_Ap1_1_Ap2**
4884
4885This function, as an example of a user defined function, calculates
4886
4887*I(q)* = (*scale_factor* \* CylinderModel + (1 - *scale_factor*\ ) \* PolymerExclVolume model)
4888
4889To make your own (*A*\ * *p1* + (1-*A*) \* *p2*) model, modify and compile the file named 'sum_Ap1_1_Ap2.py' from
4890'Edit Custom Model' in the 'Fitting' menu.
4891
4892NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc).
4893
4894
4895
4896.. _polynomial5:
4897
4898**2.4.5. polynomial5**
4899
4900This function, as an example of a user defined function, calculates
4901
4902*I(q)* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5`
4903
4904This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
4905
4906
4907
4908.. _sph_bessel_jn:
4909
4910**2.4.6. sph_bessel_jn**
4911
4912This function, as an example of a user defined function, calculates
4913
4914*I(q)* = *C* \* *sph_jn(Ax+B)+D*
4915
4916where *sph_jn* is a spherical Bessel function of order *n*.
4917
4918This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
Note: See TracBrowser for help on using the repository browser.