source: sasview/src/sas/models/media/model_functions.rst @ be0c318

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since be0c318 was 5e880fe1, checked in by smk78, 10 years ago

Label added for linking internal documentation.

  • Property mode set to 100644
File size: 165.5 KB
RevLine 
[1c03e14]1.. model_functions.rst
2
3.. This is a port of the original SasView model_functions.html to ReSTructured text
[6386cd8]4.. by S King, ISIS, during and after SasView CodeCamp-II in April 2014.
5
6.. Thanks are due to A Jackson & P Kienzle for advice on RST!
7
8.. The CoreShellEllipsoidXTModel was ported and documented by R K Heenan, ISIS, Apr 2014
9.. The RectangularPrism models were coded and documented by M A Gonzalez, ILL, Apr 2014
10
11.. To do:
12.. Add example parameters/plots for the CoreShellEllipsoidXTModel
13.. Add example parameters/plots for the RectangularPrism models
14.. Check the content against the NIST Igor Help File
15.. Wordsmith the content for consistency of style, etc
16
17
18
19.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
20
[1c03e14]21
[fb07044d]22.. note::  The contents of this document are awaiting proof reading. Feb2015
23
[1c03e14]24
25.. Set up some substitutions to make life easier...
26
27.. |alpha| unicode:: U+03B1
28.. |beta| unicode:: U+03B2
29.. |gamma| unicode:: U+03B3
30.. |delta| unicode:: U+03B4
31.. |epsilon| unicode:: U+03B5
32.. |zeta| unicode:: U+03B6
33.. |eta| unicode:: U+03B7
34.. |theta| unicode:: U+03B8
35.. |iota| unicode:: U+03B9
36.. |kappa| unicode:: U+03BA
37.. |lambda| unicode:: U+03BB
38.. |mu| unicode:: U+03BC
39.. |nu| unicode:: U+03BD
40.. |xi| unicode:: U+03BE
41.. |omicron| unicode:: U+03BF
42.. |pi| unicode:: U+03C0
43.. |rho| unicode:: U+03C1
44.. |sigma| unicode:: U+03C3
45.. |tau| unicode:: U+03C4
46.. |upsilon| unicode:: U+03C5
47.. |phi| unicode:: U+03C6
48.. |chi| unicode:: U+03C7
49.. |psi| unicode:: U+03C8
50.. |omega| unicode:: U+03C9
51.. |biggamma| unicode:: U+0393
[93b6fcc]52.. |bigdelta| unicode:: U+0394
53.. |bigzeta| unicode:: U+039E
[38d4102]54.. |bigpsi| unicode:: U+03A8
[1c03e14]55.. |drho| replace:: |bigdelta|\ |rho|
56.. |Ang| unicode:: U+212B
57.. |Ang^-1| replace:: |Ang|\ :sup:`-1`
58.. |Ang^2| replace:: |Ang|\ :sup:`2`
59.. |Ang^-2| replace:: |Ang|\ :sup:`-2`
60.. |Ang^3| replace:: |Ang|\ :sup:`3`
[58eccf6]61.. |Ang^-3| replace:: |Ang|\ :sup:`-3`
62.. |Ang^-4| replace:: |Ang|\ :sup:`-4`
[1c03e14]63.. |cm^-1| replace:: cm\ :sup:`-1`
64.. |cm^2| replace:: cm\ :sup:`2`
65.. |cm^-2| replace:: cm\ :sup:`-2`
66.. |cm^3| replace:: cm\ :sup:`3`
67.. |cm^-3| replace:: cm\ :sup:`-3`
68.. |sr^-1| replace:: sr\ :sup:`-1`
69.. |P0| replace:: P\ :sub:`0`\
70.. |A2| replace:: A\ :sub:`2`\
71
72
73
74.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
75
76
77
78.. Actual document starts here...
79
[5e880fe1]80.. _SasView_model_functions:
81
[1c03e14]82SasView Model Functions
83=======================
84
85Contents
86--------
[98b30b4]871. Background_
[1c03e14]88
892. Model_ Functions
90
91 2.1 Shape-based_ Functions
[cd06a5f]92 
[1c03e14]93 2.2 Shape-independent_ Functions
[cd06a5f]94 
[1c03e14]95 2.3 Structure-factor_ Functions
[cd06a5f]96 
[1c03e14]97 2.4 Customised_ Functions
98
993. References_
100
101
102
103.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
104
105
106
[98b30b4]107.. _Background:
[1c03e14]108
[98b30b4]1091. Background
[1c03e14]110---------------
111
112Many of our models use the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
[6386cd8]113Research and thus some content and figures in this document are originated from or shared with the NIST SANS Igor-based
114analysis package.
[1c03e14]115
116This software provides form factors for various particle shapes. After giving a mathematical definition of each model,
117we show the list of parameters available to the user. Validation plots for each model are also presented.
118
119Instructions on how to use SasView itself are available separately.
120
121To easily compare to the scattering intensity measured in experiments, we normalize the form factors by the volume of
122the particle
123
124.. image:: img/image001.PNG
125
126with
127
128.. image:: img/image002.PNG
129
130where |P0|\ *(q)* is the un-normalized form factor, |rho|\ *(r)* is the scattering length density at a given
131point in space and the integration is done over the volume *V* of the scatterer.
132
133For systems without inter-particle interference, the form factors we provide can be related to the scattering intensity
134by the particle volume fraction
135
136.. image:: img/image003.PNG
137
138Our so-called 1D scattering intensity functions provide *P(q)* for the case where the scatterer is randomly oriented. In
[6386cd8]139that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SAS
[1c03e14]140detector will have an azimuthal symmetry around *q*\ =0 .
141
142Our so-called 2D scattering intensity functions provide *P(q,* |phi| *)* for an oriented system as a function of a
143q-vector in the plane of the detector. We define the angle |phi| as the angle between the q vector and the horizontal
144(x) axis of the plane of the detector.
145
146For information about polarised and magnetic scattering, click here_.
147
148.. _here: polar_mag_help.html
149
150
151
152.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
153
154
155
156.. _Model:
157
1582. Model functions
159------------------
160
161.. _Shape-based:
162
1632.1 Shape-based Functions
164-------------------------
165
166Sphere-based
167------------
168
169- SphereModel_ (including magnetic 2D version)
170- BinaryHSModel_
171- FuzzySphereModel_
172- RaspBerryModel_
173- CoreShellModel_ (including magnetic 2D version)
[7072ce6]174- MicelleSphCoreModel_
[1c03e14]175- CoreMultiShellModel_ (including magnetic 2D version)
176- Core2ndMomentModel_
177- MultiShellModel_
178- OnionExpShellModel_
179- VesicleModel_
180- SphericalSLDModel_
181- LinearPearlsModel_
182- PearlNecklaceModel_
183
184Cylinder-based
185--------------
186
187- CylinderModel_ (including magnetic 2D version)
188- HollowCylinderModel_
[38d4102]189- CappedCylinderModel_
190- CoreShellCylinderModel_
191- EllipticalCylinderModel_
[77cfcf0]192- FlexibleCylinderModel_
193- FlexCylEllipXModel_
194- CoreShellBicelleModel_
195- BarBellModel_
196- StackedDisksModel_
197- PringleModel_
[1c03e14]198
199Ellipsoid-based
200---------------
201
[990c2eb]202- EllipsoidModel_
203- CoreShellEllipsoidModel_
204- CoreShellEllipsoidXTModel_
[bf8c07b]205- TriaxialEllipsoidModel_
[1c03e14]206
207Lamellae
208--------
209
[1127c32]210- LamellarModel_
211- LamellarFFHGModel_
212- LamellarPSModel_
213- LamellarPSHGModel_
[1c03e14]214
215Paracrystals
216------------
217
[1127c32]218- LamellarPCrystalModel_
[d4117ccb]219- SCCrystalModel_
220- FCCrystalModel_
221- BCCrystalModel_
[1c03e14]222
223Parallelpipeds
224--------------
225
[bf8c07b]226- ParallelepipedModel_ (including magnetic 2D version)
227- CSParallelepipedModel_
[6386cd8]228- RectangularPrismModel_
229- RectangularHollowPrismModel_
230- RectangularHollowPrismInfThinWallsModel_
[1c03e14]231
232.. _Shape-independent:
233
2342.2 Shape-Independent Functions
235-------------------------------
236
[6386cd8]237(In alphabetical order)
238
[4ed2d0a1]239- AbsolutePower_Law_
[93b6fcc]240- BEPolyelectrolyte_
241- BroadPeakModel_
242- CorrLength_
243- DABModel_
244- Debye_
245- FractalModel_
246- FractalCoreShell_
247- GaussLorentzGel_
[6386cd8]248- GelFitModel_
[93b6fcc]249- Guinier_
250- GuinierPorod_
[6386cd8]251- LineModel_
[93b6fcc]252- Lorentz_
253- MassFractalModel_
254- MassSurfaceFractal_
[6386cd8]255- PeakGaussModel_
256- PeakLorentzModel_
257- Poly_GaussCoil_
258- PolyExclVolume_
259- PorodModel_
260- RPA10Model_
261- StarPolymer_
[93b6fcc]262- SurfaceFractalModel_
263- TeubnerStrey_
[6386cd8]264- TwoLorentzian_
265- TwoPowerLaw_
266- UnifiedPowerRg_
267- ReflectivityModel_
268- ReflectivityIIModel_
[1c03e14]269
270.. _Structure-factor:
271
2722.3 Structure Factor Functions
273------------------------------
274
275- HardSphereStructure_
276- SquareWellStructure_
277- HayterMSAStructure_
278- StickyHSStructure_
279
280.. _Customised:
281
2822.4 Customized Functions
283------------------------
284
285- testmodel_
286- testmodel_2_
287- sum_p1_p2_
288- sum_Ap1_1_Ap2_
289- polynomial5_
290- sph_bessel_jn_
291
292
293
294.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
295
296
297
298.. _References:
299
3003. References
301-------------
302
303*Small-Angle Scattering of X-Rays*
[93b6fcc]304A Guinier and G Fournet
[1c03e14]305John Wiley & Sons, New York (1955)
306
[93b6fcc]307P Stckel, R May, I Strell, Z Cejka, W Hoppe, H Heumann, W Zillig and H Crespi
[1c03e14]308*Eur. J. Biochem.*, 112, (1980), 411-417
309
[93b6fcc]310G Porod
[1c03e14]311in *Small Angle X-ray Scattering*
[93b6fcc]312(editors) O Glatter and O Kratky
[1c03e14]313Academic Press (1982)
314
315*Structure Analysis by Small-Angle X-Ray and Neutron Scattering*
[93b6fcc]316L.A Feigin and D I Svergun
[1c03e14]317Plenum Press, New York (1987)
318
[93b6fcc]319S Hansen
[1c03e14]320*J. Appl. Cryst.* 23, (1990), 344-346
321
[93b6fcc]322S J Henderson
[1c03e14]323*Biophys. J.* 70, (1996), 1618-1627
324
[93b6fcc]325B C McAlister and B P Grady
[1c03e14]326*J. Appl. Cryst.* 31, (1998), 594-599
327
[93b6fcc]328S R Kline
[1c03e14]329*J Appl. Cryst.* 39(6), (2006), 895
330
331**Also see the references at the end of the each model function descriptions.**
332
333
334
335.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
336
337
338
339Model Definitions
340-----------------
341
342.. _SphereModel:
343
344**2.1.1. SphereModel**
345
346This model provides the form factor, *P(q)*, for a monodisperse spherical particle with uniform scattering length
347density. The form factor is normalized by the particle volume as described below.
348
349For information about polarised and magnetic scattering, click here_.
350
351.. _here: polar_mag_help.html
352
353*2.1.1.1. Definition*
354
355The 1D scattering intensity is calculated in the following way (Guinier, 1955)
356
357.. image:: img/image004.PNG
358
359where *scale* is a volume fraction, *V* is the volume of the scatterer, *r* is the radius of the sphere, *bkg* is
360the background level and *sldXXX* is the scattering length density (SLD) of the scatterer or the solvent.
361
362Note that if your data is in absolute scale, the *scale* should represent the volume fraction (which is unitless) if
363you have a good fit. If not, it should represent the volume fraction \* a factor (by which your data might need to be
364rescaled).
365
366The 2D scattering intensity is the same as above, regardless of the orientation of the q vector.
367
368The returned value is scaled to units of |cm^-1| and the parameters of the SphereModel are the following:
369
370==============  ========  =============
371Parameter name  Units     Default value
372==============  ========  =============
373scale           None      1
374radius          |Ang|     60
375sldSph          |Ang^-2|  2.0e-6
376sldSolv         |Ang^-2|  1.0e-6
377background      |cm^-1|   0
378==============  ========  =============
379
380Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
381Research (Kline, 2006).
382
383REFERENCE
[bf8c07b]384
[93b6fcc]385A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]386
387*2.1.1.2. Validation of the SphereModel*
388
389Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
390NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software.
391
[7f42aad]392.. image:: img/image005.jpg
[1c03e14]393
394Figure 1: Comparison of the DANSE scattering intensity for a sphere with the output of the NIST SANS analysis software.
395The parameters were set to: Scale=1.0, Radius=60 |Ang|, Contrast=1e-6 |Ang^-2|, and Background=0.01 |cm^-1|.
396
[93b6fcc]397*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
[1c03e14]398
399
400
401.. _BinaryHSModel:
402
403**2.1.2. BinaryHSModel**
404
405*2.1.2.1. Definition*
406
407This model (binary hard sphere model) provides the scattering intensity, for binary mixture of spheres including hard
408sphere interaction between those particles. Using Percus-Yevick closure, the calculation is an exact multi-component
409solution
410
411.. image:: img/image006.PNG
412
413where *Sij* are the partial structure factors and *fi* are the scattering amplitudes of the particles. The subscript 1
414is for the smaller particle and 2 is for the larger. The number fraction of the larger particle, (*x* = n2/(n1+n2),
415where *n* = the number density) is internally calculated based on
416
417.. image:: img/image007.PNG
418
419The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
420
421.. image:: img/image008.PNG
422
423The parameters of the BinaryHSModel are the following (in the names, *l* (or *ls*\ ) stands for larger spheres
424while *s* (or *ss*\ ) for the smaller spheres).
425
426==============  ========  =============
427Parameter name  Units     Default value
428==============  ========  =============
429background      |cm^-1|   0.001
430l_radius        |Ang|     100.0
431ss_sld          |Ang^-2|  0.0
432ls_sld          |Ang^-2|  3e-6
433solvent_sld     |Ang^-2|  6e-6
434s_radius        |Ang|     25.0
435vol_frac_ls     None      0.1
436vol_frac_ss     None      0.2
437==============  ========  =============
438
[7f42aad]439.. image:: img/image009.jpg
[1c03e14]440
441*Figure. 1D plot using the default values above (w/200 data point).*
442
443Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
444Research (Kline, 2006).
445
446See the reference for details.
447
448REFERENCE
[bf8c07b]449
[93b6fcc]450N W Ashcroft and D C Langreth, *Physical Review*, 156 (1967) 685-692
[1c03e14]451[Errata found in *Phys. Rev.* 166 (1968) 934]
452
453
454
455.. _FuzzySphereModel:
456
457**2.1.3. FuzzySphereModel**
458
459This model is to calculate the scattering from spherical particles with a "fuzzy" interface.
460
461*2.1.3.1. Definition*
462
463The scattering intensity *I(q)* is calculated as:
464
465.. image:: img/image010.PNG
466
467where the amplitude *A(q)* is given as the typical sphere scattering convoluted with a Gaussian to get a gradual
468drop-off in the scattering length density
469
470.. image:: img/image011.PNG
471
472Here |A2|\ *(q)* is the form factor, *P(q)*. The scale is equivalent to the volume fraction of spheres, each of
473volume, *V*\. Contrast (|drho|) is the difference of scattering length densities of the sphere and the surrounding
474solvent.
475
476Poly-dispersion in radius and in fuzziness is provided for.
477
478The returned value is scaled to units of |cm^-1|\ |sr^-1|; ie, absolute scale.
479
480From the reference
481
482  The "fuzziness" of the interface is defined by the parameter |sigma| :sub:`fuzzy`\ . The particle radius *R*
483  represents the radius of the particle where the scattering length density profile decreased to 1/2 of the core
484  density. The |sigma| :sub:`fuzzy`\ is the width of the smeared particle surface; i.e., the standard deviation
485  from the average height of the fuzzy interface. The inner regions of the microgel that display a higher density
486  are described by the radial box profile extending to a radius of approximately *Rbox* ~ *R* - 2\ |sigma|\ . The
487  profile approaches zero as *Rsans* ~ *R* + 2\ |sigma|\ .
488
489For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
490
491.. image:: img/image008.PNG
492
493This example dataset is produced by running the FuzzySphereModel, using 200 data points, *qmin* = 0.001 -1,
494*qmax* = 0.7 |Ang^-1| and the default values
495
496==============  ========  =============
497Parameter name  Units     Default value
498==============  ========  =============
499scale           None      1.0
500radius          |Ang|     60
501fuzziness       |Ang|     10
502sldSolv         |Ang^-2|  3e-6
503sldSph          |Ang^-2|  1e-6
504background      |cm^-1|   0.001
505==============  ========  =============
506
[7f42aad]507.. image:: img/image012.jpg
[1c03e14]508
509*Figure. 1D plot using the default values (w/200 data point).*
510
511REFERENCE
[bf8c07b]512
[93b6fcc]513M Stieger, J. S Pedersen, P Lindner, W Richtering, *Langmuir*, 20 (2004) 7283-7292
[1c03e14]514
515
516
517.. _RaspBerryModel:
518
519**2.1.4. RaspBerryModel**
520
521Calculates the form factor, *P(q)*, for a "Raspberry-like" structure where there are smaller spheres at the surface
522of a larger sphere, such as the structure of a Pickering emulsion.
523
524*2.1.4.1. Definition*
525
526The structure is:
527
[7f42aad]528.. image:: img/raspberry_pic.jpg
[1c03e14]529
530where *Ro* = the radius of the large sphere, *Rp* = the radius of the smaller sphere on the surface, |delta| = the
531fractional penetration depth, and surface coverage = fractional coverage of the large sphere surface (0.9 max).
532
533The large and small spheres have their own SLD, as well as the solvent. The surface coverage term is a fractional
534coverage (maximum of approximately 0.9 for hexagonally-packed spheres on a surface). Since not all of the small
535spheres are necessarily attached to the surface, the excess free (small) spheres scattering is also included in the
536calculation. The function calculated follows equations (8)-(12) of the reference below, and the equations are not
537reproduced here.
538
539The returned value is scaled to units of |cm^-1|. No inter-particle scattering is included in this model.
540
541For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
542
543.. image:: img/image008.PNG
544
545This example dataset is produced by running the RaspBerryModel, using 2000 data points, *qmin* = 0.0001 |Ang^-1|,
546*qmax* = 0.2 |Ang^-1| and the default values below, where *Ssph/Lsph* stands for smaller or larger sphere, respectively,
547and *surfrac_Ssph* is the surface fraction of the smaller spheres.
548
549==============  ========  =============
550Parameter name  Units     Default value
551==============  ========  =============
552delta_Ssph      None      0
553radius_Lsph     |Ang|     5000
554radius_Ssph     |Ang|     100
555sld_Lsph        |Ang^-2|  -4e-07
556sld_Ssph        |Ang^-2|  3.5e-6
557sld_solv        |Ang^-2|  6.3e-6
558surfrac_Ssph    None      0.4
559volf_Lsph       None      0.05
560volf_Lsph       None      0.005
561background      |cm^-1|   0
562==============  ========  =============
563
[7f42aad]564.. image:: img/raspberry_plot.jpg
[1c03e14]565
566*Figure. 1D plot using the values of /2000 data points.*
567
568REFERENCE
[bf8c07b]569
[93b6fcc]570K Larson-Smith, A Jackson, and D C Pozzo, *Small angle scattering model for Pickering emulsions and raspberry*
[1c03e14]571*particles*, *Journal of Colloid and Interface Science*, 343(1) (2010) 36-41
572
573
574
575.. _CoreShellModel:
576
577**2.1.5. CoreShellModel**
578
579This model provides the form factor, *P(q)*, for a spherical particle with a core-shell structure. The form factor is
580normalized by the particle volume.
581
582For information about polarised and magnetic scattering, click here_.
583
584*2.1.5.1. Definition*
585
586The 1D scattering intensity is calculated in the following way (Guinier, 1955)
587
588.. image:: img/image013.PNG
589
590where *scale* is a scale factor, *Vs* is the volume of the outer shell, *Vc* is the volume of the core, *rs* is the
591radius of the shell, *rc* is the radius of the core, *c* is the scattering length density of the core, *s* is the
592scattering length density of the shell, *solv* is the scattering length density of the solvent, and *bkg* is the
593background level.
594
595The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
596
597NB: The outer most radius (ie, = *radius* + *thickness*) is used as the effective radius for *S(Q)* when
598*P(Q)* \* *S(Q)* is applied.
599
600The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellModel are the following
601
602==============  ========  =============
603Parameter name  Units     Default value
604==============  ========  =============
605scale           None      1.0
606(core) radius   |Ang|     60
607thickness       |Ang|     10
608core_sld        |Ang^-2|  1e-6
609shell_sld       |Ang^-2|  2e-6
610solvent_sld     |Ang^-2|  3e-6
611background      |cm^-1|   0.001
612==============  ========  =============
613
614Here, *radius* = the radius of the core and *thickness* = the thickness of the shell.
615
616Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
617Research (Kline, 2006).
618
619REFERENCE
[bf8c07b]620
[93b6fcc]621A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]622
623*2.1.5.2. Validation of the core-shell sphere model*
624
625Validation of our code was done by comparing the output of the 1D model to the output of the software provided by
626NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software.
627
[7f42aad]628.. image:: img/image014.jpg
[1c03e14]629
630Figure 1: Comparison of the SasView scattering intensity for a core-shell sphere with the output of the NIST SANS
631analysis software. The parameters were set to: *Scale* = 1.0, *Radius* = 60 , *Contrast* = 1e-6 |Ang^-2|, and
632*Background* = 0.001 |cm^-1|.
633
634
635
636.. _CoreMultiShellModel:
637
638**2.1.6. CoreMultiShellModel**
639
640This model provides the scattering from a spherical core with 1 to 4 concentric shell structures. The SLDs of the core
641and each shell are individually specified.
642
643For information about polarised and magnetic scattering, click here_.
644
645*2.1.6.1. Definition*
646
647This model is a trivial extension of the CoreShell function to a larger number of shells. See the CoreShell function
648for a diagram and documentation.
649
[77cfcf0]650The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]651
652Be careful! The SLDs and scale can be highly correlated. Hold as many of these parameters fixed as possible.
653
654The 2D scattering intensity is the same as P(q) of 1D, regardless of the orientation of the q vector.
655
656NB: The outer most radius (ie, = *radius* + 4 *thicknesses*) is used as the effective radius for *S(Q)* when
657*P(Q)* \* *S(Q)* is applied.
658
659The returned value is scaled to units of |cm^-1| and the parameters of the CoreMultiShell model are the following
660
661==============  ========  =============
662Parameter name  Units     Default value
663==============  ========  =============
664scale           None      1.0
665rad_core        |Ang|     60
666sld_core        |Ang^-2|  6.4e-6
667sld_shell1      |Ang^-2|  1e-6
668sld_shell2      |Ang^-2|  2e-6
669sld_shell3      |Ang^-2|  3e-6
670sld_shell4      |Ang^-2|  4e-6
671sld_solv        |Ang^-2|  6.4e-6
672thick_shell1    |Ang|     10
673thick_shell2    |Ang|     10
674thick_shell3    |Ang|     10
675thick_shell4    |Ang|     10
676background      |cm^-1|   0.001
677==============  ========  =============
678
679NB: Here, *rad_core* = the radius of the core, *thick_shelli* = the thickness of the shell *i* and
680*sld_shelli* = the SLD of the shell *i*. *sld_core* and the *sld_solv* are the SLD of the core and the solvent,
681respectively.
682
683Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
684Research (Kline, 2006).
685
686This example dataset is produced by running the CoreMultiShellModel using 200 data points, *qmin* = 0.001 -1,
687*qmax* = 0.7 -1 and the above default values.
688
[7f42aad]689.. image:: img/image015.jpg
[1c03e14]690
691*Figure: 1D plot using the default values (w/200 data point).*
692
693The scattering length density profile for the default sld values (w/ 4 shells).
694
[7f42aad]695.. image:: img/image016.jpg
[1c03e14]696
697*Figure: SLD profile against the radius of the sphere for default SLDs.*
698
699REFERENCE
[bf8c07b]700
701See the CoreShellModel_ documentation.
[1c03e14]702
703
704
705.. _Core2ndMomentModel:
706
707**2.1.7. Core2ndMomentModel**
708
709This model describes the scattering from a layer of surfactant or polymer adsorbed on spherical particles under the
710conditions that (i) the particles (cores) are contrast-matched to the dispersion medium, (ii) *S(Q)* ~ 1 (ie, the
711particle volume fraction is dilute), (iii) the particle radius is >> layer thickness (ie, the interface is locally
712flat), and (iv) scattering from excess unadsorbed adsorbate in the bulk medium is absent or has been corrected for.
713
714Unlike a core-shell model, this model does not assume any form for the density distribution of the adsorbed species
715normal to the interface (cf, a core-shell model which assumes the density distribution to be a homogeneous
716step-function). For comparison, if the thickness of a (core-shell like) step function distribution is *t*, the second
717moment, |sigma| = sqrt((*t* :sup:`2` )/12). The |sigma| is the second moment about the mean of the density distribution
718(ie, the distance of the centre-of-mass of the distribution from the interface).
719
720*2.1.7.1. Definition*
721
722The *I* :sub:`0` is calculated in the following way (King, 2002)
723
[7f42aad]724.. image:: img/secondmeq1.jpg
[1c03e14]725
726where *scale* is a scale factor, *poly* is the sld of the polymer (or surfactant) layer, *solv* is the sld of the
727solvent/medium and cores, |phi|\ :sub:`cores` is the volume fraction of the core paraticles, and |biggamma| and
728|delta| are the adsorbed amount and the bulk density of the polymers respectively. The |sigma| is the second moment
729of the thickness distribution.
730
731Note that all parameters except the |sigma| are correlated for fitting so that fitting those with more than one
732parameter will generally fail. Also note that unlike other shape models, no volume normalization is applied to this
733model (the calculation is exact).
734
735The returned value is scaled to units of |cm^-1| and the parameters are the following
736
737==============  ========  =============
738Parameter name  Units     Default value
739==============  ========  =============
740scale           None      1.0
741density_poly    g/cm2     0.7
742radius_core     |Ang|     500
743ads_amount      mg/m 2    1.9
744second_moment   |Ang|     23.0
745volf_cores      None      0.14
746sld_poly        |Ang^-2|  1.5e-6
747sld_solv        |Ang^-2|  6.3e-6
748background      |cm^-1|   0.0
749==============  ========  =============
750
[7f42aad]751.. image:: img/secongm_fig1.jpg
[1c03e14]752
753REFERENCE
[bf8c07b]754
[93b6fcc]755S King, P Griffiths, J. Hone, and T Cosgrove, *SANS from Adsorbed Polymer Layers*,
[1c03e14]756*Macromol. Symp.*, 190 (2002) 33-42
757
758
759
760.. _MultiShellModel:
761
762**2.1.8. MultiShellModel**
763
764This model provides the form factor, *P(q)*, for a multi-lamellar vesicle with *N* shells where the core is filled with
765solvent and the shells are interleaved with layers of solvent. For *N* = 1, this returns the VesicleModel (above).
766
[7f42aad]767.. image:: img/image020.jpg
[1c03e14]768
769The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
770
771.. image:: img/image008.PNG
772
773NB: The outer most radius (= *core_radius* + *n_pairs* \* *s_thickness* + (*n_pairs* - 1) \* *w_thickness*) is used
774as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
775
776The returned value is scaled to units of |cm^-1| and the parameters of the MultiShellModel are the following
777
778==============  ========  =============
779Parameter name  Units     Default value
780==============  ========  =============
781scale           None      1.0
782core_radius     |Ang|     60.0
783n_pairs         None      2.0
784core_sld        |Ang^-2|  6.3e-6
785shell_sld       |Ang^-2|  0.0
786background      |cm^-1|   0.0
787s_thickness     |Ang|     10
788w_thickness     |Ang|     10
789==============  ========  =============
790
791NB: *s_thickness* is the shell thickness while the *w_thickness* is the solvent thickness, and *n_pair*
792is the number of shells.
793
[7f42aad]794.. image:: img/image021.jpg
[1c03e14]795
796*Figure. 1D plot using the default values (w/200 data point).*
797
798Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
799Research (Kline, 2006).
800
801REFERENCE
[bf8c07b]802
[93b6fcc]803B Cabane, *Small Angle Scattering Methods*, in *Surfactant Solutions: New Methods of Investigation*, Ch.2,
804Surfactant Science Series Vol. 22, Ed. R Zana and M Dekker, New York, (1987).
[1c03e14]805
806
807
808.. _OnionExpShellModel:
809
810**2.1.9. OnionExpShellModel**
811
812This model provides the form factor, *P(q)*, for a multi-shell sphere where the scattering length density (SLD) of the
813each shell is described by an exponential (linear, or flat-top) function. The form factor is normalized by the volume
814of the sphere where the SLD is not identical to the SLD of the solvent. We currently provide up to 9 shells with this
815model.
816
817*2.1.9.1. Definition*
818
819The 1D scattering intensity is calculated in the following way
820
[7f42aad]821.. image:: img/image022.gif
[1c03e14]822
[7f42aad]823.. image:: img/image023.gif
[1c03e14]824
825where, for a spherically symmetric particle with a particle density |rho|\ *(r)*
826
[7f42aad]827.. image:: img/image024.gif
[1c03e14]828
829so that
830
[7f42aad]831.. image:: img/image025.gif
[1c03e14]832
[7f42aad]833.. image:: img/image026.gif
[1c03e14]834
[7f42aad]835.. image:: img/image027.gif
[1c03e14]836
837Here we assumed that the SLDs of the core and solvent are constant against *r*.
838
839Now lets consider the SLD of a shell, *r*\ :sub:`shelli`, defined by
840
[7f42aad]841.. image:: img/image028.gif
[1c03e14]842
843An example of a possible SLD profile is shown below where *sld_in_shelli* (|rho|\ :sub:`in`\ ) and
844*thick_shelli* (|bigdelta|\ *t* :sub:`shelli`\ ) stand for the SLD of the inner side of the *i*\ th shell and the
845thickness of the *i*\ th shell in the equation above, respectively.
846
847For \| *A* \| > 0,
848
[7f42aad]849.. image:: img/image029.gif
[1c03e14]850
851For *A* ~ 0 (eg., *A* = -0.0001), this function converges to that of the linear SLD profile (ie,
852|rho|\ :sub:`shelli`\ *(r)* = *A*\ :sup:`'` ( *r* - *r*\ :sub:`shelli` - 1) / |bigdelta|\ *t* :sub:`shelli`) + *B*\ :sup:`'`),
853so this case is equivalent to
854
[7f42aad]855.. image:: img/image030.gif
[1c03e14]856
[7f42aad]857.. image:: img/image031.gif
[1c03e14]858
[7f42aad]859.. image:: img/image032.gif
[1c03e14]860
[7f42aad]861.. image:: img/image033.gif
[1c03e14]862
863For *A* = 0, the exponential function has no dependence on the radius (so that *sld_out_shell* (|rho|\ :sub:`out`) is
864ignored this case) and becomes flat. We set the constant to |rho|\ :sub:`in` for convenience, and thus the form
865factor contributed by the shells is
866
[7f42aad]867.. image:: img/image034.gif
[1c03e14]868
[7f42aad]869.. image:: img/image035.gif
[1c03e14]870
871In the equation
872
[7f42aad]873.. image:: img/image036.gif
[1c03e14]874
875Finally, the form factor can be calculated by
876
[7f42aad]877.. image:: img/image037.gif
[1c03e14]878
879where
880
[7f42aad]881.. image:: img/image038.gif
[1c03e14]882
883and
884
[7f42aad]885.. image:: img/image039.gif
[1c03e14]886
887The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
888defined as
889
[7f42aad]890.. image:: img/image040.gif
[1c03e14]891
892NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
893
894The returned value is scaled to units of |cm^-1| and the parameters of this model (for only one shell) are the following
895
896==============  ========  =============
897Parameter name  Units     Default value
898==============  ========  =============
899A_shell1        None      1
900scale           None      1.0
901rad_core        |Ang|     200
902thick_shell1    |Ang|     50
903sld_core        |Ang^-2|  1.0e-06
904sld_in_shell1   |Ang^-2|  1.7e-06
905sld_out_shell1  |Ang^-2|  2.0e-06
906sld_solv        |Ang^-2|  6.4e-06
907background      |cm^-1|   0.0
908==============  ========  =============
909
910NB: *rad_core* represents the core radius (*R1*) and *thick_shell1* (*R2* - *R1*) is the thickness of the shell1, etc.
911
[7f42aad]912.. image:: img/image041.jpg
[1c03e14]913
914*Figure. 1D plot using the default values (w/400 point).*
915
[7f42aad]916.. image:: img/image042.jpg
[1c03e14]917
918*Figure. SLD profile from the default values.*
919
920REFERENCE
[bf8c07b]921
[93b6fcc]922L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
[1c03e14]923Plenum Press, New York, (1987).
924
925
926
927.. _VesicleModel:
928
929**2.1.10. VesicleModel**
930
931This model provides the form factor, *P(q)*, for an unilamellar vesicle. The form factor is normalized by the volume
932of the shell.
933
934*2.1.10.1. Definition*
935
936The 1D scattering intensity is calculated in the following way (Guinier, 1955)
937
938.. image:: img/image017.PNG
939
940where *scale* is a scale factor, *Vshell* is the volume of the shell, *V1* is the volume of the core, *V2* is the total
941volume, *R1* is the radius of the core, *R2* is the outer radius of the shell, |rho|\ :sub:`1` is the scattering
942length density of the core and the solvent, |rho|\ :sub:`2` is the scattering length density of the shell, *bkg* is
943the background level, and *J1* = (sin\ *x*- *x* cos\ *x*)/ *x* :sup:`2`\ . The functional form is identical to a
944"typical" core-shell structure, except that the scattering is normalized by the volume that is contributing to the
945scattering, namely the volume of the shell alone. Also, the vesicle is best defined in terms of a core radius (= *R1*)
946and a shell thickness, *t*.
947
[7f42aad]948.. image:: img/image018.jpg
[1c03e14]949
950The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
951defined as
952
953.. image:: img/image008.PNG
954
955NB: The outer most radius (= *radius* + *thickness*) is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)*
956is applied.
957
958The returned value is scaled to units of |cm^-1| and the parameters of the VesicleModel are the following
959
960==============  ========  =============
961Parameter name  Units     Default value
962==============  ========  =============
963scale           None      1.0
964radius          |Ang|     100
965thickness       |Ang|     30
966core_sld        |Ang^-2|  6.3e-6
967shell_sld       |Ang^-2|  0
968background      |cm^-1|   0.0
969==============  ========  =============
970
971NB: *radius* represents the core radius (*R1*) and the *thickness* (*R2* - *R1*) is the shell thickness.
972
[7f42aad]973.. image:: img/image019.jpg
[1c03e14]974
975*Figure. 1D plot using the default values (w/200 data point).*
976
977Our model uses the form factor calculations implemented in a c-library
978provided by the NIST Center for Neutron Research (Kline, 2006).
979
980REFERENCE
[bf8c07b]981
[93b6fcc]982A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]983
984
985
986.. _SphericalSLDModel:
987
988**2.1.11. SphericalSLDModel**
989
990Similarly to the OnionExpShellModel, this model provides the form factor, *P(q)*, for a multi-shell sphere, where the
991interface between the each neighboring shells can be described by one of a number of functions including error,
992power-law, and exponential functions. This model is to calculate the scattering intensity by building a continuous
993custom SLD profile against the radius of the particle. The SLD profile is composed of a flat core, a flat solvent,
994a number (up to 9 ) flat shells, and the interfacial layers between the adjacent flat shells (or core, and solvent)
995(see below). Unlike the OnionExpShellModel (using an analytical integration), the interfacial layers here are
996sub-divided and numerically integrated assuming each of the sub-layers are described by a line function. The number
997of the sub-layer can be given by users by setting the integer values of *npts_inter* in the GUI. The form factor is
998normalized by the total volume of the sphere.
999
1000*2.1.11.1. Definition*
1001
1002The 1D scattering intensity is calculated in the following way:
1003
[7f42aad]1004.. image:: img/image022.gif
[1c03e14]1005
[7f42aad]1006.. image:: img/image043.gif
[1c03e14]1007
1008where, for a spherically symmetric particle with a particle density |rho|\ *(r)*
1009
[7f42aad]1010.. image:: img/image024.gif
[1c03e14]1011
1012so that
1013
[7f42aad]1014.. image:: img/image044.gif
[1c03e14]1015
[7f42aad]1016.. image:: img/image045.gif
[1c03e14]1017
[7f42aad]1018.. image:: img/image046.gif
[1c03e14]1019
[7f42aad]1020.. image:: img/image047.gif
[1c03e14]1021
[7f42aad]1022.. image:: img/image048.gif
[1c03e14]1023
[7f42aad]1024.. image:: img/image027.gif
[1c03e14]1025
1026Here we assumed that the SLDs of the core and solvent are constant against *r*. The SLD at the interface between
1027shells, |rho|\ :sub:`inter_i`, is calculated with a function chosen by an user, where the functions are
1028
10291) Exp
1030
[7f42aad]1031.. image:: img/image049.gif
[1c03e14]1032
10332) Power-Law
1034
[7f42aad]1035.. image:: img/image050.gif
[1c03e14]1036
10373) Erf
1038
[7f42aad]1039.. image:: img/image051.gif
[1c03e14]1040
1041The functions are normalized so that they vary between 0 and 1, and they are constrained such that the SLD is
1042continuous at the boundaries of the interface as well as each sub-layers. Thus *B* and *C* are determined.
1043
1044Once |rho|\ :sub:`rinter_i` is found at the boundary of the sub-layer of the interface, we can find its contribution
1045to the form factor *P(q)*
1046
[7f42aad]1047.. image:: img/image052.gif
[1c03e14]1048
[7f42aad]1049.. image:: img/image053.gif
[1c03e14]1050
[7f42aad]1051.. image:: img/image054.gif
[1c03e14]1052
1053where we assume that |rho|\ :sub:`inter_i`\ *(r)* can be approximately linear within a sub-layer *j*.
1054
1055In the equation
1056
[7f42aad]1057.. image:: img/image055.gif
[1c03e14]1058
1059Finally, the form factor can be calculated by
1060
[7f42aad]1061.. image:: img/image037.gif
[1c03e14]1062
1063where
1064
[7f42aad]1065.. image:: img/image038.gif
[1c03e14]1066
1067and
1068
[7f42aad]1069.. image:: img/image056.gif
[1c03e14]1070
1071The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
1072defined as
1073
[7f42aad]1074.. image:: img/image040.gif
[1c03e14]1075
1076NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1077
1078The returned value is scaled to units of |cm^-1| and the parameters of this model (for just one shell) are the following
1079
1080==============  ========  =============
1081Parameter name  Units     Default value
1082==============  ========  =============
1083background      |cm^-1|   0.0
1084npts_inter      None      35
1085scale           None      1
1086sld_solv        |Ang^-2|  1e-006
1087func_inter1     None      Erf
1088nu_inter        None      2.5
1089thick_inter1    |Ang|     50
1090sld_flat1       |Ang^-2|  4e-006
1091thick_flat1     |Ang|     100
1092func_inter0     None      Erf
1093nu_inter0       None      2.5
1094rad_core0       |Ang|     50
1095sld_core0       |Ang^-2|  2.07e-06
1096thick_core0     |Ang|     50
1097==============  ========  =============
1098
1099NB: *rad_core0* represents the core radius (*R1*).
1100
[7f42aad]1101.. image:: img/image057.jpg
[1c03e14]1102
1103*Figure. 1D plot using the default values (w/400 point).*
1104
[7f42aad]1105.. image:: img/image058.jpg
[1c03e14]1106
1107*Figure. SLD profile from the default values.*
1108
1109REFERENCE
[bf8c07b]1110
[93b6fcc]1111L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
[1c03e14]1112Plenum Press, New York, (1987)
1113
1114
1115
1116.. _LinearPearlsModel:
1117
1118**2.1.12. LinearPearlsModel**
1119
1120This model provides the form factor for *N* spherical pearls of radius *R* linearly joined by short strings (or segment
1121length or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation distance. The thickness
1122of each string is assumed to be negligible.
1123
1124.. image:: img/linearpearls.jpg
1125
1126*2.1.12.1. Definition*
1127
1128The output of the scattering intensity function for the LinearPearlsModel is given by (Dobrynin, 1996)
1129
1130.. image:: img/linearpearl_eq1.gif
1131
1132where the mass *m*\ :sub:`p` is (SLD\ :sub:`pearl` - SLD\ :sub:`solvent`) \* (volume of *N* pearls). V is the total
1133volume.
1134
1135The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
1136
1137The returned value is scaled to units of |cm^-1| and the parameters of the LinearPearlsModel are the following
1138
1139===============  ========  =============
1140Parameter name   Units     Default value
1141===============  ========  =============
1142scale            None      1.0
1143radius           |Ang|     80.0
1144edge_separation  |Ang|     350.0
1145num_pearls       None      3
1146sld_pearl        |Ang^-2|  1e-6
1147sld_solv         |Ang^-2|  6.3e-6
1148background       |cm^-1|   0.0
1149===============  ========  =============
1150
1151NB: *num_pearls* must be an integer.
1152
1153.. image:: img/linearpearl_plot.jpg
1154
1155REFERENCE
[bf8c07b]1156
[93b6fcc]1157A V Dobrynin, M Rubinstein and S P Obukhov, *Macromol.*, 29 (1996) 2974-2979
[1c03e14]1158
1159
1160
1161.. _PearlNecklaceModel:
1162
1163**2.1.13. PearlNecklaceModel**
1164
1165This model provides the form factor for a pearl necklace composed of two elements: *N* pearls (homogeneous spheres
1166of radius *R*) freely jointed by *M* rods (like strings - with a total mass *Mw* = *M* \* *m*\ :sub:`r` + *N* \* *m*\ :sub:`s`,
1167and the string segment length (or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation
1168distance.
1169
1170.. image:: img/pearl_fig.jpg
1171
1172*2.1.13.1. Definition*
1173
1174The output of the scattering intensity function for the PearlNecklaceModel is given by (Schweins, 2004)
1175
1176.. image:: img/pearl_eq1.gif
1177
1178where
1179
1180.. image:: img/pearl_eq2.gif
1181
1182.. image:: img/pearl_eq3.gif
1183
1184.. image:: img/pearl_eq4.gif
1185
1186.. image:: img/pearl_eq5.gif
1187
1188.. image:: img/pearl_eq6.gif
1189
1190and
1191
1192.. image:: img/pearl_eq7.gif
1193
1194where the mass *m*\ :sub:`i` is (SLD\ :sub:`i` - SLD\ :sub:`solvent`) \* (volume of the *N* pearls/rods). *V* is the
1195total volume of the necklace.
1196
1197The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
1198
1199The returned value is scaled to units of |cm^-1| and the parameters of the PearlNecklaceModel are the following
1200
1201===============  ========  =============
1202Parameter name   Units     Default value
1203===============  ========  =============
1204scale            None      1.0
1205radius           |Ang|     80.0
1206edge_separation  |Ang|     350.0
1207num_pearls       None      3
1208sld_pearl        |Ang^-2|  1e-6
1209sld_solv         |Ang^-2|  6.3e-6
1210sld_string       |Ang^-2|  1e-6
1211thick_string
1212(=rod diameter)  |Ang|     2.5
1213background       |cm^-1|   0.0
1214===============  ========  =============
1215
1216NB: *num_pearls* must be an integer.
1217
1218.. image:: img/pearl_plot.jpg
1219
1220REFERENCE
[bf8c07b]1221
[93b6fcc]1222R Schweins and K Huber, *Particle Scattering Factor of Pearl Necklace Chains*, *Macromol. Symp.* 211 (2004) 25-42 2004
[1c03e14]1223
1224
1225
1226.. _CylinderModel:
1227
1228**2.1.14. CylinderModel**
1229
1230This model provides the form factor for a right circular cylinder with uniform scattering length density. The form
1231factor is normalized by the particle volume.
1232
1233For information about polarised and magnetic scattering, click here_.
1234
1235*2.1.14.1. Definition*
1236
1237The output of the 2D scattering intensity function for oriented cylinders is given by (Guinier, 1955)
1238
1239.. image:: img/image059.PNG
1240
1241where
1242
1243.. image:: img/image060.PNG
1244
1245and |alpha| is the angle between the axis of the cylinder and the *q*-vector, *V* is the volume of the cylinder,
[58eccf6]1246*L* is the length of the cylinder, *r* is the radius of the cylinder, and |drho| (contrast) is the
[1c03e14]1247scattering length density difference between the scatterer and the solvent. *J1* is the first order Bessel function.
1248
1249To provide easy access to the orientation of the cylinder, we define the axis of the cylinder using two angles |theta|
1250and |phi|. Those angles are defined in Figure 1.
1251
[7f42aad]1252.. image:: img/image061.jpg
[1c03e14]1253
1254*Figure 1. Definition of the angles for oriented cylinders.*
1255
[7f42aad]1256.. image:: img/image062.jpg
[1c03e14]1257
1258*Figure 2. Examples of the angles for oriented pp against the detector plane.*
1259
1260NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and length values, and used as the
1261effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1262
1263The returned value is scaled to units of |cm^-1| and the parameters of the CylinderModel are the following:
1264
1265==============  ========  =============
1266Parameter name  Units     Default value
1267==============  ========  =============
1268scale           None      1.0
1269radius          |Ang|     20.0
1270length          |Ang|     400.0
1271contrast        |Ang^-2|  3.0e-6
1272background      |cm^-1|   0.0
1273cyl_theta       degree    60
1274cyl_phi         degree    60
1275==============  ========  =============
1276
1277The output of the 1D scattering intensity function for randomly oriented cylinders is then given by
1278
1279.. image:: img/image063.PNG
1280
1281The *cyl_theta* and *cyl_phi* parameter are not used for the 1D output. Our implementation of the scattering kernel
1282and the 1D scattering intensity use the c-library from NIST.
1283
[38d4102]1284*2.1.14.2. Validation of the CylinderModel*
[1c03e14]1285
1286Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
1287NIST (Kline, 2006). Figure 3 shows a comparison of the 1D output of our model and the output of the NIST software.
1288
[7f42aad]1289.. image:: img/image065.jpg
[1c03e14]1290
[38d4102]1291*Figure 3: Comparison of the SasView scattering intensity for a cylinder with the output of the NIST SANS analysis*
1292*software.* The parameters were set to: *Scale* = 1.0, *Radius* = 20 |Ang|, *Length* = 400 |Ang|,
[1c03e14]1293*Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.01 |cm^-1|.
1294
1295In general, averaging over a distribution of orientations is done by evaluating the following
1296
1297.. image:: img/image064.PNG
1298
1299where *p(*\ |theta|,\ |phi|\ *)* is the probability distribution for the orientation and |P0|\ *(q,*\ |alpha|\ *)* is
1300the scattering intensity for the fully oriented system. Since we have no other software to compare the implementation
1301of the intensity for fully oriented cylinders, we can compare the result of averaging our 2D output using a uniform
1302distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 4 shows the result of such a cross-check.
1303
[7f42aad]1304.. image:: img/image066.jpg
[1c03e14]1305
[38d4102]1306*Figure 4: Comparison of the intensity for uniformly distributed cylinders calculated from our 2D model and the*
1307*intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius* = 20 |Ang|,
1308*Length* = 400 |Ang|, *Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]1309
1310
1311
1312.. _HollowCylinderModel:
1313
1314**2.1.15. HollowCylinderModel**
1315
1316This model provides the form factor, *P(q)*, for a monodisperse hollow right angle circular cylinder (tube) where the
1317form factor is normalized by the volume of the tube
1318
1319*P(q)* = *scale* \* *<F*\ :sup:`2`\ *>* / *V*\ :sub:`shell` + *background*
1320
1321where the averaging < > is applied only for the 1D calculation.
1322
1323The inside and outside of the hollow cylinder are assumed have the same SLD.
1324
[38d4102]1325*2.1.15.1 Definition*
1326
[1c03e14]1327The 1D scattering intensity is calculated in the following way (Guinier, 1955)
1328
1329.. image:: img/image072.PNG
1330
1331where *scale* is a scale factor, *J1* is the 1st order Bessel function, *J1(x)* = (sin *x* - *x* cos *x*)/ *x*\ :sup:`2`.
1332
1333To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
1334angles |theta| and |phi|\ . As for the case of the cylinder, those angles are defined in Figure 2 of the CylinderModel.
1335
1336NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as the
1337effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1338
1339In the parameters, the contrast represents SLD :sub:`shell` - SLD :sub:`solvent` and the *radius* = *R*\ :sub:`shell`
1340while *core_radius* = *R*\ :sub:`core`.
1341
1342==============  ========  =============
1343Parameter name  Units     Default value
1344==============  ========  =============
1345scale           None      1.0
1346radius          |Ang|     30
1347length          |Ang|     400
1348core_radius     |Ang|     20
1349sldCyl          |Ang^-2|  6.3e-6
1350sldSolv         |Ang^-2|  5e-06
1351background      |cm^-1|   0.01
1352==============  ========  =============
1353
[7f42aad]1354.. image:: img/image074.jpg
[1c03e14]1355
1356*Figure. 1D plot using the default values (w/1000 data point).*
1357
1358Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
1359(Kline, 2006).
1360
[7f42aad]1361.. image:: img/image061.jpg
[1c03e14]1362
[38d4102]1363*Figure. Definition of the angles for the oriented HollowCylinderModel.*
[1c03e14]1364
[7f42aad]1365.. image:: img/image062.jpg
[1c03e14]1366
[38d4102]1367*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1368
1369REFERENCE
[bf8c07b]1370
[93b6fcc]1371L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press,
[38d4102]1372New York, (1987)
[1c03e14]1373
1374
1375
1376.. _CappedCylinderModel:
1377
1378**2.1.16 CappedCylinderModel**
1379
[38d4102]1380Calculates the scattering from a cylinder with spherical section end-caps. This model simply becomes the ConvexLensModel
1381when the length of the cylinder *L* = 0, that is, a sphereocylinder with end caps that have a radius larger than that
1382of the cylinder and the center of the end cap radius lies within the cylinder. See the diagram for the details
[1c03e14]1383of the geometry and restrictions on parameter values.
1384
[38d4102]1385*2.1.16.1. Definition*
[1c03e14]1386
[77cfcf0]1387The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]1388
[38d4102]1389The Capped Cylinder geometry is defined as
[1c03e14]1390
[7f42aad]1391.. image:: img/image112.jpg
[1c03e14]1392
[38d4102]1393where *r* is the radius of the cylinder. All other parameters are as defined in the diagram. Since the end cap radius
1394*R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as
[1c03e14]1395
[38d4102]1396*h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`)
[1c03e14]1397
[38d4102]1398The scattered intensity *I(q)* is calculated as
[1c03e14]1399
[7f42aad]1400.. image:: img/image113.jpg
[1c03e14]1401
[38d4102]1402where the amplitude *A(q)* is given as
[1c03e14]1403
[7f42aad]1404.. image:: img/image114.jpg
[1c03e14]1405
[38d4102]1406The < > brackets denote an average of the structure over all orientations. <\ *A*\ :sup:`2`\ *(q)*> is then the form
1407factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is the
1408difference of scattering length densities of the cylinder and the surrounding solvent.
[1c03e14]1409
[38d4102]1410The volume of the Capped Cylinder is (with *h* as a positive value here)
[1c03e14]1411
[7f42aad]1412.. image:: img/image115.jpg
[1c03e14]1413
[6386cd8]1414and its radius-of-gyration
[1c03e14]1415
[7f42aad]1416.. image:: img/image116.jpg
[1c03e14]1417
[38d4102]1418**The requirement that** *R* >= *r* **is not enforced in the model! It is up to you to restrict this during analysis.**
[1c03e14]1419
[38d4102]1420This following example dataset is produced by running the MacroCappedCylinder(), using 200 data points,
1421*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]1422
1423==============  ========  =============
1424Parameter name  Units     Default value
1425==============  ========  =============
1426scale           None      1.0
1427len_cyl         |Ang|     400.0
1428rad_cap         |Ang|     40.0
1429rad_cyl         |Ang|     20.0
1430sld_capcyl      |Ang^-2|  1.0e-006
1431sld_solv        |Ang^-2|  6.3e-006
1432background      |cm^-1|   0
1433==============  ========  =============
1434
[7f42aad]1435.. image:: img/image117.jpg
[1c03e14]1436
1437*Figure. 1D plot using the default values (w/256 data point).*
1438
[38d4102]1439For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for
1440|theta| = 45 deg and |phi| =0 deg with default values for other parameters
[1c03e14]1441
[7f42aad]1442.. image:: img/image118.jpg
[1c03e14]1443
1444*Figure. 2D plot (w/(256X265) data points).*
1445
[7f42aad]1446.. image:: img/image061.jpg
[1c03e14]1447
[38d4102]1448*Figure. Definition of the angles for oriented 2D cylinders.*
[1c03e14]1449
[38d4102]1450.. image:: img/image062.jpg
[1c03e14]1451
[38d4102]1452*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1453
[38d4102]1454REFERENCE
[bf8c07b]1455
[93b6fcc]1456H Kaya, *J. Appl. Cryst.*, 37 (2004) 223-230
[bf8c07b]1457
[93b6fcc]1458H Kaya and N-R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata)
[1c03e14]1459
1460
1461
1462.. _CoreShellCylinderModel:
1463
[38d4102]1464**2.1.17. CoreShellCylinderModel**
[1c03e14]1465
[38d4102]1466This model provides the form factor for a circular cylinder with a core-shell scattering length density profile. The
1467form factor is normalized by the particle volume.
[1c03e14]1468
[38d4102]1469*2.1.17.1. Definition*
[1c03e14]1470
[38d4102]1471The output of the 2D scattering intensity function for oriented core-shell cylinders is given by (Kline, 2006)
[1c03e14]1472
[38d4102]1473.. image:: img/image067.PNG
[1c03e14]1474
[38d4102]1475where
[1c03e14]1476
[38d4102]1477.. image:: img/image068.PNG
[1c03e14]1478
[38d4102]1479.. image:: img/image239.PNG
[1c03e14]1480
[38d4102]1481and |alpha| is the angle between the axis of the cylinder and the *q*\ -vector, *Vs* is the volume of the outer shell
1482(i.e. the total volume, including the shell), *Vc* is the volume of the core, *L* is the length of the core, *r* is the
1483radius of the core, *t* is the thickness of the shell, |rho|\ :sub:`c` is the scattering length density of the core,
1484|rho|\ :sub:`s` is the scattering length density of the shell, |rho|\ :sub:`solv` is the scattering length density of
1485the solvent, and *bkg* is the background level. The outer radius of the shell is given by *r+t* and the total length of
1486the outer shell is given by *L+2t*. *J1* is the first order Bessel function.
[1c03e14]1487
[7f42aad]1488.. image:: img/image069.jpg
[1c03e14]1489
[38d4102]1490To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
1491angles |theta| and |phi|\ . As for the case of the cylinder, those angles are defined in Figure 2 of the CylinderModel.
[1c03e14]1492
[38d4102]1493NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as the
1494effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1495
[38d4102]1496The returned value is scaled to units of |cm^-1| and the parameters of the core-shell cylinder model are the following
[1c03e14]1497
1498==============  ========  =============
1499Parameter name  Units     Default value
1500==============  ========  =============
1501scale           None      1.0
1502radius          |Ang|     20.0
1503thickness       |Ang|     10.0
1504length          |Ang|     400.0
1505core_sld        |Ang^-2|  1e-6
1506shell_sld       |Ang^-2|  4e-6
1507solvent_sld     |Ang^-2|  1e-6
1508background      |cm^-1|   0.0
1509axis_theta      degree    90
1510axis_phi        degree    0.0
1511==============  ========  =============
1512
[38d4102]1513The output of the 1D scattering intensity function for randomly oriented cylinders is then given by the equation above.
[1c03e14]1514
[38d4102]1515The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering kernel
1516and the 1D scattering intensity use the c-library from NIST.
[1c03e14]1517
[38d4102]1518*2.1.17.2. Validation of the CoreShellCylinderModel*
[1c03e14]1519
[38d4102]1520Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
1521NIST (Kline, 2006). Figure 1 shows a comparison of the 1D output of our model and the output of the NIST software.
[1c03e14]1522
[7f42aad]1523.. image:: img/image070.jpg
[1c03e14]1524
[38d4102]1525*Figure 1: Comparison of the SasView scattering intensity for a core-shell cylinder with the output of the NIST SANS*
1526*analysis software.* The parameters were set to: *Scale* = 1.0, *Radius* = 20 |Ang|, *Thickness* = 10 |Ang|,
1527*Length* = 400 |Ang|, *Core_sld* = 1e-6 |Ang^-2|, *Shell_sld* = 4e-6 |Ang^-2|, *Solvent_sld* = 1e-6 |Ang^-2|,
1528and *Background* = 0.01 |cm^-1|.
[1c03e14]1529
[38d4102]1530Averaging over a distribution of orientation is done by evaluating the equation above. Since we have no other software
1531to compare the implementation of the intensity for fully oriented cylinders, we can compare the result of averaging our
15322D output using a uniform distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 2 shows the result of such a cross-check.
[1c03e14]1533
[7f42aad]1534.. image:: img/image071.jpg
[1c03e14]1535
[38d4102]1536*Figure 2: Comparison of the intensity for uniformly distributed core-shell cylinders calculated from our 2D model and*
1537*the intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius* = 20 |Ang|,
1538*Thickness* = 10 |Ang|, *Length* =400 |Ang|, *Core_sld* = 1e-6 |Ang^-2|, *Shell_sld* = 4e-6 |Ang^-2|,
1539*Solvent_sld* = 1e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]1540
[7f42aad]1541.. image:: img/image061.jpg
[1c03e14]1542
[38d4102]1543*Figure. Definition of the angles for oriented core-shell cylinders.*
[1c03e14]1544
[7f42aad]1545.. image:: img/image062.jpg
[1c03e14]1546
[38d4102]1547*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1548
15492013/11/26 - Description reviewed by Heenan, R.
1550
1551
1552
1553.. _EllipticalCylinderModel:
1554
1555**2.1.18 EllipticalCylinderModel**
1556
[38d4102]1557This function calculates the scattering from an elliptical cylinder.
[1c03e14]1558
[38d4102]1559*2.1.18.1 Definition for 2D (orientated system)*
[1c03e14]1560
[38d4102]1561The angles |theta| and |phi| define the orientation of the axis of the cylinder. The angle |bigpsi| is defined as the
1562orientation of the major axis of the ellipse with respect to the vector *Q*\ . A gaussian polydispersity can be added
1563to any of the orientation angles, and also for the minor radius and the ratio of the ellipse radii.
[1c03e14]1564
[38d4102]1565.. image:: img/image098.gif
[1c03e14]1566
[38d4102]1567*Figure.* *a* = *r_minor* and |nu|\ :sub:`n` = *r_ratio* (i.e., *r_major* / *r_minor*).
[1c03e14]1568
[38d4102]1569The function calculated is
[1c03e14]1570
[38d4102]1571.. image:: img/image099.PNG
[1c03e14]1572
[38d4102]1573with the functions
[1c03e14]1574
[38d4102]1575.. image:: img/image100.PNG
[1c03e14]1576
[38d4102]1577and the angle |bigpsi| is defined as the orientation of the major axis of the ellipse with respect to the vector *q*\ .
[1c03e14]1578
[38d4102]1579*2.1.18.2 Definition for 1D (no preferred orientation)*
[1c03e14]1580
[38d4102]1581The form factor is averaged over all possible orientation before normalized by the particle volume
[1c03e14]1582
[38d4102]1583*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V*
[1c03e14]1584
1585The returned value is scaled to units of |cm^-1|.
1586
[38d4102]1587To provide easy access to the orientation of the elliptical cylinder, we define the axis of the cylinder using two
1588angles |theta|, |phi| and |bigpsi|. As for the case of the cylinder, the angles |theta| and |phi| are defined on
1589Figure 2 of CylinderModel. The angle |bigpsi| is the rotational angle around its own long_c axis against the *q* plane.
1590For example, |bigpsi| = 0 when the *r_minor* axis is parallel to the *x*\ -axis of the detector.
[1c03e14]1591
[38d4102]1592All angle parameters are valid and given only for 2D calculation; ie, an oriented system.
[1c03e14]1593
[7f42aad]1594.. image:: img/image101.jpg
[1c03e14]1595
[38d4102]1596*Figure. Definition of angles for 2D*
[1c03e14]1597
[7f42aad]1598.. image:: img/image062.jpg
[1c03e14]1599
[38d4102]1600*Figure. Examples of the angles for oriented elliptical cylinders against the detector plane.*
[1c03e14]1601
[38d4102]1602NB: The 2nd virial coefficient of the cylinder is calculated based on the averaged radius (= sqrt(*r_minor*\ :sup:`2` \* *r_ratio*))
1603and length values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1604
1605==============  ========  =============
1606Parameter name  Units     Default value
1607==============  ========  =============
1608scale           None      1.0
1609r_minor         |Ang|     20.0
1610r_ratio         |Ang|     1.5
1611length          |Ang|     400.0
1612sldCyl          |Ang^-2|  4e-06
1613sldSolv         |Ang^-2|  1e-06
1614background      |cm^-1|   0
1615==============  ========  =============
1616
[7f42aad]1617.. image:: img/image102.jpg
[1c03e14]1618
1619*Figure. 1D plot using the default values (w/1000 data point).*
1620
[38d4102]1621*2.1.18.3 Validation of the EllipticalCylinderModel*
[1c03e14]1622
[38d4102]1623Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
1624the 2D calculation over all possible angles. The figure below shows the comparison where the solid dot refers to
1625averaged 2D values while the line represents the result of the 1D calculation (for the 2D averaging, values of 76, 180,
1626and 76 degrees are taken for the angles of |theta|, |phi|, and |bigpsi| respectively).
[1c03e14]1627
[7f42aad]1628.. image:: img/image103.gif
[1c03e14]1629
1630*Figure. Comparison between 1D and averaged 2D.*
1631
[38d4102]1632In the 2D average, more binning in the angle |phi| is necessary to get the proper result. The following figure shows
1633the results of the averaging by varying the number of angular bins.
[1c03e14]1634
[7f42aad]1635.. image:: img/image104.gif
[1c03e14]1636
1637*Figure. The intensities averaged from 2D over different numbers of bins and angles.*
1638
1639REFERENCE
[bf8c07b]1640
[93b6fcc]1641L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[38d4102]1642New York, (1987)
[1c03e14]1643
1644
1645
1646.. _FlexibleCylinderModel:
1647
1648**2.1.19. FlexibleCylinderModel**
1649
[38d4102]1650This model provides the form factor, *P(q)*, for a flexible cylinder where the form factor is normalized by the volume
1651of the cylinder. **Inter-cylinder interactions are NOT provided for.**
[1c03e14]1652
[38d4102]1653*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V* + *background*
[1c03e14]1654
[38d4102]1655where the averaging < > is applied over all orientations for 1D.
[1c03e14]1656
[38d4102]1657The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
1658
1659.. image:: img/image040.gif
1660
1661*2.1.19.1. Definition*
1662
[7f42aad]1663.. image:: img/image075.jpg
[38d4102]1664
1665The chain of contour length, *L*, (the total length) can be described as a chain of some number of locally stiff
1666segments of length *l*\ :sub:`p`\ , the persistence length (the length along the cylinder over which the flexible
1667cylinder can be considered a rigid rod). The Kuhn length (*b* = 2 \* *l* :sub:`p`) is also used to describe the
1668stiffness of a chain.
1669
1670The returned value is in units of |cm^-1|, on absolute scale.
1671
1672In the parameters, the sldCyl and sldSolv represent the SLD of the chain/cylinder and solvent respectively.
[1c03e14]1673
1674==============  ========  =============
1675Parameter name  Units     Default value
1676==============  ========  =============
1677scale           None      1.0
1678radius          |Ang|     20
1679length          |Ang|     1000
1680sldCyl          |Ang^-2|  1e-06
1681sldSolv         |Ang^-2|  6.3e-06
1682background      |cm^-1|   0.01
1683kuhn_length     |Ang|     100
1684==============  ========  =============
1685
[7f42aad]1686.. image:: img/image076.jpg
[1c03e14]1687
1688*Figure. 1D plot using the default values (w/1000 data point).*
1689
[38d4102]1690Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
1691(Kline, 2006).
[1c03e14]1692
[38d4102]1693From the reference
[1c03e14]1694
[38d4102]1695  "Method 3 With Excluded Volume" is used. The model is a parametrization of simulations of a discrete representation
1696  of the worm-like chain model of Kratky and Porod applied in the pseudocontinuous limit. See equations (13,26-27) in
1697  the original reference for the details.
[1c03e14]1698
[38d4102]1699REFERENCE
[bf8c07b]1700
[93b6fcc]1701J S Pedersen and P Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume*
[38d4102]1702*effects*. *Macromolecules*, 29 (1996) 7602-7612
[1c03e14]1703
[38d4102]1704Correction of the formula can be found in
[bf8c07b]1705
[93b6fcc]1706W R Chen, P D Butler and L J Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from*
[4ed2d0a1]1707*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548
[1c03e14]1708
1709
1710
1711.. _FlexCylEllipXModel:
1712
1713**2.1.20 FlexCylEllipXModel**
1714
[38d4102]1715This model calculates the form factor for a flexible cylinder with an elliptical cross section and a uniform scattering
1716length density. The non-negligible diameter of the cylinder is included by accounting for excluded volume interactions
1717within the walk of a single cylinder. The form factor is normalized by the particle volume such that
[1c03e14]1718
[38d4102]1719*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V* + *background*
1720
1721where < > is an average over all possible orientations of the flexible cylinder.
1722
1723*2.1.20.1. Definition*
[1c03e14]1724
[38d4102]1725The function calculated is from the reference given below. From that paper, "Method 3 With Excluded Volume" is used.
1726The model is a parameterization of simulations of a discrete representation of the worm-like chain model of Kratky and
1727Porod applied in the pseudo-continuous limit. See equations (13, 26-27) in the original reference for the details.
[1c03e14]1728
[38d4102]1729NB: there are several typos in the original reference that have been corrected by WRC. Details of the corrections are
1730in the reference below. Most notably
[1c03e14]1731
[38d4102]1732- Equation (13): the term (1 - w(QR)) should swap position with w(QR)
[1c03e14]1733
[38d4102]1734- Equations (23) and (24) are incorrect; WRC has entered these into Mathematica and solved analytically. The results
1735  were then converted to code.
[1c03e14]1736
1737- Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of max(a3*b/sqrt(RgSquare),3)
1738
1739- The scattering function is negative for a range of parameter values and q-values that are experimentally accessible. A correction function has been added to give the proper behavior.
1740
[7f42aad]1741.. image:: img/image077.jpg
[1c03e14]1742
[38d4102]1743The chain of contour length, *L*, (the total length) can be described as a chain of some number of locally stiff
1744segments of length *l*\ :sub:`p`\ , the persistence length (the length along the cylinder over which the flexible
1745cylinder can be considered a rigid rod). The Kuhn length (*b* = 2 \* *l* :sub:`p`) is also used to describe the
1746stiffness of a chain.
[1c03e14]1747
[38d4102]1748The cross section of the cylinder is elliptical, with minor radius *a*\ . The major radius is larger, so of course,
1749**the axis ratio (parameter 4) must be greater than one.** Simple constraints should be applied during curve fitting to
1750maintain this inequality.
[1c03e14]1751
1752The returned value is in units of |cm^-1|, on absolute scale.
1753
[38d4102]1754In the parameters, *sldCyl* and *sldSolv* represent the SLD of the chain/cylinder and solvent respectively. The
1755*scale*, and the contrast are both multiplicative factors in the model and are perfectly correlated. One or both of
1756these parameters must be held fixed during model fitting.
[1c03e14]1757
[38d4102]1758If the scale is set equal to the particle volume fraction, |phi|, the returned value is the scattered intensity per
1759unit volume, *I(q)* = |phi| \* *P(q)*.
[1c03e14]1760
[38d4102]1761**No inter-cylinder interference effects are included in this calculation.**
[1c03e14]1762
[38d4102]1763For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]1764
[38d4102]1765.. image:: img/image008.PNG
[1c03e14]1766
[38d4102]1767This example dataset is produced by running the Macro FlexCylEllipXModel, using 200 data points, *qmin* = 0.001 |Ang^-1|,
1768*qmax* = 0.7 |Ang^-1| and the default values below
[1c03e14]1769
1770==============  ========  =============
1771Parameter name  Units     Default value
1772==============  ========  =============
1773axis_ratio      None      1.5
1774background      |cm^-1|   0.0001
1775Kuhn_length     |Ang|     100
1776Contour length  |Ang|     1e+3
1777radius          |Ang|     20.0
1778scale           None      1.0
1779sldCyl          |Ang^-2|  1e-6
1780sldSolv         |Ang^-2|  6.3e-6
1781==============  ========  =============
1782
[7f42aad]1783.. image:: img/image078.jpg
[1c03e14]1784
1785*Figure. 1D plot using the default values (w/200 data points).*
1786
[38d4102]1787REFERENCE
[bf8c07b]1788
[93b6fcc]1789J S Pedersen and P Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume*
[38d4102]1790*effects*. *Macromolecules*, 29 (1996) 7602-7612
1791
1792Correction of the formula can be found in
[bf8c07b]1793
[93b6fcc]1794W R Chen, P D Butler and L J Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from*
[4ed2d0a1]1795*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548
[38d4102]1796
[1c03e14]1797
1798
1799.. _CoreShellBicelleModel:
1800
1801**2.1.21 CoreShellBicelleModel**
1802
[77cfcf0]1803This model provides the form factor for a circular cylinder with a core-shell scattering length density profile. The
1804form factor is normalized by the particle volume.
[1c03e14]1805
[77cfcf0]1806This model is a more general case of core-shell cylinder model (see above and reference below) in that the parameters
1807of the shell are separated into a face-shell and a rim-shell so that users can set different values of the thicknesses
1808and SLDs.
[1c03e14]1809
[7f42aad]1810.. image:: img/image240.png
[1c03e14]1811
[77cfcf0]1812*(Graphic from DOI: 10.1039/C0NP00002G)*
1813
1814The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellBicelleModel are the following
[1c03e14]1815
1816==============  ========  =============
1817Parameter name  Units     Default value
1818==============  ========  =============
1819scale           None      1.0
1820radius          |Ang|     20.0
1821rim_thick       |Ang|     10.0
1822face_thick      |Ang|     10.0
1823length          |Ang|     400.0
1824core_sld        |Ang^-2|  1e-6
1825rim_sld         |Ang^-2|  4e-6
1826face_sld        |Ang^-2|  4e-6
1827solvent_sld     |Ang^-2|  1e-6
1828background      |cm^-1|   0.0
1829axis_theta      degree    90
1830axis_phi        degree    0.0
1831==============  ========  =============
1832
[77cfcf0]1833The output of the 1D scattering intensity function for randomly oriented cylinders is then given by the equation above.
[1c03e14]1834
[77cfcf0]1835The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering kernel
1836and the 1D scattering intensity use the c-library from NIST.
[1c03e14]1837
[77cfcf0]1838.. image:: img/cscylbicelle_pic.jpg
[1c03e14]1839
1840*Figure. 1D plot using the default values (w/200 data point).*
1841
[7f42aad]1842.. image:: img/image061.jpg
[1c03e14]1843
[77cfcf0]1844*Figure. Definition of the angles for the oriented CoreShellBicelleModel.*
[1c03e14]1845
[7f42aad]1846.. image:: img/image062.jpg
[1c03e14]1847
[77cfcf0]1848*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1849
1850REFERENCE
[bf8c07b]1851
[93b6fcc]1852L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press,
[77cfcf0]1853New York, (1987)
[1c03e14]1854
1855
1856
1857.. _BarBellModel:
1858
1859**2.1.22. BarBellModel**
1860
[77cfcf0]1861Calculates the scattering from a barbell-shaped cylinder (This model simply becomes the DumBellModel when the length of
1862the cylinder, *L*, is set to zero). That is, a sphereocylinder with spherical end caps that have a radius larger than
1863that of the cylinder and the center of the end cap radius lies outside of the cylinder. All dimensions of the BarBell
1864are considered to be monodisperse. See the diagram for the details of the geometry and restrictions on parameter values.
[1c03e14]1865
[77cfcf0]1866*2.1.22.1. Definition*
[1c03e14]1867
[77cfcf0]1868The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]1869
1870The barbell geometry is defined as
1871
[7f42aad]1872.. image:: img/image105.jpg
[1c03e14]1873
[77cfcf0]1874where *r* is the radius of the cylinder. All other parameters are as defined in the diagram.
[1c03e14]1875
[77cfcf0]1876Since the end cap radius
1877*R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as
[1c03e14]1878
[77cfcf0]1879*h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`)
[1c03e14]1880
[77cfcf0]1881The scattered intensity *I(q)* is calculated as
[1c03e14]1882
[77cfcf0]1883.. image:: img/image106.PNG
[1c03e14]1884
[77cfcf0]1885where the amplitude *A(q)* is given as
[1c03e14]1886
[77cfcf0]1887.. image:: img/image107.PNG
[1c03e14]1888
[77cfcf0]1889The < > brackets denote an average of the structure over all orientations. <*A* :sup:`2`\ *(q)*> is then the form
1890factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is
1891the difference of scattering length densities of the cylinder and the surrounding solvent.
[1c03e14]1892
[77cfcf0]1893The volume of the barbell is
[1c03e14]1894
[7f42aad]1895.. image:: img/image108.jpg
[1c03e14]1896
1897
[6386cd8]1898and its radius-of-gyration is
[1c03e14]1899
[7f42aad]1900.. image:: img/image109.jpg
[1c03e14]1901
[77cfcf0]1902**The requirement that** *R* >= *r* **is not enforced in the model!** It is up to you to restrict this during analysis.
[1c03e14]1903
[77cfcf0]1904This example dataset is produced by running the Macro PlotBarbell(), using 200 data points, *qmin* = 0.001 |Ang^-1|,
1905*qmax* = 0.7 |Ang^-1| and the following default values
[1c03e14]1906
1907==============  ========  =============
1908Parameter name  Units     Default value
1909==============  ========  =============
1910scale           None      1.0
1911len_bar         |Ang|     400.0
1912rad_bar         |Ang|     20.0
1913rad_bell        |Ang|     40.0
1914sld_barbell     |Ang^-2|  1.0e-006
1915sld_solv        |Ang^-2|  6.3e-006
1916background      |cm^-1|   0
1917==============  ========  =============
1918
[7f42aad]1919.. image:: img/image110.jpg
[1c03e14]1920
1921*Figure. 1D plot using the default values (w/256 data point).*
1922
[77cfcf0]1923For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for
1924|theta| = 45 deg and |phi| = 0 deg with default values for other parameters
[1c03e14]1925
[7f42aad]1926.. image:: img/image111.jpg
[1c03e14]1927
1928*Figure. 2D plot (w/(256X265) data points).*
1929
[7f42aad]1930.. image:: img/image061.jpg
[1c03e14]1931
[77cfcf0]1932*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1933
[7f42aad]1934.. image:: img/image062.jpg
[1c03e14]1935
1936Figure. Definition of the angles for oriented 2D barbells.
1937
[77cfcf0]1938REFERENCE
[bf8c07b]1939
[93b6fcc]1940H Kaya, *J. Appl. Cryst.*, 37 (2004) 37 223-230
[bf8c07b]1941
[93b6fcc]1942H Kaya and N R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata)
[77cfcf0]1943
[1c03e14]1944
1945
1946.. _StackedDisksModel:
1947
1948**2.1.23. StackedDisksModel**
1949
[77cfcf0]1950This model provides the form factor, *P(q)*, for stacked discs (tactoids) with a core/layer structure where the form
1951factor is normalized by the volume of the cylinder. Assuming the next neighbor distance (d-spacing) in a stack of
1952parallel discs obeys a Gaussian distribution, a structure factor *S(q)* proposed by Kratky and Porod in 1949 is used
1953in this function.
[1c03e14]1954
[77cfcf0]1955Note that the resolution smearing calculation uses 76 Gauss quadrature points to properly smear the model since the
1956function is HIGHLY oscillatory, especially around the *q*-values that correspond to the repeat distance of the layers.
[1c03e14]1957
[77cfcf0]1958The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
[1c03e14]1959
[77cfcf0]1960.. image:: img/image008.PNG
[1c03e14]1961
[77cfcf0]1962The returned value is in units of |cm^-1| |sr^-1|, on absolute scale.
[1c03e14]1963
[77cfcf0]1964*2.1.23.1 Definition*
[1c03e14]1965
[7f42aad]1966.. image:: img/image079.gif
[1c03e14]1967
[4ed2d0a1]1968The scattering intensity *I(q)* is
[1c03e14]1969
[77cfcf0]1970.. image:: img/image081.PNG
[1c03e14]1971
[77cfcf0]1972where the contrast
[1c03e14]1973
[77cfcf0]1974.. image:: img/image082.PNG
[1c03e14]1975
[77cfcf0]1976and *N* is the number of discs per unit volume, |alpha| is the angle between the axis of the disc and *q*, and *Vt*
1977and *Vc* are the total volume and the core volume of a single disc, respectively.
[1c03e14]1978
[77cfcf0]1979.. image:: img/image083.PNG
[1c03e14]1980
[77cfcf0]1981where *d* = thickness of the layer (*layer_thick*), 2\ *h* = core thickness (*core_thick*), and *R* = radius of the
1982disc (*radius*).
[1c03e14]1983
[77cfcf0]1984.. image:: img/image084.PNG
[1c03e14]1985
[77cfcf0]1986where *n* = the total number of the disc stacked (*n_stacking*), *D* = the next neighbor center-to-center distance
1987(*d-spacing*), and |sigma|\ D= the Gaussian standard deviation of the d-spacing (*sigma_d*).
[1c03e14]1988
[77cfcf0]1989To provide easy access to the orientation of the stacked disks, we define the axis of the cylinder using two angles
1990|theta| and |phi|. These angles are defined on Figure 2 of CylinderModel.
[1c03e14]1991
[77cfcf0]1992NB: The 2nd virial coefficient of the cylinder is calculated based on the *radius* and *length* = *n_stacking* \*
1993(*core_thick* + 2 \* *layer_thick*) values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1994
1995==============  ========  =============
1996Parameter name  Units     Default value
1997==============  ========  =============
1998background      |cm^-1|   0.001
1999core_sld        |Ang^-2|  4e-006
2000core_thick      |Ang|     10
2001layer_sld       |Ang^-2|  0
2002layer_thick     |Ang|     15
2003n_stacking      None      1
2004radius          |Ang|     3e+03
2005scale           None      0.01
2006sigma_d         |Ang|     0
2007solvent_sld     |Ang^-2|  5e-06
2008==============  ========  =============
2009
[7f42aad]2010.. image:: img/image085.jpg
[1c03e14]2011
2012*Figure. 1D plot using the default values (w/1000 data point).*
2013
[7f42aad]2014.. image:: img/image086.jpg
[1c03e14]2015
[77cfcf0]2016*Figure. Examples of the angles for oriented stackeddisks against the detector plane.*
[1c03e14]2017
[7f42aad]2018.. image:: img/image062.jpg
[1c03e14]2019
[77cfcf0]2020*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]2021
[77cfcf0]2022Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2023(Kline, 2006)
[1c03e14]2024
2025REFERENCE
[bf8c07b]2026
[93b6fcc]2027A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, 1955
[bf8c07b]2028
[93b6fcc]2029O Kratky and G Porod, *J. Colloid Science*, 4, (1949) 35
[bf8c07b]2030
[93b6fcc]2031J S Higgins and H C Benoit, *Polymers and Neutron Scattering*, Clarendon, Oxford, 1994
[1c03e14]2032
2033
2034
2035.. _PringleModel:
2036
2037**2.1.24. PringleModel**
2038
[77cfcf0]2039This model provides the form factor, *P(q)*, for a 'pringle' or 'saddle-shaped' object (a hyperbolic paraboloid).
[1c03e14]2040
[7f42aad]2041.. image:: img/image241.png
[1c03e14]2042
[77cfcf0]2043*(Graphic from Matt Henderson, matt@matthen.com)*
[1c03e14]2044
2045The returned value is in units of |cm^-1|, on absolute scale.
2046
[77cfcf0]2047The form factor calculated is
[1c03e14]2048
[77cfcf0]2049.. image:: img/pringle_eqn_1.jpg
[1c03e14]2050
2051where
2052
[77cfcf0]2053.. image:: img/pringle_eqn_2.jpg
[1c03e14]2054
[77cfcf0]2055The parameters of the model and a plot comparing the pringle model with the equivalent cylinder are shown below.
[1c03e14]2056
2057==============  ========  =============
2058Parameter name  Units     Default value
2059==============  ========  =============
2060background      |cm^-1|   0.0
2061alpha           None      0.001
2062beta            None      0.02
2063radius          |Ang|     60
2064scale           None      1
2065sld_pringle     |Ang^-2|  1e-06
2066sld_solvent     |Ang^-2|  6.3e-06
2067thickness       |Ang|     10
2068==============  ========  =============
2069
[77cfcf0]2070.. image:: img/pringle-vs-cylinder.png
[1c03e14]2071
2072*Figure. 1D plot using the default values (w/150 data point).*
2073
2074REFERENCE
[bf8c07b]2075
[93b6fcc]2076S Alexandru Rautu, Private Communication.
[1c03e14]2077
2078
2079
2080.. _EllipsoidModel:
2081
2082**2.1.25. EllipsoidModel**
2083
[ca1af82]2084This model provides the form factor for an ellipsoid (ellipsoid of revolution) with uniform scattering length density.
2085The form factor is normalized by the particle volume.
[1c03e14]2086
[ca1af82]2087*2.1.25.1. Definition*
[1c03e14]2088
[ca1af82]2089The output of the 2D scattering intensity function for oriented ellipsoids is given by (Feigin, 1987)
[1c03e14]2090
[ca1af82]2091.. image:: img/image059.PNG
[1c03e14]2092
[ca1af82]2093where
[1c03e14]2094
[ca1af82]2095.. image:: img/image119.PNG
[1c03e14]2096
[ca1af82]2097and
[1c03e14]2098
[ca1af82]2099.. image:: img/image120.PNG
[1c03e14]2100
[ca1af82]2101|alpha| is the angle between the axis of the ellipsoid and the *q*\ -vector, *V* is the volume of the ellipsoid, *Ra*
2102is the radius along the rotational axis of the ellipsoid, *Rb* is the radius perpendicular to the rotational axis of
[58eccf6]2103the ellipsoid and |drho| (contrast) is the scattering length density difference between the scatterer and
[ca1af82]2104the solvent.
[1c03e14]2105
[ca1af82]2106To provide easy access to the orientation of the ellipsoid, we define the rotation axis of the ellipsoid using two
2107angles |theta| and |phi|\ . These angles are defined on Figure 2 of the CylinderModel_. For the ellipsoid, |theta|
2108is the angle between the rotational axis and the *z*\ -axis.
[1c03e14]2109
[ca1af82]2110NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the *radius_a* and *radius_b* values, and
2111used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2112
[ca1af82]2113The returned value is scaled to units of |cm^-1| and the parameters of the EllipsoidModel are the following
[1c03e14]2114
2115================  ========  =============
2116Parameter name    Units     Default value
2117================  ========  =============
2118scale             None      1.0
2119radius_a (polar)  |Ang|     20.0
2120radius_b (equat)  |Ang|     400.0
2121sldEll            |Ang^-2|  4.0e-6
2122sldSolv           |Ang^-2|  1.0e-6
2123background        |cm^-1|   0.0
2124axis_theta        degree    90
2125axis_phi          degree    0.0
2126================  ========  =============
2127
[ca1af82]2128The output of the 1D scattering intensity function for randomly oriented ellipsoids is then given by the equation
2129above.
[1c03e14]2130
[7f42aad]2131.. image:: img/image121.jpg
[1c03e14]2132
[ca1af82]2133The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering
2134kernel and the 1D scattering intensity use the c-library from NIST.
[1c03e14]2135
[7f42aad]2136.. image:: img/image122.jpg
[1c03e14]2137
[ca1af82]2138*Figure. The angles for oriented ellipsoid.*
[1c03e14]2139
[ca1af82]2140*2.1.25.1. Validation of the EllipsoidModel*
[1c03e14]2141
[ca1af82]2142Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
2143NIST (Kline, 2006). Figure 1 below shows a comparison of the 1D output of our model and the output of the NIST
2144software.
[1c03e14]2145
[7f42aad]2146.. image:: img/image123.jpg
[1c03e14]2147
[ca1af82]2148*Figure 1: Comparison of the SasView scattering intensity for an ellipsoid with the output of the NIST SANS analysis*
2149*software.* The parameters were set to: *Scale* = 1.0, *Radius_a* = 20, *Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|,
2150and *Background* = 0.01 |cm^-1|.
[1c03e14]2151
[ca1af82]2152Averaging over a distribution of orientation is done by evaluating the equation above. Since we have no other software
2153to compare the implementation of the intensity for fully oriented ellipsoids, we can compare the result of averaging
2154our 2D output using a uniform distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 2 shows the result of such a
[1c03e14]2155cross-check.
2156
[7f42aad]2157.. image:: img/image124.jpg
[1c03e14]2158
[ca1af82]2159*Figure 2: Comparison of the intensity for uniformly distributed ellipsoids calculated from our 2D model and the*
2160*intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius_a* = 20,
2161*Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]2162
[ca1af82]2163The discrepancy above *q* = 0.3 |cm^-1| is due to the way the form factors are calculated in the c-library provided by
2164NIST. A numerical integration has to be performed to obtain *P(q)* for randomly oriented particles. The NIST software
2165performs that integration with a 76-point Gaussian quadrature rule, which will become imprecise at high q where the
2166amplitude varies quickly as a function of *q*. The SasView result shown has been obtained by summing over 501
2167equidistant points in . Our result was found to be stable over the range of *q* shown for a number of points higher
2168than 500.
[1c03e14]2169
[ca1af82]2170REFERENCE
[bf8c07b]2171
[93b6fcc]2172L A Feigin and D I Svergun. *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[ca1af82]2173New York, 1987.
[1c03e14]2174
2175
2176
2177.. _CoreShellEllipsoidModel:
2178
2179**2.1.26. CoreShellEllipsoidModel**
2180
[990c2eb]2181This model provides the form factor, *P(q)*, for a core shell ellipsoid (below) where the form factor is normalized by
2182the volume of the cylinder.
[1c03e14]2183
[990c2eb]2184*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2185
[990c2eb]2186where the volume *V* = (4/3)\ |pi| (*r*\ :sub:`maj` *r*\ :sub:`min`\ :sup:`2`) and the averaging < > is applied over
2187all orientations for 1D.
[1c03e14]2188
[7f42aad]2189.. image:: img/image125.gif
[1c03e14]2190
[990c2eb]2191The returned value is in units of |cm^-1|, on absolute scale.
[1c03e14]2192
[990c2eb]2193*2.1.26.1. Definition*
[1c03e14]2194
[990c2eb]2195The form factor calculated is
[1c03e14]2196
[990c2eb]2197.. image:: img/image126.PNG
[1c03e14]2198
[990c2eb]2199To provide easy access to the orientation of the core-shell ellipsoid, we define the axis of the solid ellipsoid using
2200two angles |theta| and |phi|\ . These angles are defined on Figure 2 of the CylinderModel_. The contrast is defined as
2201SLD(core) - SLD(shell) and SLD(shell) - SLD(solvent).
[1c03e14]2202
[990c2eb]2203In the parameters, *equat_core* = equatorial core radius, *polar_core* = polar core radius, *equat_shell* =
2204*r*\ :sub:`min` (or equatorial outer radius), and *polar_shell* = = *r*\ :sub:`maj` (or polar outer radius).
[1c03e14]2205
[990c2eb]2206NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the *radius_a* (= *polar_shell*) and
2207*radius_b* (= *equat_shell*) values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2208
2209==============  ========  =============
2210Parameter name  Units     Default value
2211==============  ========  =============
2212background      |cm^-1|   0.001
2213equat_core      |Ang|     200
2214equat_shell     |Ang|     250
2215sld_solvent     |Ang^-2|  6e-06
2216ploar_shell     |Ang|     30
2217ploar_core      |Ang|     20
2218scale           None      1
2219sld_core        |Ang^-2|  2e-06
2220sld_shell       |Ang^-2|  1e-06
2221==============  ========  =============
2222
[7f42aad]2223.. image:: img/image127.jpg
[1c03e14]2224
2225*Figure. 1D plot using the default values (w/1000 data point).*
2226
[7f42aad]2227.. image:: img/image122.jpg
[1c03e14]2228
[990c2eb]2229*Figure. The angles for oriented CoreShellEllipsoid.*
[1c03e14]2230
[990c2eb]2231Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2232(Kline, 2006).
[1c03e14]2233
2234REFERENCE
[bf8c07b]2235
[93b6fcc]2236M Kotlarchyk, S H Chen, *J. Chem. Phys.*, 79 (1983) 2461
[bf8c07b]2237
[93b6fcc]2238S J Berr, *Phys. Chem.*, 91 (1987) 4760
[1c03e14]2239
2240
2241
[77cfcf0]2242.. _CoreShellEllipsoidXTModel:
2243
2244**2.1.27. CoreShellEllipsoidXTModel**
2245
2246An alternative version of *P(q)* for the core-shell ellipsoid (see CoreShellEllipsoidModel), having as parameters the
2247core axial ratio *X* and a shell thickness, which are more often what we would like to determine.
2248
2249This model is also better behaved when polydispersity is applied than the four independent radii in
2250CoreShellEllipsoidModel.
2251
[990c2eb]2252*2.1.27.1. Definition*
[77cfcf0]2253
2254.. image:: img/image125.gif
2255
2256The geometric parameters of this model are
2257
2258  *equat_core* = equatorial core radius = *Rminor_core*
2259  *X_core* = *polar_core* / *equat_core* = *Rmajor_core* / *Rminor_core*
2260  *T_shell* = *equat_outer* - *equat_core* = *Rminor_outer* - *Rminor_core*
2261  *XpolarShell* = *Tpolar_shell* / *T_shell* = (*Rmajor_outer* - *Rmajor_core*)/(*Rminor_outer* - *Rminor_core*)
2262
2263In terms of the original radii
2264
2265  *polar_core* = *equat_core* \* *X_core*
2266  *equat_shell* = *equat_core* + *T_shell*
2267  *polar_shell* = *equat_core* \* *X_core* + *T_shell* \* *XpolarShell*
2268
2269  (where we note that "shell" perhaps confusingly, relates to the outer radius)
2270
2271When *X_core* < 1 the core is oblate; when *X_core* > 1  it is prolate. *X_core* = 1 is a spherical core.
2272
2273For a fixed shell thickness *XpolarShell* = 1, to scale the shell thickness pro-rata with the radius
2274*XpolarShell* = *X_core*.
2275
2276When including an *S(q)*, the radius in *S(q)* is calculated to be that of a sphere with the same 2nd virial
2277coefficient of the **outer** surface of the ellipsoid. This may have some undesirable effects if the aspect ratio of
2278the ellipsoid is large (ie, if *X* << 1 or *X* >> 1), when the *S(q)* - which assumes spheres - will not in any case
2279be valid.
2280
[6386cd8]2281If SAS data are in absolute units, and the SLDs are correct, then *scale* should be the total volume fraction of the
[77cfcf0]2282"outer particle". When *S(q)* is introduced this moves to the *S(q)* volume fraction, and *scale* should then be 1.0,
2283or contain some other units conversion factor (for example, if you have SAXS data).
2284
2285==============  ========  =============
2286Parameter name  Units     Default value
2287==============  ========  =============
2288background      |cm^-1|   0.001
2289equat_core      |Ang|     20
2290scale           None      0.05
2291sld_core        |Ang^-2|  2.0e-6
2292sld_shell       |Ang^-2|  1.0e-6
2293sld_solv        |Ang^-2|  6.3e-6
2294T_shell         |Ang|     30
2295X_core          None      3.0
2296XpolarShell     None      1.0
2297==============  ========  =============
2298
2299REFERENCE
[bf8c07b]2300
[93b6fcc]2301R K Heenan, Private communication
[77cfcf0]2302
2303
2304
[bf8c07b]2305.. _TriaxialEllipsoidModel:
[1c03e14]2306
[77cfcf0]2307**2.1.28. TriaxialEllipsoidModel**
[1c03e14]2308
[990c2eb]2309This model provides the form factor, *P(q)*, for an ellipsoid (below) where all three axes are of different lengths,
2310i.e., *Ra* =< *Rb* =< *Rc*\ . **Users should maintain this inequality for all calculations**.
[1c03e14]2311
[990c2eb]2312*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2313
[990c2eb]2314where the volume *V* = (4/3)\ |pi| (*Ra* *Rb* *Rc*), and the averaging < > is applied over all orientations for 1D.
[1c03e14]2315
[7f42aad]2316.. image:: img/image128.jpg
[1c03e14]2317
2318The returned value is in units of |cm^-1|, on absolute scale.
2319
[990c2eb]2320*2.1.28.1. Definition*
2321
2322The form factor calculated is
[1c03e14]2323
[990c2eb]2324.. image:: img/image129.PNG
[1c03e14]2325
[990c2eb]2326To provide easy access to the orientation of the triaxial ellipsoid, we define the axis of the cylinder using the
2327angles |theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is
2328the rotational angle around its own *semi_axisC* axis against the *q* plane. For example, |bigpsi| = 0 when the
2329*semi_axisA* axis is parallel to the *x*-axis of the detector.
[1c03e14]2330
[6386cd8]2331The radius-of-gyration for this system is *Rg*\ :sup:`2` = (*Ra*\ :sup:`2` *Rb*\ :sup:`2` *Rc*\ :sup:`2`)/5.
[1c03e14]2332
[990c2eb]2333The contrast is defined as SLD(ellipsoid) - SLD(solvent). In the parameters, *semi_axisA* = *Ra* (or minor equatorial
2334radius), *semi_axisB* = *Rb* (or major equatorial radius), and *semi_axisC* = *Rc* (or polar radius of the ellipsoid).
[1c03e14]2335
[990c2eb]2336NB: The 2nd virial coefficient of the triaxial solid ellipsoid is calculated based on the
2337*radius_a* (= *semi_axisC*\ ) and *radius_b* (= sqrt(*semi_axisA* \* *semi_axisB*)) values, and used as the effective
2338radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2339
2340==============  ========  =============
2341Parameter name  Units     Default value
2342==============  ========  =============
2343background      |cm^-1|   0.0
2344semi_axisA      |Ang|     35
2345semi_axisB      |Ang|     100
2346semi_axisC      |Ang|     400
2347scale           None      1
2348sldEll          |Ang^-2|  1.0e-06
2349sldSolv         |Ang^-2|  6.3e-06
2350==============  ========  =============
2351
[7f42aad]2352.. image:: img/image130.jpg
[1c03e14]2353
2354*Figure. 1D plot using the default values (w/1000 data point).*
2355
[990c2eb]2356*2.1.28.2.Validation of the TriaxialEllipsoidModel*
[1c03e14]2357
[990c2eb]2358Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
23592D calculation over all possible angles. The Figure below shows the comparison where the solid dot refers to averaged
23602D while the line represents the result of 1D calculation (for 2D averaging, 76, 180, and 76 points are taken for the
2361angles of |theta|, |phi|, and |psi| respectively).
[1c03e14]2362
[7f42aad]2363.. image:: img/image131.gif
[1c03e14]2364
2365*Figure. Comparison between 1D and averaged 2D.*
2366
[7f42aad]2367.. image:: img/image132.jpg
[1c03e14]2368
[990c2eb]2369*Figure. The angles for oriented ellipsoid.*
[1c03e14]2370
[990c2eb]2371Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2372(Kline, 2006)
[1c03e14]2373
2374REFERENCE
[bf8c07b]2375
[93b6fcc]2376L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[990c2eb]2377New York, 1987.
[1c03e14]2378
2379
2380
2381.. _LamellarModel:
2382
[77cfcf0]2383**2.1.29. LamellarModel**
[1c03e14]2384
[1127c32]2385This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar phase where a uniform SLD and random
2386distribution in solution are assumed. Polydispersity in the bilayer thickness can be applied from the GUI.
[1c03e14]2387
[1127c32]2388*2.1.29.1. Definition*
[1c03e14]2389
[1127c32]2390The scattering intensity *I(q)* is
[1c03e14]2391
[1127c32]2392.. image:: img/image133.PNG
[1c03e14]2393
[1127c32]2394The form factor is
[1c03e14]2395
[1127c32]2396.. image:: img/image134.PNG
[1c03e14]2397
[1127c32]2398where |delta| = bilayer thickness.
[1c03e14]2399
[1127c32]2400The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2401
[7f42aad]2402.. image:: img/image040.gif
[1c03e14]2403
[1127c32]2404The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_bi* = SLD of the bilayer,
2405*sld_sol* = SLD of the solvent, and *bi_thick* = thickness of the bilayer.
[1c03e14]2406
2407==============  ========  =============
2408Parameter name  Units     Default value
2409==============  ========  =============
2410background      |cm^-1|   0.0
2411sld_bi          |Ang^-2|  1e-06
2412bi_thick        |Ang|     50
2413sld_sol         |Ang^-2|  6e-06
2414scale           None      1
2415==============  ========  =============
2416
[7f42aad]2417.. image:: img/image135.jpg
[1c03e14]2418
2419*Figure. 1D plot using the default values (w/1000 data point).*
2420
[1127c32]2421Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2422(Kline, 2006).
[1c03e14]2423
2424REFERENCE
2425
[93b6fcc]2426F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2427
[bf8c07b]2428also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2429
2430
2431
2432.. _LamellarFFHGModel:
2433
[77cfcf0]2434**2.1.30. LamellarFFHGModel**
[1c03e14]2435
[1127c32]2436This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar phase where a random distribution in
2437solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail region.
[1c03e14]2438
[1127c32]2439*2.1.31.1. Definition*
[1c03e14]2440
[1127c32]2441The scattering intensity *I(q)* is
[1c03e14]2442
[1127c32]2443.. image:: img/image136.PNG
[1c03e14]2444
[1127c32]2445The form factor is
[1c03e14]2446
[7f42aad]2447.. image:: img/image137.jpg
[1c03e14]2448
[1127c32]2449where |delta|\ T = tail length (or *t_length*), |delta|\ H = head thickness (or *h_thickness*),
[3342eb3]2450|drho|\ H = SLD(headgroup) - SLD(solvent), and |drho|\ T = SLD(tail) - SLD(solvent). The total thickness is 2(H+T).
[1c03e14]2451
[1127c32]2452The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2453
[7f42aad]2454.. image:: img/image040.gif
[1c03e14]2455
[1127c32]2456The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_tail* = SLD of the tail group,
2457and *sld_head* = SLD of the head group.
[1c03e14]2458
2459==============  ========  =============
2460Parameter name  Units     Default value
2461==============  ========  =============
2462background      |cm^-1|   0.0
2463sld_head        |Ang^-2|  3e-06
2464scale           None      1
2465sld_solvent     |Ang^-2|  6e-06
2466h_thickness     |Ang|     10
2467t_length        |Ang|     15
2468sld_tail        |Ang^-2|  0
2469==============  ========  =============
2470
[7f42aad]2471.. image:: img/image138.jpg
[1c03e14]2472
2473*Figure. 1D plot using the default values (w/1000 data point).*
2474
[1127c32]2475Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2476(Kline, 2006).
[1c03e14]2477
2478REFERENCE
2479
[93b6fcc]2480F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2481
[bf8c07b]2482also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2483
[93b6fcc]2484*2014/04/17 - Description reviewed by S King and P Butler.*
[4ed2d0a1]2485
[1c03e14]2486
2487
2488.. _LamellarPSModel:
2489
[77cfcf0]2490**2.1.31. LamellarPSModel**
[1c03e14]2491
[1127c32]2492This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lyotropic lamellar phase where a random
2493distribution in solution are assumed.
[1c03e14]2494
[1127c32]2495*2.1.31.1. Definition*
[1c03e14]2496
[1127c32]2497The scattering intensity *I(q)* is
[1c03e14]2498
[1127c32]2499.. image:: img/image139.PNG
[1c03e14]2500
2501The form factor is
2502
[1127c32]2503.. image:: img/image134.PNG
[1c03e14]2504
[1127c32]2505and the structure factor is
[1c03e14]2506
[1127c32]2507.. image:: img/image140.PNG
[1c03e14]2508
2509where
2510
[1127c32]2511.. image:: img/image141.PNG
[1c03e14]2512
[58eccf6]2513Here *d* = (repeat) spacing, |delta| = bilayer thickness, the contrast |drho| = SLD(headgroup) - SLD(solvent),
[1127c32]2514K = smectic bending elasticity, B = compression modulus, and N = number of lamellar plates (*n_plates*).
[1c03e14]2515
[1127c32]2516NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.**
2517And due to a complication of the model function, users are responsible for making sure that all the assumptions are
2518handled accurately (see the original reference below for more details).
[1c03e14]2519
[1127c32]2520The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2521
[7f42aad]2522.. image:: img/image040.gif
[1c03e14]2523
2524The returned value is in units of |cm^-1|, on absolute scale.
2525
2526==============  ========  =============
2527Parameter name  Units     Default value
2528==============  ========  =============
2529background      |cm^-1|   0.0
2530contrast        |Ang^-2|  5e-06
2531scale           None      1
2532delta           |Ang|     30
2533n_plates        None      20
2534spacing         |Ang|     400
2535caille          |Ang^-2|  0.1
2536==============  ========  =============
2537
[7f42aad]2538.. image:: img/image142.jpg
[1c03e14]2539
2540*Figure. 1D plot using the default values (w/6000 data point).*
2541
[1127c32]2542Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2543(Kline, 2006).
[1c03e14]2544
2545REFERENCE
2546
[93b6fcc]2547F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2548
[bf8c07b]2549also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2550
2551
2552
2553.. _LamellarPSHGModel:
2554
[77cfcf0]2555**2.1.32. LamellarPSHGModel**
[1c03e14]2556
[1127c32]2557This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lyotropic lamellar phase where a random
2558distribution in solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail
2559region.
[1c03e14]2560
[1127c32]2561*2.1.32.1. Definition*
[1c03e14]2562
[1127c32]2563The scattering intensity *I(q)* is
[1c03e14]2564
[1127c32]2565.. image:: img/image139.PNG
[1c03e14]2566
[1127c32]2567The form factor is
[1c03e14]2568
[1127c32]2569.. image:: img/image143.PNG
[1c03e14]2570
2571The structure factor is
2572
[1127c32]2573.. image:: img/image140.PNG
[1c03e14]2574
2575where
2576
[1127c32]2577.. image:: img/image141.PNG
[1c03e14]2578
[1127c32]2579where |delta|\ T = tail length (or *t_length*), |delta|\ H = head thickness (or *h_thickness*),
[58eccf6]2580|drho|\ H = SLD(headgroup) - SLD(solvent), and |drho|\ T = SLD(tail) - SLD(headgroup).
[1127c32]2581Here *d* = (repeat) spacing, *K* = smectic bending elasticity, *B* = compression modulus, and N = number of lamellar
2582plates (*n_plates*).
[1c03e14]2583
[1127c32]2584NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.**
2585And due to a complication of the model function, users are responsible for making sure that all the assumptions are
2586handled accurately (see the original reference below for more details).
[1c03e14]2587
[1127c32]2588The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2589
[7f42aad]2590.. image:: img/image040.gif
[1c03e14]2591
[1127c32]2592The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_tail* = SLD of the tail group,
2593*sld_head* = SLD of the head group, and *sld_solvent* = SLD of the solvent.
[1c03e14]2594
2595==============  ========  =============
2596Parameter name  Units     Default value
2597==============  ========  =============
2598background      |cm^-1|   0.001
2599sld_head        |Ang^-2|  2e-06
2600scale           None      1
2601sld_solvent     |Ang^-2|  6e-06
2602deltaH          |Ang|     2
2603deltaT          |Ang|     10
2604sld_tail        |Ang^-2|  0
2605n_plates        None      30
2606spacing         |Ang|     40
2607caille          |Ang^-2|  0.001
2608==============  ========  =============
2609
[7f42aad]2610.. image:: img/image144.jpg
[1c03e14]2611
2612*Figure. 1D plot using the default values (w/6000 data point).*
2613
[1127c32]2614Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2615(Kline, 2006).
[1c03e14]2616
2617REFERENCE
2618
[93b6fcc]2619F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2620
[bf8c07b]2621also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2622
2623
2624
2625.. _LamellarPCrystalModel:
2626
[77cfcf0]2627**2.1.33. LamellarPCrystalModel**
[1c03e14]2628
[1127c32]2629This model calculates the scattering from a stack of repeating lamellar structures. The stacks of lamellae (infinite
2630in lateral dimension) are treated as a paracrystal to account for the repeating spacing. The repeat distance is further
2631characterized by a Gaussian polydispersity. **This model can be used for large multilamellar vesicles.**
[1c03e14]2632
[1127c32]2633*2.1.33.1. Definition*
[1c03e14]2634
[1127c32]2635The scattering intensity *I(q)* is calculated as
[1c03e14]2636
[7f42aad]2637.. image:: img/image145.jpg
[1c03e14]2638
[1127c32]2639The form factor of the bilayer is approximated as the cross section of an infinite, planar bilayer of thickness *t*
[1c03e14]2640
[7f42aad]2641.. image:: img/image146.jpg
[1c03e14]2642
[1127c32]2643Here, the scale factor is used instead of the mass per area of the bilayer (*G*). The scale factor is the volume
[d4117ccb]2644fraction of the material in the bilayer, *not* the total excluded volume of the paracrystal. *Z*\ :sub:`N`\ *(q)*
2645describes the interference effects for aggregates consisting of more than one bilayer. The equations used are (3-5)
2646from the Bergstrom reference below.
[1c03e14]2647
[1127c32]2648Non-integer numbers of stacks are calculated as a linear combination of the lower and higher values
[1c03e14]2649
[7f42aad]2650.. image:: img/image147.jpg
[1c03e14]2651
[1127c32]2652The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
[1c03e14]2653
[7f42aad]2654.. image:: img/image040.gif
[1c03e14]2655
[1127c32]2656The parameters of the model are *Nlayers* = no. of layers, and *pd_spacing* = polydispersity of spacing.
[1c03e14]2657
2658==============  ========  =============
2659Parameter name  Units     Default value
2660==============  ========  =============
2661background      |cm^-1|   0
2662scale           None      1
2663Nlayers         None      20
2664pd_spacing      None      0.2
2665sld_layer       |Ang^-2|  1e-6
2666sld_solvent     |Ang^-2|  6.34e-6
2667spacing         |Ang|     250
2668thickness       |Ang|     33
2669==============  ========  =============
2670
[7f42aad]2671.. image:: img/image148.jpg
[1c03e14]2672
[1127c32]2673*Figure. 1D plot using the default values above (w/20000 data point).*
[1c03e14]2674
[1127c32]2675Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2676(Kline, 2006).
[1c03e14]2677
2678REFERENCE
2679
[93b6fcc]2680M Bergstrom, J S Pedersen, P Schurtenberger, S U Egelhaaf, *J. Phys. Chem. B*, 103 (1999) 9888-9897
[1c03e14]2681
2682
2683
2684.. _SCCrystalModel:
2685
[77cfcf0]2686**2.1.34. SCCrystalModel**
[1c03e14]2687
[d4117ccb]2688Calculates the scattering from a **simple cubic lattice** with paracrystalline distortion. Thermal vibrations are
2689considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed
2690to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2691
[77cfcf0]2692The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2693
[d4117ccb]2694*2.1.34.1. Definition*
[1c03e14]2695
[4ed2d0a1]2696The scattering intensity *I(q)* is calculated as
[1c03e14]2697
[7f42aad]2698.. image:: img/image149.jpg
[1c03e14]2699
[d4117ccb]2700where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2701correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2702paracrystalline structure factor for a simple cubic structure.
[1c03e14]2703
[d4117ccb]2704Equation (16) of the 1987 reference is used to calculate *Z(q)*, using equations (13)-(15) from the 1987 paper for
2705*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2706
[d4117ccb]2707The lattice correction (the occupied volume of the lattice) for a simple cubic structure of particles of radius *R*
2708and nearest neighbor separation *D* is
[1c03e14]2709
[7f42aad]2710.. image:: img/image150.jpg
[1c03e14]2711
[d4117ccb]2712The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2713
[7f42aad]2714.. image:: img/image151.jpg
[1c03e14]2715
[d4117ccb]2716where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2717
[d4117ccb]2718The simple cubic lattice is
[1c03e14]2719
[7f42aad]2720.. image:: img/image152.jpg
[1c03e14]2721
[d4117ccb]2722For a crystal, diffraction peaks appear at reduced *q*\ -values given by
[1c03e14]2723
[7f42aad]2724.. image:: img/image153.jpg
[1c03e14]2725
[d4117ccb]2726where for a simple cubic lattice any *h*\ , *k*\ , *l* are allowed and none are forbidden. Thus the peak positions
2727correspond to (just the first 5)
[1c03e14]2728
[7f42aad]2729.. image:: img/image154.jpg
[1c03e14]2730
[d4117ccb]2731**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2732**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2733SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2734makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2735
2736==============  ========  =============
2737Parameter name  Units     Default value
2738==============  ========  =============
2739background      |cm^-1|   0
2740dnn             |Ang|     220
2741scale           None      1
2742sldSolv         |Ang^-2|  6.3e-06
2743radius          |Ang|     40
2744sld_Sph         |Ang^-2|  3e-06
2745d_factor        None      0.06
2746==============  ========  =============
2747
[d4117ccb]2748This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2749default values.
[bf8c07b]2750
[7f42aad]2751.. image:: img/image155.jpg
[1c03e14]2752
[d4117ccb]2753*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2754
[d4117ccb]2755The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2756scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2757computation.
[1c03e14]2758
[7f42aad]2759.. image:: img/image156.jpg
[1c03e14]2760
[7f42aad]2761.. image:: img/image157.jpg
[1c03e14]2762
[d4117ccb]2763*Figure. 2D plot using the default values (w/200X200 pixels).*
[1c03e14]2764
[d4117ccb]2765REFERENCE
[1c03e14]2766
[d4117ccb]2767Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2768(Original Paper)
[1c03e14]2769
[d4117ccb]2770Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2771(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2772
2773
2774
2775.. _FCCrystalModel:
2776
[77cfcf0]2777**2.1.35. FCCrystalModel**
[1c03e14]2778
[d4117ccb]2779Calculates the scattering from a **face-centered cubic lattice** with paracrystalline distortion. Thermal vibrations
2780are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
2781assumed to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2782
[77cfcf0]2783The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2784
[d4117ccb]2785*2.1.35.1. Definition*
[1c03e14]2786
[d4117ccb]2787The scattering intensity *I(q)* is calculated as
[1c03e14]2788
[7f42aad]2789.. image:: img/image158.jpg
[1c03e14]2790
[d4117ccb]2791where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2792correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2793paracrystalline structure factor for a face-centered cubic structure.
[1c03e14]2794
[d4117ccb]2795Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (23)-(25) from the 1987 paper for
2796*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2797
[d4117ccb]2798The lattice correction (the occupied volume of the lattice) for a face-centered cubic structure of particles of radius
2799*R* and nearest neighbor separation *D* is
[1c03e14]2800
[7f42aad]2801.. image:: img/image159.jpg
[1c03e14]2802
[d4117ccb]2803The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2804
[7f42aad]2805.. image:: img/image160.jpg
[1c03e14]2806
[d4117ccb]2807where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2808
[d4117ccb]2809The face-centered cubic lattice is
[1c03e14]2810
[7f42aad]2811.. image:: img/image161.jpg
[1c03e14]2812
[d4117ccb]2813For a crystal, diffraction peaks appear at reduced q-values given by
[1c03e14]2814
[7f42aad]2815.. image:: img/image162.jpg
[1c03e14]2816
[d4117ccb]2817where for a face-centered cubic lattice *h*\ , *k*\ , *l* all odd or all even are allowed and reflections where
2818*h*\ , *k*\ , *l* are mixed odd/even are forbidden. Thus the peak positions correspond to (just the first 5)
[1c03e14]2819
[7f42aad]2820.. image:: img/image163.jpg
[1c03e14]2821
[d4117ccb]2822**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2823**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2824SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2825makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2826
2827==============  ========  =============
2828Parameter name  Units     Default value
2829==============  ========  =============
2830background      |cm^-1|   0
2831dnn             |Ang|     220
2832scale           None      1
2833sldSolv         |Ang^-2|  6.3e-06
2834radius          |Ang|     40
2835sld_Sph         |Ang^-2|  3e-06
2836d_factor        None      0.06
2837==============  ========  =============
2838
[d4117ccb]2839This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2840default values.
[1c03e14]2841
[7f42aad]2842.. image:: img/image164.jpg
[1c03e14]2843
[d4117ccb]2844*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2845
[d4117ccb]2846The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2847scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2848computation.
[1c03e14]2849
[7f42aad]2850.. image:: img/image165.gif
[1c03e14]2851
[7f42aad]2852.. image:: img/image166.jpg
[1c03e14]2853
2854*Figure. 2D plot using the default values (w/200X200 pixels).*
2855
[d4117ccb]2856REFERENCE
[1c03e14]2857
[d4117ccb]2858Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2859(Original Paper)
[1c03e14]2860
[d4117ccb]2861Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2862(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2863
2864
2865
[d4117ccb]2866.. _BCCrystalModel:
[1c03e14]2867
[d4117ccb]2868**2.1.36. BCCrystalModel**
[1c03e14]2869
[d4117ccb]2870Calculates the scattering from a **body-centered cubic lattice** with paracrystalline distortion. Thermal vibrations
2871are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
2872assumed to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2873
[d4117ccb]2874The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2875
[d4117ccb]2876*2.1.36.1. Definition**
[1c03e14]2877
[d4117ccb]2878The scattering intensity *I(q)* is calculated as
[1c03e14]2879
[7f42aad]2880.. image:: img/image167.jpg
[1c03e14]2881
[d4117ccb]2882where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2883correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2884paracrystalline structure factor for a body-centered cubic structure.
[1c03e14]2885
[d4117ccb]2886Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (29)-(31) from the 1987 paper for
2887*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2888
[d4117ccb]2889The lattice correction (the occupied volume of the lattice) for a body-centered cubic structure of particles of radius
2890*R* and nearest neighbor separation *D* is
[1c03e14]2891
[7f42aad]2892.. image:: img/image159.jpg
[1c03e14]2893
[d4117ccb]2894The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2895
[7f42aad]2896.. image:: img/image160.jpg
[1c03e14]2897
[d4117ccb]2898where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2899
[d4117ccb]2900The body-centered cubic lattice is
[1c03e14]2901
[7f42aad]2902.. image:: img/image168.jpg
[1c03e14]2903
[d4117ccb]2904For a crystal, diffraction peaks appear at reduced q-values given by
[1c03e14]2905
[7f42aad]2906.. image:: img/image162.jpg
[1c03e14]2907
[d4117ccb]2908where for a body-centered cubic lattice, only reflections where (\ *h* + *k* + *l*\ ) = even are allowed and
2909reflections where (\ *h* + *k* + *l*\ ) = odd are forbidden. Thus the peak positions correspond to (just the first 5)
[1c03e14]2910
[7f42aad]2911.. image:: img/image169.jpg
[1c03e14]2912
[d4117ccb]2913**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2914**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2915SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2916makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2917
2918==============  ========  =============
2919Parameter name  Units     Default value
2920==============  ========  =============
2921background      |cm^-1|   0
2922dnn             |Ang|     220
2923scale           None      1
2924sldSolv         |Ang^-2|  6.3e-006
2925radius          |Ang|     40
2926sld_Sph         |Ang^-2|  3e-006
2927d_factor        None      0.06
2928==============  ========  =============
2929
[d4117ccb]2930This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2931default values.
[bf8c07b]2932
[7f42aad]2933.. image:: img/image170.jpg
[1c03e14]2934
[d4117ccb]2935*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2936
[d4117ccb]2937The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2938scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2939computation.
[1c03e14]2940
[7f42aad]2941.. image:: img/image165.gif
[1c03e14]2942
[7f42aad]2943.. image:: img/image171.jpg
[1c03e14]2944
[d4117ccb]2945*Figure. 2D plot using the default values (w/200X200 pixels).*
[1c03e14]2946
[d4117ccb]2947REFERENCE
[1c03e14]2948
[d4117ccb]2949Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2950(Original Paper)
[1c03e14]2951
[d4117ccb]2952Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2953(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2954
2955
2956
2957.. _ParallelepipedModel:
2958
[77cfcf0]2959**2.1.37. ParallelepipedModel**
[1c03e14]2960
[bf8c07b]2961This model provides the form factor, *P(q)*, for a rectangular cylinder (below) where the form factor is normalized by
[6386cd8]2962the volume of the cylinder. If you need to apply polydispersity, see the RectangularPrismModel_.
[1c03e14]2963
[bf8c07b]2964*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2965
[bf8c07b]2966where the volume *V* = *A B C* and the averaging < > is applied over all orientations for 1D.
[1c03e14]2967
[bf8c07b]2968For information about polarised and magnetic scattering, click here_.
[1c03e14]2969
[7f42aad]2970.. image:: img/image087.jpg
[1c03e14]2971
[bf8c07b]2972*2.1.37.1. Definition*
[1c03e14]2973
[bf8c07b]2974**The edge of the solid must satisfy the condition that** *A* < *B*. Then, assuming *a* = *A* / *B* < 1,
2975*b* = *B* / *B* = 1, and *c* = *C* / *B* > 1, the form factor is
[1c03e14]2976
[bf8c07b]2977.. image:: img/image088.PNG
[1c03e14]2978
[bf8c07b]2979and the contrast is defined as
[1c03e14]2980
[bf8c07b]2981.. image:: img/image089.PNG
[1c03e14]2982
[bf8c07b]2983The scattering intensity per unit volume is returned in units of |cm^-1|; ie, *I(q)* = |phi| *P(q)*\ .
[1c03e14]2984
[bf8c07b]2985NB: The 2nd virial coefficient of the parallelpiped is calculated based on the the averaged effective radius
2986(= sqrt(*short_a* \* *short_b* / |pi|)) and length(= *long_c*) values, and used as the effective radius for
2987*S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2988
[bf8c07b]2989To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles
2990|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the
2991rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is
2992parallel to the *x*-axis of the detector.
[1c03e14]2993
[7f42aad]2994.. image:: img/image090.jpg
[1c03e14]2995
2996*Figure. Definition of angles for 2D*.
2997
[7f42aad]2998.. image:: img/image091.jpg
[1c03e14]2999
[bf8c07b]3000*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]3001
3002==============  ========  =============
3003Parameter name  Units     Default value
3004==============  ========  =============
3005background      |cm^-1|   0.0
3006contrast        |Ang^-2|  5e-06
3007long_c          |Ang|     400
3008short_a         |Ang^-2|  35
3009short_b         |Ang|     75
3010scale           None      1
3011==============  ========  =============
3012
[7f42aad]3013.. image:: img/image092.jpg
[1c03e14]3014
3015*Figure. 1D plot using the default values (w/1000 data point).*
3016
[bf8c07b]3017*2.1.37.2. Validation of the parallelepiped 2D model*
[1c03e14]3018
[bf8c07b]3019Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
3020a 2D calculation over all possible angles. The Figure below shows the comparison where the solid dot refers to averaged
30212D while the line represents the result of the 1D calculation (for the averaging, 76, 180, 76 points are taken for the
3022angles of |theta|, |phi|, and |psi| respectively).
[1c03e14]3023
[7f42aad]3024.. image:: img/image093.gif
[1c03e14]3025
3026*Figure. Comparison between 1D and averaged 2D.*
3027
[bf8c07b]3028Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
3029(Kline, 2006).
[1c03e14]3030
3031REFERENCE
3032
[93b6fcc]3033P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
[1c03e14]3034Equations (1), (13-14). (in German)
3035
3036
3037
3038.. _CSParallelepipedModel:
3039
[77cfcf0]3040**2.1.38. CSParallelepipedModel**
[1c03e14]3041
[bf8c07b]3042Calculates the form factor for a rectangular solid with a core-shell structure. **The thickness and the scattering**
3043**length density of the shell or "rim" can be different on all three (pairs) of faces.**
3044
3045The form factor is normalized by the particle volume *V* such that
[1c03e14]3046
[bf8c07b]3047*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]3048
[bf8c07b]3049where < > is an average over all possible orientations of the rectangular solid.
[1c03e14]3050
[bf8c07b]3051An instrument resolution smeared version of the model is also provided.
[1c03e14]3052
[bf8c07b]3053*2.1.38.1. Definition*
[1c03e14]3054
[bf8c07b]3055The function calculated is the form factor of the rectangular solid below. The core of the solid is defined by the
3056dimensions *A*, *B*, *C* such that *A* < *B* < *C*.
[1c03e14]3057
[7f42aad]3058.. image:: img/image087.jpg
[1c03e14]3059
[bf8c07b]3060There are rectangular "slabs" of thickness *tA* that add to the *A* dimension (on the *BC* faces). There are similar
3061slabs on the *AC* (= *tB*) and *AB* (= *tC*) faces. The projection in the *AB* plane is then
[1c03e14]3062
[7f42aad]3063.. image:: img/image094.jpg
[1c03e14]3064
[bf8c07b]3065The volume of the solid is
[1c03e14]3066
[bf8c07b]3067.. image:: img/image095.PNG
[1c03e14]3068
[bf8c07b]3069**meaning that there are "gaps" at the corners of the solid.**
[1c03e14]3070
[bf8c07b]3071The intensity calculated follows the ParallelepipedModel_, with the core-shell intensity being calculated as the
3072square of the sum of the amplitudes of the core and shell, in the same manner as a CoreShellModel_.
[1c03e14]3073
[bf8c07b]3074**For the calculation of the form factor to be valid, the sides of the solid MUST be chosen such that** *A* < *B* < *C*.
3075**If this inequality is not satisfied, the model will not report an error, and the calculation will not be correct.**
[1c03e14]3076
[bf8c07b]3077FITTING NOTES
3078If the scale is set equal to the particle volume fraction, |phi|, the returned value is the scattered intensity per
3079unit volume; ie, *I(q)* = |phi| *P(q)*\ . However, **no interparticle interference effects are included in this**
3080**calculation.**
[1c03e14]3081
[bf8c07b]3082There are many parameters in this model. Hold as many fixed as possible with known values, or you will certainly end
3083up at a solution that is unphysical.
[1c03e14]3084
[bf8c07b]3085Constraints must be applied during fitting to ensure that the inequality *A* < *B* < *C* is not violated. The
3086calculation will not report an error, but the results will not be correct.
[1c03e14]3087
3088The returned value is in units of |cm^-1|, on absolute scale.
3089
[bf8c07b]3090NB: The 2nd virial coefficient of the CSParallelpiped is calculated based on the the averaged effective radius
3091(= sqrt((*short_a* + 2 *rim_a*) \* (*short_b* + 2 *rim_b*) / |pi|)) and length(= *long_c* + 2 *rim_c*) values, and
3092used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]3093
[bf8c07b]3094To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles
3095|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the
3096rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is
3097parallel to the *x*-axis of the detector.
[1c03e14]3098
[7f42aad]3099.. image:: img/image090.jpg
[1c03e14]3100
3101*Figure. Definition of angles for 2D*.
3102
[7f42aad]3103.. image:: img/image091.jpg
[1c03e14]3104
[bf8c07b]3105*Figure. Examples of the angles for oriented cspp against the detector plane.*
[1c03e14]3106
[bf8c07b]3107This example dataset was produced by running the Macro Plot_CSParallelepiped(), using 100 data points,
3108*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]3109
3110==============  ========  =============
3111Parameter name  Units     Default value
3112==============  ========  =============
3113background      |cm^-1|   0.06
3114sld_pcore       |Ang^-2|  1e-06
3115sld_rimA        |Ang^-2|  2e-06
3116sld_rimB        |Ang^-2|  4e-06
3117sld_rimC        |Ang^-2|  2e-06
3118sld_solv        |Ang^-2|  6e-06
3119rimA            |Ang|     10
3120rimB            |Ang|     10
3121rimC            |Ang|     10
3122longC           |Ang|     400
3123shortA          |Ang|     35
3124midB            |Ang|     75
3125scale           None      1
3126==============  ========  =============
3127
[7f42aad]3128.. image:: img/image096.jpg
[1c03e14]3129
3130*Figure. 1D plot using the default values (w/256 data points).*
3131
[7f42aad]3132.. image:: img/image097.jpg
[1c03e14]3133
[bf8c07b]3134*Figure. 2D plot using the default values (w/(256X265) data points).*
[1c03e14]3135
[bf8c07b]3136Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
3137(Kline, 2006).
[1c03e14]3138
3139REFERENCE
3140
[93b6fcc]3141P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
[bf8c07b]3142Equations (1), (13-14). (in German)
[1c03e14]3143
3144
3145
[6386cd8]3146.. _RectangularPrismModel:
3147
3148**2.1.39. RectangularPrismModel**
3149
3150This model provides the form factor, *P(q)*, for a rectangular prism.
3151
3152Note that this model is almost totally equivalent to the existing ParallelepipedModel_. The only difference is that the
3153way the relevant parameters are defined here (*a*, *b/a*, *c/a* instead of *a*, *b*, *c*) allows to use polydispersity
3154with this model while keeping the shape of the prism (e.g. setting *b/a* = 1 and *c/a* = 1 and applying polydispersity
3155to *a* will generate a distribution of cubes of different sizes).
3156
3157*2.1.39.1. Definition*
3158
3159The 1D scattering intensity for this model was calculated by Mittelbach and Porod (Mittelbach, 1961), but the
3160implementation here is closer to the equations given by Nayuk and Huber (Nayuk, 2012).
3161
3162The scattering from a massive parallelepiped with an orientation with respect to the scattering vector given by |theta|
3163and |phi| is given by
3164
3165.. math::
3166  A_P\,(q) =  \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \, \times \,
3167  \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \, \times \,
3168  \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi}
3169
3170where *A*, *B* and *C* are the sides of the parallelepiped and must fulfill :math:`A \le B \le C`, |theta| is the angle
3171between the *z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering
3172vector (lying in the *xy* plane) and the *y* axis.
3173
3174The normalized form factor in 1D is obtained averaging over all possible orientations
3175
3176.. math::
3177  P(q) =  \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_P^2(q) \, \sin\theta \, d\theta \, d\phi
3178
3179The 1D scattering intensity is then calculated as
3180
3181.. math::
3182  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3183
3184where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the
3185parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute
3186units) *scale* represents the volume fraction (which is unitless).
3187
3188**The 2D scattering intensity is not computed by this model.**
3189
3190The returned value is scaled to units of |cm^-1| and the parameters of the RectangularPrismModel are the following
3191
3192==============  ========  =============
3193Parameter name  Units     Default value
3194==============  ========  =============
3195scale           None      1
3196short_side      |Ang|     35
3197b2a_ratio       None      1
3198c2a_ratio       None      1
3199sldPipe         |Ang^-2|  6.3e-6
3200sldSolv         |Ang^-2|  1.0e-6
3201background      |cm^-1|   0
3202==============  ========  =============
3203
3204*2.1.39.2. Validation of the RectangularPrismModel*
3205
3206Validation of the code was conducted by comparing the output of the 1D model to the output of the existing
3207parallelepiped model.
3208
3209REFERENCES
3210
3211P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
3212
3213R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3214
3215
3216
3217.. _RectangularHollowPrismModel:
3218
3219**2.1.40. RectangularHollowPrismModel**
3220
3221This model provides the form factor, *P(q)*, for a hollow rectangular parallelepiped with a wall thickness |bigdelta|.
3222
3223*2.1.40.1. Definition*
3224
3225The 1D scattering intensity for this model is calculated by forming the difference of the amplitudes of two massive
3226parallelepipeds differing in their outermost dimensions in each direction by the same length increment 2 |bigdelta|
3227(Nayuk, 2012).
3228
3229As in the case of the massive parallelepiped, the scattering amplitude is computed for a particular orientation of the
3230parallelepiped with respect to the scattering vector and then averaged over all possible orientations, giving
3231
3232.. math::
3233  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_{P\Delta}^2(q) \,
3234  \sin\theta \, d\theta \, d\phi
3235
3236where |theta| is the angle between the *z* axis and the longest axis of the parallelepiped, |phi| is the angle between
3237the scattering vector (lying in the *xy* plane) and the *y* axis, and
3238
3239.. math::
3240  A_{P\Delta}\,(q) =  A \, B \, C \, \times
3241                      \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \,
3242                      \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \,
3243                      \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi} -
3244                      8 \, \bigl( \frac{A}{2} - \Delta \bigr) \, \bigl( \frac{B}{2} - \Delta \bigr) \,
3245                      \bigl( \frac{C}{2} - \Delta \bigr) \, \times
3246                      \frac{\sin \bigl[ q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta \bigr]}
3247                      {q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta} \,
3248                      \frac{\sin \bigl[ q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi \bigr]}
3249                      {q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi} \,
3250                      \frac{\sin \bigl[ q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi \bigr]}
3251                      {q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi} \,
3252
3253where *A*, *B* and *C* are the external sides of the parallelepiped fulfilling :math:`A \le B \le C`, and the volume *V*
3254of the parallelepiped is
3255
3256.. math::
3257  V = A B C \, - \, (A - 2\Delta) (B - 2\Delta) (C - 2\Delta)
3258
3259The 1D scattering intensity is then calculated as
3260
3261.. math::
3262  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3263
3264where :math:`\rho_{\mbox{pipe}}` is the scattering length of the parallelepiped, :math:`\rho_{\mbox{solvent}}` is the
3265scattering length of the solvent, and (if the data are in absolute units) *scale* represents the volume fraction (which
3266is unitless).
3267
3268**The 2D scattering intensity is not computed by this model.**
3269
3270The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismModel are the
3271following
3272
3273==============  ========  =============
3274Parameter name  Units     Default value
3275==============  ========  =============
3276scale           None      1
3277short_side      |Ang|     35
3278b2a_ratio       None      1
3279c2a_ratio       None      1
3280thickness       |Ang|     1
3281sldPipe         |Ang^-2|  6.3e-6
3282sldSolv         |Ang^-2|  1.0e-6
3283background      |cm^-1|   0
3284==============  ========  =============
3285
3286*2.1.40.2. Validation of the RectangularHollowPrismModel*
3287
3288Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown in
3289(Nayuk, 2012).
3290
3291REFERENCES
3292
3293R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3294
3295
3296
3297.. _RectangularHollowPrismInfThinWallsModel:
3298
3299**2.1.41. RectangularHollowPrismInfThinWallsModel**
3300
3301This model provides the form factor, *P(q)*, for a hollow rectangular prism with infinitely thin walls.
3302
3303*2.1.41.1. Definition*
3304
3305The 1D scattering intensity for this model is calculated according to the equations given by Nayuk and Huber
3306(Nayuk, 2012).
3307
3308Assuming a hollow parallelepiped with infinitely thin walls, edge lengths :math:`A \le B \le C` and presenting an
3309orientation with respect to the scattering vector given by |theta| and |phi|, where |theta| is the angle between the
3310*z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering vector
3311(lying in the *xy* plane) and the *y* axis, the form factor is given by
3312
3313.. math::
3314  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} [A_L(q)+A_T(q)]^2
3315  \, \sin\theta \, d\theta \, d\phi
3316
3317where
3318
3319.. math::
3320  V = 2AB + 2AC + 2BC
3321
3322.. math::
3323  A_L\,(q) =  8 \times \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3324                              \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr)
3325                              \cos \bigl( q \frac{C}{2} \cos\theta \bigr) }
3326                            {q^2 \, \sin^2\theta \, \sin\phi \cos\phi}
3327
3328.. math::
3329  A_T\,(q) =  A_F\,(q) \times \frac{2 \, \sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \, \cos\theta}
3330
3331and
3332
3333.. math::
3334  A_F\,(q) =  4 \frac{ \cos \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3335                       \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) }
3336                     {q \, \cos\phi \, \sin\theta} +
3337              4 \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3338                       \cos \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) }
3339                     {q \, \sin\phi \, \sin\theta}
3340
3341The 1D scattering intensity is then calculated as
3342
3343.. math::
3344  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3345
3346where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the
3347parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute
3348units) *scale* represents the volume fraction (which is unitless).
3349
3350**The 2D scattering intensity is not computed by this model.**
3351
3352The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismInfThinWallModel
3353are the following
3354
3355==============  ========  =============
3356Parameter name  Units     Default value
3357==============  ========  =============
3358scale           None      1
3359short_side      |Ang|     35
3360b2a_ratio       None      1
3361c2a_ratio       None      1
3362sldPipe         |Ang^-2|  6.3e-6
3363sldSolv         |Ang^-2|  1.0e-6
3364background      |cm^-1|   0
3365==============  ========  =============
3366
3367*2.1.41.2. Validation of the RectangularHollowPrismInfThinWallsModel*
3368
3369Validation of the code was conducted  by qualitatively comparing the output of the 1D model to the curves shown in
3370(Nayuk, 2012).
3371
3372REFERENCES
3373
3374R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3375
3376
3377
[7072ce6]3378.. _MicelleSphCoreModel:
3379
3380**2.1.42. MicelleSphCoreModel**
3381
3382This model provides the form factor, *P(q)*, for a micelle with a spherical core
3383and Gaussian polymer chains attached to the surface.
3384
3385*2.1.42.1. Definition*
3386
3387The 1D scattering intensity for this model is calculated according to the equations given by Pedersen
3388(Pedersen, 2000).
3389
3390*2.1.42.2. Validation of the MicelleSphCoreModel*
3391
3392This model has not yet been validated. Feb2015
3393
3394REFERENCES
3395
3396J Pedersen, *J. Appl. Cryst.*, 33 (2000) 637-640
3397
3398
3399
[1c03e14]34002.2 Shape-independent Functions
3401-------------------------------
3402
[6386cd8]3403The following are models used for shape-independent SAS analysis.
[1c03e14]3404
[4ed2d0a1]3405.. _Debye:
[1c03e14]3406
[58eccf6]3407**2.2.1. Debye (Gaussian Coil Model)**
[1c03e14]3408
[6386cd8]3409The Debye model is a form factor for a linear polymer chain obeying Gaussian statistics (ie, it is in the theta state).
3410In addition to the radius-of-gyration, *Rg*, a scale factor *scale*, and a constant background term are included in the
3411calculation. **NB: No size polydispersity is included in this model, use the** Poly_GaussCoil_ **Model instead**
[1c03e14]3412
[4ed2d0a1]3413.. image:: img/image172.PNG
[1c03e14]3414
[93b6fcc]3415For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3416
[7f42aad]3417.. image:: img/image040.gif
[1c03e14]3418
[4ed2d0a1]3419==============  ========  =============
3420Parameter name  Units     Default value
3421==============  ========  =============
[58eccf6]3422scale           None      1.0
3423rg              |Ang|     50.0
3424background      |cm^-1|   0.0
[4ed2d0a1]3425==============  ========  =============
[1c03e14]3426
[7f42aad]3427.. image:: img/image173.jpg
[1c03e14]3428
[4ed2d0a1]3429*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3430
[4ed2d0a1]3431REFERENCE
[1c03e14]3432
[93b6fcc]3433R J Roe, *Methods of X-Ray and Neutron Scattering in Polymer Science*, Oxford University Press, New York (2000)
[1c03e14]3434
3435
3436
[4ed2d0a1]3437.. _BroadPeakModel:
[1c03e14]3438
[58eccf6]3439**2.2.2. BroadPeakModel**
[1c03e14]3440
[6386cd8]3441This model calculates an empirical functional form for SAS data characterized by a broad scattering peak. Many SAS
[93b6fcc]3442spectra are characterized by a broad peak even though they are from amorphous soft materials. For example, soft systems
[6386cd8]3443that show a SAS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc.
[93b6fcc]3444
3445The d-spacing corresponding to the broad peak is a characteristic distance between the scattering inhomogeneities (such
3446as in lamellar, cylindrical, or spherical morphologies, or for bicontinuous structures).
[1c03e14]3447
[4ed2d0a1]3448The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3449
[93b6fcc]3450*2.2.2.1. Definition*
3451
3452The scattering intensity *I(q)* is calculated as
[1c03e14]3453
[7f42aad]3454.. image:: img/image174.jpg
[1c03e14]3455
[93b6fcc]3456Here the peak position is related to the d-spacing as *Q0* = 2|pi| / *d0*.
[1c03e14]3457
[93b6fcc]3458For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3459
[7f42aad]3460.. image:: img/image040.gif
[1c03e14]3461
[93b6fcc]3462==================  ========  =============
3463Parameter name      Units     Default value
3464==================  ========  =============
3465scale_l    (=C)     None      10
3466scale_p    (=A)     None      1e-05
3467length_l (= |xi| )  |Ang|     50
3468q_peak    (=Q0)     |Ang^-1|  0.1
3469exponent_p (=n)     None      2
3470exponent_l (=m)     None      3
3471Background (=B)     |cm^-1|   0.1
3472==================  ========  =============
[1c03e14]3473
[7f42aad]3474.. image:: img/image175.jpg
[1c03e14]3475
[4ed2d0a1]3476*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3477
[4ed2d0a1]3478REFERENCE
[1c03e14]3479
[4ed2d0a1]3480None.
[1c03e14]3481
[93b6fcc]3482*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3483
3484
3485
[4ed2d0a1]3486.. _CorrLength:
[1c03e14]3487
[58eccf6]3488**2.2.3. CorrLength (Correlation Length Model)**
[1c03e14]3489
[6386cd8]3490Calculates an empirical functional form for SAS data characterized by a low-Q signal and a high-Q signal.
[1c03e14]3491
[4ed2d0a1]3492The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3493
[93b6fcc]3494*2.2.3. Definition*
3495
3496The scattering intensity *I(q)* is calculated as
[1c03e14]3497
[7f42aad]3498.. image:: img/image176.jpg
[1c03e14]3499
[93b6fcc]3500The first term describes Porod scattering from clusters (exponent = n) and the second term is a Lorentzian function
3501describing scattering from polymer chains (exponent = *m*). This second term characterizes the polymer/solvent
3502interactions and therefore the thermodynamics. The two multiplicative factors *A* and *C*, the incoherent
3503background *B* and the two exponents *n* and *m* are used as fitting parameters. The final parameter |xi| is a
3504correlation length for the polymer chains. Note that when *m*\ =2 this functional form becomes the familiar Lorentzian
3505function. 
[1c03e14]3506
[93b6fcc]3507For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3508
[7f42aad]3509.. image:: img/image040.gif
[1c03e14]3510
[93b6fcc]3511====================  ========  =============
3512Parameter name        Units     Default value
3513====================  ========  =============
3514scale_l    (=C)       None      10
3515scale_p    (=A)       None      1e-06
3516length_l   (= |xi| )  |Ang|     50
3517exponent_p (=n)       None      2
3518exponent_l (=m)       None      3
3519Background (=B)       |cm^-1|   0.1
3520====================  ========  =============
[1c03e14]3521
[7f42aad]3522.. image:: img/image177.jpg
[1c03e14]3523
[4ed2d0a1]3524*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3525
[4ed2d0a1]3526REFERENCE
[1c03e14]3527
[93b6fcc]3528B Hammouda, D L Ho and S R Kline, *Insight into Clustering in Poly(ethylene oxide) Solutions*, *Macromolecules*, 37
3529(2004) 6932-6937
[1c03e14]3530
[93b6fcc]3531*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3532
3533
3534
[4ed2d0a1]3535.. _Lorentz:
[1c03e14]3536
[58eccf6]3537**2.2.4. Lorentz (Ornstein-Zernicke Model)**
[1c03e14]3538
[93b6fcc]3539*2.2.4.1. Definition*
3540
3541The Ornstein-Zernicke model is defined by
[1c03e14]3542
[4ed2d0a1]3543.. image:: img/image178.PNG
[1c03e14]3544
[93b6fcc]3545The parameter *L* is the screening length.
[1c03e14]3546
[93b6fcc]3547For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3548
[7f42aad]3549.. image:: img/image040.gif
[bf8c07b]3550
[4ed2d0a1]3551==============  ========  =============
3552Parameter name  Units     Default value
3553==============  ========  =============
[58eccf6]3554scale           None      1.0
3555length          |Ang|     50.0
3556background      |cm^-1|   0.0
[4ed2d0a1]3557==============  ========  =============
[1c03e14]3558
[7f42aad]3559.. image:: img/image179.jpg
[1c03e14]3560
[93b6fcc]3561* Figure. 1D plot using the default values (w/200 data point).*
3562
3563REFERENCE
3564
3565None.
[1c03e14]3566
3567
3568
[4ed2d0a1]3569.. _DABModel:
[1c03e14]3570
[58eccf6]3571**2.2.5. DABModel (Debye-Anderson-Brumberger Model)**
[1c03e14]3572
[93b6fcc]3573Calculates the scattering from a randomly distributed, two-phase system based on the Debye-Anderson-Brumberger (DAB)
3574model for such systems. The two-phase system is characterized by a single length scale, the correlation length, which
3575is a measure of the average spacing between regions of phase 1 and phase 2. **The model also assumes smooth interfaces**
3576**between the phases** and hence exhibits Porod behavior (I ~ *q*\ :sup:`-4`) at large *q* (*QL* >> 1).
3577
3578The DAB model is ostensibly a development of the earlier Debye-Bueche model.
3579
3580*2.2.5.1. Definition*
[1c03e14]3581
[916501b]3582.. image:: img/image180_corrected.PNG
[1c03e14]3583
[93b6fcc]3584The parameter *L* is the correlation length.
[1c03e14]3585
[93b6fcc]3586For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3587
[7f42aad]3588.. image:: img/image040.gif
[1c03e14]3589
[4ed2d0a1]3590==============  ========  =============
3591Parameter name  Units     Default value
3592==============  ========  =============
[58eccf6]3593scale           None      1.0
3594length          |Ang|     50.0
3595background      |cm^-1|   0.0
[4ed2d0a1]3596==============  ========  =============
[1c03e14]3597
[7f42aad]3598.. image:: img/image181.jpg
[1c03e14]3599
[93b6fcc]3600* Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3601
[4ed2d0a1]3602REFERENCE
[1c03e14]3603
[93b6fcc]3604P Debye, H R Anderson, H Brumberger, *Scattering by an Inhomogeneous Solid. II. The Correlation Function*
3605*and its Application*, *J. Appl. Phys.*, 28(6) (1957) 679
[1c03e14]3606
[93b6fcc]3607P Debye, A M Bueche, *Scattering by an Inhomogeneous Solid*, *J. Appl. Phys.*, 20 (1949) 518
[1c03e14]3608
[93b6fcc]3609*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3610
3611
3612
[4ed2d0a1]3613.. _AbsolutePower_Law:
[1c03e14]3614
[58eccf6]3615**2.2.6. AbsolutePower_Law**
[1c03e14]3616
[93b6fcc]3617This model describes a simple power law with background.
[1c03e14]3618
[4ed2d0a1]3619.. image:: img/image182.PNG
[1c03e14]3620
[93b6fcc]3621Note the minus sign in front of the exponent. The parameter *m* should therefore be entered as a **positive** number.
[1c03e14]3622
[4ed2d0a1]3623==============  ========  =============
3624Parameter name  Units     Default value
3625==============  ========  =============
[58eccf6]3626Scale           None      1.0
3627m               None      4
3628Background      |cm^-1|   0.0
[4ed2d0a1]3629==============  ========  =============
[1c03e14]3630
[7f42aad]3631.. image:: img/image183.jpg
[1c03e14]3632
[4ed2d0a1]3633*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3634
[93b6fcc]3635REFERENCE
3636
3637None.
3638
[1c03e14]3639
3640
[93b6fcc]3641.. _TeubnerStrey:
[1c03e14]3642
[93b6fcc]3643**2.2.7. TeubnerStrey (Model)**
[1c03e14]3644
[93b6fcc]3645This function calculates the scattered intensity of a two-component system using the Teubner-Strey model. Unlike the
3646DABModel_ this function generates a peak.
3647
3648*2.2.7.1. Definition*
[1c03e14]3649
[4ed2d0a1]3650.. image:: img/image184.PNG
[1c03e14]3651
[93b6fcc]3652For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3653
[7f42aad]3654.. image:: img/image040.gif
[1c03e14]3655
[4ed2d0a1]3656==============  ========  =============
3657Parameter name  Units     Default value
3658==============  ========  =============
[58eccf6]3659scale           None      0.1
3660c1              None      -30.0
3661c2              None      5000.0
3662background      |cm^-1|   0.0
[4ed2d0a1]3663==============  ========  =============
[1c03e14]3664
[7f42aad]3665.. image:: img/image185.jpg
[1c03e14]3666
[4ed2d0a1]3667*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3668
[4ed2d0a1]3669REFERENCE
[1c03e14]3670
[93b6fcc]3671M Teubner, R Strey, *J. Chem. Phys.*, 87 (1987) 3195
[1c03e14]3672
[93b6fcc]3673K V Schubert, R Strey, S R Kline and E W Kaler, *J. Chem. Phys.*, 101 (1994) 5343
[1c03e14]3674
3675
3676
[4ed2d0a1]3677.. _FractalModel:
[1c03e14]3678
[58eccf6]3679**2.2.8. FractalModel**
[1c03e14]3680
[93b6fcc]3681Calculates the scattering from fractal-like aggregates built from spherical building blocks following the Texiera
3682reference.
3683
3684The value returned is in |cm^-1|\ .
3685
3686*2.2.8.1. Definition*
[1c03e14]3687
[4ed2d0a1]3688.. image:: img/image186.PNG
[1c03e14]3689
[93b6fcc]3690The *scale* parameter is the volume fraction of the building blocks, *R0* is the radius of the building block, *Df* is
3691the fractal dimension, |xi| is the correlation length, |rho|\ *solvent* is the scattering length density of the
3692solvent, and |rho|\ *block* is the scattering length density of the building blocks.
[1c03e14]3693
[93b6fcc]3694**Polydispersity on the radius is provided for.**
[1c03e14]3695
[93b6fcc]3696For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3697
[7f42aad]3698.. image:: img/image040.gif
[1c03e14]3699
[4ed2d0a1]3700==============  ========  =============
3701Parameter name  Units     Default value
3702==============  ========  =============
[58eccf6]3703scale           None      0.05
3704radius          |Ang|     5.0
3705fractal_dim     None      2
3706corr_length     |Ang|     100.0
3707block_sld       |Ang^-2|  2e-6
3708solvent_sld     |Ang^-2|  6e-6
3709background      |cm^-1|   0.0
[4ed2d0a1]3710==============  ========  =============
[1c03e14]3711
[7f42aad]3712.. image:: img/image187.jpg
[1c03e14]3713
3714*Figure. 1D plot using the default values (w/200 data point).*
3715
[4ed2d0a1]3716REFERENCE
[1c03e14]3717
[93b6fcc]3718J Teixeira, *J. Appl. Cryst.*, 21 (1988) 781-785
[1c03e14]3719
3720
3721
[4ed2d0a1]3722.. _MassFractalModel:
[1c03e14]3723
[4ed2d0a1]3724**2.2.9. MassFractalModel**
[1c03e14]3725
[93b6fcc]3726Calculates the scattering from fractal-like aggregates based on the Mildner reference.
3727
3728*2.2.9.1. Definition*
[1c03e14]3729
[7f42aad]3730.. image:: img/mass_fractal_eq1.jpg
[1c03e14]3731
[93b6fcc]3732where *R* is the radius of the building block, *Dm* is the **mass** fractal dimension, |zeta| is the cut-off length,
3733|rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *particle* is the scattering length
3734density of particles.
[1c03e14]3735
[93b6fcc]3736Note:  The mass fractal dimension *Dm* is only valid if 1 < mass_dim < 6. It is also only valid over a limited
3737*q* range (see the reference for details).
[1c03e14]3738
[4ed2d0a1]3739==============  ========  =============
3740Parameter name  Units     Default value
3741==============  ========  =============
[58eccf6]3742scale           None      1
3743radius          |Ang|     10.0
3744mass_dim        None      1.9
3745co_length       |Ang|     100.0
3746background      |cm^-1|   0.0
[4ed2d0a1]3747==============  ========  =============
[1c03e14]3748
[7f42aad]3749.. image:: img/mass_fractal_fig1.jpg
[1c03e14]3750
[93b6fcc]3751*Figure. 1D plot using default values.*
[1c03e14]3752
[4ed2d0a1]3753REFERENCE
[1c03e14]3754
[93b6fcc]3755D Mildner and P Hall, *J. Phys. D: Appl. Phys.*,  19 (1986) 1535-1545
3756Equation(9)
[1c03e14]3757
[93b6fcc]3758*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3759
3760
3761
[4ed2d0a1]3762.. _SurfaceFractalModel:
[1c03e14]3763
[4ed2d0a1]3764**2.2.10. SurfaceFractalModel**
[1c03e14]3765
[93b6fcc]3766Calculates the scattering from fractal-like aggregates based on the Mildner reference.
3767
3768*2.2.10.1. Definition*
[1c03e14]3769
[f8063bf]3770.. image:: img/surface_fractal_eq1.gif
[1c03e14]3771
[93b6fcc]3772where *R* is the radius of the building block, *Ds* is the **surface** fractal dimension, |zeta| is the cut-off length,
3773|rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *particle* is the scattering length
3774density of particles.
[1c03e14]3775
[93b6fcc]3776Note:  The surface fractal dimension *Ds* is only valid if 1 < surface_dim < 3. It is also only valid over a limited
3777*q* range (see the reference for details).
[1c03e14]3778
[4ed2d0a1]3779==============  ========  =============
3780Parameter name  Units     Default value
3781==============  ========  =============
[58eccf6]3782scale           None      1
3783radius          |Ang|     10.0
3784surface_dim     None      2.0
3785co_length       |Ang|     500.0
3786background      |cm^-1|   0.0
[4ed2d0a1]3787==============  ========  =============
[1c03e14]3788
[7f42aad]3789.. image:: img/surface_fractal_fig1.jpg
[1c03e14]3790
[93b6fcc]3791*Figure. 1D plot using default values.*
[1c03e14]3792
[4ed2d0a1]3793REFERENCE
[1c03e14]3794
[93b6fcc]3795D Mildner and P Hall, *J. Phys. D: Appl. Phys.*,  19 (1986) 1535-1545
3796Equation(13)
[1c03e14]3797
3798
3799
[4ed2d0a1]3800.. _MassSurfaceFractal:
[1c03e14]3801
[58eccf6]3802**2.2.11. MassSurfaceFractal (Model)**
[1c03e14]3803
[93b6fcc]3804A number of natural and commercial processes form high-surface area materials as a result of the vapour-phase
3805aggregation of primary particles. Examples of such materials include soots, aerosols, and fume or pyrogenic silicas.
3806These are all characterised by cluster mass distributions (sometimes also cluster size distributions) and internal
3807surfaces that are fractal in nature. The scattering from such materials displays two distinct breaks in log-log
3808representation, corresponding to the radius-of-gyration of the primary particles, *rg*, and the radius-of-gyration of
3809the clusters (aggregates), *Rg*. Between these boundaries the scattering follows a power law related to the mass
3810fractal dimension, *Dm*, whilst above the high-Q boundary the scattering follows a power law related to the surface
3811fractal dimension of the primary particles, *Ds*.
3812
3813*2.2.11.1. Definition*
3814
3815The scattered intensity *I(q)* is  calculated using a modified Ornstein-Zernicke equation
[1c03e14]3816
[f8063bf]3817.. image:: img/masssurface_fractal_eq1.jpg
[1c03e14]3818
[93b6fcc]3819where *Rg* is the size of the cluster, *rg* is the size of the primary particle, *Ds* is the surface fractal dimension,
3820*Dm* is the mass fractal dimension, |rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *p* is
3821the scattering length density of particles.
[1c03e14]3822
[93b6fcc]3823Note:  The surface (*Ds*) and mass (*Dm*) fractal dimensions are only valid if 0 < *surface_dim* < 6,
38240 < *mass_dim* < 6, and (*surface_dim*+*mass_dim*) < 6. 
[1c03e14]3825
[4ed2d0a1]3826==============  ========  =============
3827Parameter name  Units     Default value
3828==============  ========  =============
[58eccf6]3829scale           None      1
3830primary_rg      |Ang|     4000.0
3831cluster_rg      |Ang|     86.7
3832surface_dim     None      2.3
3833mass_dim        None      1.8
3834background      |cm^-1|   0.0
[4ed2d0a1]3835==============  ========  =============
[1c03e14]3836
[7f42aad]3837.. image:: img/masssurface_fractal_fig1.jpg
[1c03e14]3838
[93b6fcc]3839*Figure. 1D plot using default values.*
[1c03e14]3840
[4ed2d0a1]3841REFERENCE
[1c03e14]3842
[93b6fcc]3843P Schmidt, *J Appl. Cryst.*, 24 (1991) 414-435
3844Equation(19)
[1c03e14]3845
[93b6fcc]3846A J Hurd, D W Schaefer, J E Martin, *Phys. Rev. A*, 35 (1987) 2361-2364
3847Equation(2)
[1c03e14]3848
3849
3850
[4ed2d0a1]3851.. _FractalCoreShell:
[1c03e14]3852
[58eccf6]3853**2.2.12. FractalCoreShell (Model)**
[1c03e14]3854
[93b6fcc]3855Calculates the scattering from a fractal structure with a primary building block of core-shell spheres, as opposed to
3856just homogeneous spheres in the FractalModel_. This model could find use for aggregates of coated particles, or
3857aggregates of vesicles.
3858
3859The returned value is scaled to units of |cm^-1|, absolute scale.
3860
3861*2.2.12.1. Definition*
[1c03e14]3862
[7f42aad]3863.. image:: img/fractcore_eq1.gif
[1c03e14]3864
[93b6fcc]3865The form factor *P(q)* is that from CoreShellModel_ with *bkg* = 0
[1c03e14]3866
[4ed2d0a1]3867.. image:: img/image013.PNG
[1c03e14]3868
[93b6fcc]3869while the fractal structure factor S(q) is
[1c03e14]3870
[4ed2d0a1]3871.. image:: img/fractcore_eq3.gif
[1c03e14]3872
[93b6fcc]3873where *Df* = frac_dim, |xi| = cor_length, *rc* = (core) radius, and *scale* = volume fraction.
[1c03e14]3874
[93b6fcc]3875The fractal structure is as documented in the FractalModel_. Polydispersity of radius and thickness is provided for.
[1c03e14]3876
[93b6fcc]3877For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3878
[7f42aad]3879.. image:: img/image040.gif
[1c03e14]3880
[4ed2d0a1]3881==============  ========  =============
3882Parameter name  Units     Default value
3883==============  ========  =============
[58eccf6]3884volfraction     None      0.05
3885frac_dim        None      2
3886thickness       |Ang|     5.0
3887radius          |Ang|     20.0
3888cor_length      |Ang|     100.0
3889core_sld        |Ang^-2|  3.5e-6
3890shell_sld       |Ang^-2|  1e-6
3891solvent_sld     |Ang^-2|  6.35e-6
3892background      |cm^-1|   0.0
[4ed2d0a1]3893==============  ========  =============
[1c03e14]3894
[7f42aad]3895.. image:: img/image188.jpg
[1c03e14]3896
[4ed2d0a1]3897*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3898
[4ed2d0a1]3899REFERENCE
[1c03e14]3900
[93b6fcc]3901See the CoreShellModel_ and FractalModel_ descriptions.
[1c03e14]3902
3903
3904
[4ed2d0a1]3905.. _GaussLorentzGel:
[1c03e14]3906
[58eccf6]3907**2.2.13. GaussLorentzGel(Model)**
[1c03e14]3908
[93b6fcc]3909Calculates the scattering from a gel structure, but typically a physical rather than chemical network. It is modeled as
3910a sum of a low-*q* exponential decay plus a lorentzian at higher *q*-values.
[1c03e14]3911
[6386cd8]3912Also see the GelFitModel_.
3913
[4ed2d0a1]3914The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3915
[93b6fcc]3916*2.2.13.1. Definition*
3917
3918The scattering intensity *I(q)* is calculated as (eqn 5 from the reference)
[1c03e14]3919
[7f42aad]3920.. image:: img/image189.jpg
[1c03e14]3921
[93b6fcc]3922|bigzeta| is the length scale of the static correlations in the gel, which can be attributed to the "frozen-in"
3923crosslinks. |xi| is the dynamic correlation length, which can be attributed to the fluctuating polymer chains between
3924crosslinks. *I*\ :sub:`G`\ *(0)* and *I*\ :sub:`L`\ *(0)* are the scaling factors for each of these structures. **Think carefully about how**
3925**these map to your particular system!**
[1c03e14]3926
[93b6fcc]3927NB: The peaked structure at higher *q* values (Figure 2 from the reference) is not reproduced by the model. Peaks can
3928be introduced into the model by summing this model with the PeakGaussModel_ function.
[1c03e14]3929
[93b6fcc]3930For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3931
[7f42aad]3932.. image:: img/image040.gif
[1c03e14]3933
[58eccf6]3934===================================  ========  =============
3935Parameter name                       Units     Default value
3936===================================  ========  =============
3937dyn_colength (=dynamic corr length)  |Ang|     20.0
3938scale_g       (=Gauss scale factor)  None      100
3939scale_l  (=Lorentzian scale factor)  None      50
3940stat_colength (=static corr length)  |Ang|     100.0
3941background                           |cm^-1|   0.0
3942===================================  ========  =============
[1c03e14]3943
[7f42aad]3944.. image:: img/image190.jpg
[1c03e14]3945
[4ed2d0a1]3946*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3947
[4ed2d0a1]3948REFERENCE
[1c03e14]3949
[93b6fcc]3950G Evmenenko, E Theunissen, K Mortensen, H Reynaers, *Polymer*, 42 (2001) 2907-2913
[1c03e14]3951
3952
3953
[4ed2d0a1]3954.. _BEPolyelectrolyte:
[1c03e14]3955
[58eccf6]3956**2.2.14. BEPolyelectrolyte (Model)**
[1c03e14]3957
[93b6fcc]3958Calculates the structure factor of a polyelectrolyte solution with the RPA expression derived by Borue and Erukhimovich.
3959
3960The value returned is in |cm^-1|.
3961
3962*2.2.14.1. Definition*
[1c03e14]3963
[4ed2d0a1]3964.. image:: img/image191.PNG
[1c03e14]3965
[93b6fcc]3966where *K* is the contrast factor for the polymer, *Lb* is the Bjerrum length, *h* is the virial parameter, *b* is the
3967monomer length, *Cs* is the concentration of monovalent salt, |alpha| is the ionization degree, *Ca* is the polymer
3968molar concentration, and *background* is the incoherent background.
[1c03e14]3969
[93b6fcc]3970For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3971
[7f42aad]3972.. image:: img/image040.gif
[1c03e14]3973
[4ed2d0a1]3974==============  ========  =============
3975Parameter name  Units     Default value
3976==============  ========  =============
[58eccf6]3977K               barns     10
3978Lb              |Ang|     7.1
3979h               |Ang^-3|  12
3980b               |Ang|     10
3981Cs              mol/L     0
3982alpha           None      0.05
3983Ca              mol/L     0.7
3984background      |cm^-1|   0.0
[4ed2d0a1]3985==============  ========  =============
[1c03e14]3986
[58eccf6]3987NB: 1 barn = 10\ :sup:`-24` |cm^2|
3988
[4ed2d0a1]3989REFERENCE
[1c03e14]3990
[93b6fcc]3991V Y Borue, I Y Erukhimovich, *Macromolecules*, 21 (1988) 3240
[1c03e14]3992
[93b6fcc]3993J F Joanny, L Leibler, *Journal de Physique*, 51 (1990) 545
[1c03e14]3994
[93b6fcc]3995A Moussaid, F Schosseler, J P Munch, S Candau, *J. Journal de Physique II France*, 3 (1993) 573
[1c03e14]3996
[93b6fcc]3997E Raphael, J F Joanny, *Europhysics Letters*, 11 (1990) 179
[1c03e14]3998
3999
4000
[4ed2d0a1]4001.. _Guinier:
[1c03e14]4002
[4ed2d0a1]4003**2.2.15. Guinier (Model)**
[1c03e14]4004
[93b6fcc]4005This model fits the Guinier function
[1c03e14]4006
[4ed2d0a1]4007.. image:: img/image192.PNG
[1c03e14]4008
[93b6fcc]4009to the data directly without any need for linearisation (*cf*. Ln *I(q)* vs *q*\ :sup:`2`).
4010
4011For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4012
[7f42aad]4013.. image:: img/image040.gif
[1c03e14]4014
[4ed2d0a1]4015==============  ========  =============
4016Parameter name  Units     Default value
4017==============  ========  =============
[58eccf6]4018scale           |cm^-1|   1.0
4019Rg              |Ang|     0.1
[4ed2d0a1]4020==============  ========  =============
[1c03e14]4021
[93b6fcc]4022REFERENCE
4023
4024A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley & Sons, New York (1955)
4025
[1c03e14]4026
4027
[4ed2d0a1]4028.. _GuinierPorod:
[1c03e14]4029
[4ed2d0a1]4030**2.2.16. GuinierPorod (Model)**
[1c03e14]4031
[93b6fcc]4032Calculates the scattering for a generalized Guinier/power law object. This is an empirical model that can be used to
4033determine the size and dimensionality of scattering objects, including asymmetric objects such as rods or platelets, and
4034shapes intermediate between spheres and rods or between rods and platelets.
[1c03e14]4035
[93b6fcc]4036The result is in the units of |cm^-1|, absolute scale.
[1c03e14]4037
[93b6fcc]4038*2.2.16.1 Definition*
[1c03e14]4039
[93b6fcc]4040The following functional form is used
[1c03e14]4041
[7f42aad]4042.. image:: img/image193.jpg
[1c03e14]4043
[93b6fcc]4044This is based on the generalized Guinier law for such elongated objects (see the Glatter reference below). For 3D
4045globular objects (such as spheres), *s* = 0 and one recovers the standard Guinier_ formula. For 2D symmetry (such as
4046for rods) *s* = 1, and for 1D symmetry (such as for lamellae or platelets) *s* = 2. A dimensionality parameter (3-*s*)
4047is thus defined, and is 3 for spherical objects, 2 for rods, and 1 for plates.
4048
4049Enforcing the continuity of the Guinier and Porod functions and their derivatives yields
[1c03e14]4050
[7f42aad]4051.. image:: img/image194.jpg
[1c03e14]4052
[4ed2d0a1]4053and
[1c03e14]4054
[7f42aad]4055.. image:: img/image195.jpg
[1c03e14]4056
[93b6fcc]4057Note that
[1c03e14]4058
[6386cd8]4059 the radius-of-gyration for a sphere of radius *R* is given by *Rg* = *R* sqrt(3/5)
[1c03e14]4060
[6386cd8]4061 the cross-sectional radius-of-gyration for a randomly oriented cylinder of radius *R* is given by *Rg* = *R* / sqrt(2)
[1c03e14]4062
[6386cd8]4063 the cross-sectional radius-of-gyration of a randomly oriented lamella of thickness *T* is given by *Rg* = *T* / sqrt(12)
[1c03e14]4064
[93b6fcc]4065For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4066
[4ed2d0a1]4067.. image:: img/image008.PNG
[1c03e14]4068
[58eccf6]4069==============================  ========  =============
4070Parameter name                  Units     Default value
4071==============================  ========  =============
4072scale      (=Guinier scale, G)  |cm^-1|   1.0
4073rg                              |Ang|     100
4074dim (=dimensional variable, s)  None      1
4075m            (=Porod exponent)  None      3
4076background                      |cm^-1|   0.1
4077==============================  ========  =============
[1c03e14]4078
[7f42aad]4079.. image:: img/image196.jpg
[1c03e14]4080
[4ed2d0a1]4081*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4082
[93b6fcc]4083REFERENCE
4084
4085A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
4086
4087O Glatter, O Kratky, *Small-Angle X-Ray Scattering*, Academic Press (1982)
4088Check out Chapter 4 on Data Treatment, pages 155-156.
4089
[1c03e14]4090
4091
[4ed2d0a1]4092.. _PorodModel:
[1c03e14]4093
[4ed2d0a1]4094**2.2.17. PorodModel**
[1c03e14]4095
[6386cd8]4096This model fits the Porod function
[1c03e14]4097
[916501b]4098.. image:: img/image197_corrected.PNG
[1c03e14]4099
[6386cd8]4100to the data directly without any need for linearisation (*cf*. Log *I(q)* vs Log *q*).
[1c03e14]4101
[6386cd8]4102Here *C* is the scale factor and *Sv* is the specific surface area (ie, surface area / volume) of the sample, and
4103|drho| is the contrast factor.
[1c03e14]4104
[93b6fcc]4105For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4106
[7f42aad]4107.. image:: img/image040.gif
[1c03e14]4108
[4ed2d0a1]4109==============  ========  =============
4110Parameter name  Units     Default value
4111==============  ========  =============
[58eccf6]4112scale           |Ang^-4|  0.1
4113background      |cm^-1|   0
[4ed2d0a1]4114==============  ========  =============
[1c03e14]4115
[6386cd8]4116REFERENCE
4117
4118None.
4119
[1c03e14]4120
4121
[4ed2d0a1]4122.. _PeakGaussModel:
[1c03e14]4123
[4ed2d0a1]4124**2.2.18. PeakGaussModel**
[1c03e14]4125
[6386cd8]4126This model describes a Gaussian shaped peak on a flat background
[1c03e14]4127
[4ed2d0a1]4128.. image:: img/image198.PNG
[1c03e14]4129
[6386cd8]4130with the peak having height of *I0* centered at *q0* and having a standard deviation of *B*.  The FWHM (full-width
4131half-maximum) is 2.354 B.  
[1c03e14]4132
[93b6fcc]4133For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4134
[7f42aad]4135.. image:: img/image040.gif
[1c03e14]4136
[4ed2d0a1]4137==============  ========  =============
4138Parameter name  Units     Default value
4139==============  ========  =============
[58eccf6]4140scale           |cm^-1|   100
4141q0              |Ang^-1|  0.05
4142B               |Ang^-1|  0.005
4143background      |cm^-1|   1
[4ed2d0a1]4144==============  ========  =============
[1c03e14]4145
[7f42aad]4146.. image:: img/image199.jpg
[1c03e14]4147
[4ed2d0a1]4148*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4149
[6386cd8]4150REFERENCE
4151
4152None.
4153
[1c03e14]4154
4155
[4ed2d0a1]4156.. _PeakLorentzModel:
[1c03e14]4157
[4ed2d0a1]4158**2.2.19. PeakLorentzModel**
[1c03e14]4159
[6386cd8]4160This model describes a Lorentzian shaped peak on a flat background
[1c03e14]4161
[4ed2d0a1]4162.. image:: img/image200.PNG
[1c03e14]4163
[6386cd8]4164with the peak having height of *I0* centered at *q0* and having a HWHM (half-width half-maximum) of B. 
[1c03e14]4165
[93b6fcc]4166For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4167
[7f42aad]4168.. image:: img/image040.gif
[1c03e14]4169
[4ed2d0a1]4170==============  ========  =============
4171Parameter name  Units     Default value
4172==============  ========  =============
[58eccf6]4173scale           |cm^-1|   100
4174q0              |Ang^-1|  0.05
4175B               |Ang^-1|  0.005
4176background      |cm^-1|     1
[4ed2d0a1]4177==============  ========  =============
[1c03e14]4178
[7f42aad]4179.. image:: img/image201.jpg
[1c03e14]4180
[4ed2d0a1]4181*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4182
[6386cd8]4183REFERENCE
4184
4185None.
4186
[1c03e14]4187
4188
[4ed2d0a1]4189.. _Poly_GaussCoil:
[1c03e14]4190
[4ed2d0a1]4191**2.2.20. Poly_GaussCoil (Model)**
[1c03e14]4192
[6386cd8]4193This model calculates an empirical functional form for the scattering from a **polydisperse** polymer chain in the
4194theta state assuming a Schulz-Zimm type molecular weight distribution. Polydispersity on the radius-of-gyration is also
4195provided for.
[1c03e14]4196
[4ed2d0a1]4197The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4198
[6386cd8]4199*2.2.20.1. Definition*
4200
4201The scattering intensity *I(q)* is calculated as
4202
[4ed2d0a1]4203.. image:: img/image202.PNG
[1c03e14]4204
[6386cd8]4205where the dimensionless chain dimension is
[1c03e14]4206
[4ed2d0a1]4207.. image:: img/image203.PNG
[1c03e14]4208
[6386cd8]4209and the polydispersity is
[1c03e14]4210
[4ed2d0a1]4211.. image:: img/image204.PNG
[1c03e14]4212
[93b6fcc]4213For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4214
[7f42aad]4215.. image:: img/image040.gif
[1c03e14]4216
[6386cd8]4217This example dataset is produced using 200 data points, using 200 data points,
4218*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]4219
[4ed2d0a1]4220==============  ========  =============
4221Parameter name  Units     Default value
4222==============  ========  =============
[58eccf6]4223scale           None      1.0
4224rg              |Ang|     60.0
4225poly_m (Mw/Mn)  None      2
4226background      |cm^-1|   0.001
[4ed2d0a1]4227==============  ========  =============
[1c03e14]4228
[7f42aad]4229.. image:: img/image205.jpg
[1c03e14]4230
4231*Figure. 1D plot using the default values (w/200 data point).*
4232
[bf8c07b]4233REFERENCE
[1c03e14]4234
[6386cd8]4235O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982)
4236Page 404
[1c03e14]4237
[93b6fcc]4238J S Higgins, and H C Benoit, Polymers and Neutron Scattering, Oxford Science Publications (1996)
[4ed2d0a1]4239
[1c03e14]4240
[4ed2d0a1]4241
4242.. _PolyExclVolume:
4243
4244**2.2.21. PolymerExclVolume (Model)**
[1c03e14]4245
[6386cd8]4246This model describes the scattering from polymer chains subject to excluded volume effects, and has been used as a
4247template for describing mass fractals.
[1c03e14]4248
[4ed2d0a1]4249The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4250
[6386cd8]4251*2.2.21.1 Definition*
[1c03e14]4252
[6386cd8]4253The form factor  was originally presented in the following integral form (Benoit, 1957)
[1c03e14]4254
[7f42aad]4255.. image:: img/image206.jpg
[1c03e14]4256
[6386cd8]4257where |nu| is the excluded volume parameter (which is related to the Porod exponent *m* as |nu| = 1 / *m*), *a* is the
4258statistical segment length of the polymer chain, and *n* is the degree of polymerization. This integral was later put
4259into an almost analytical form as follows (Hammouda, 1993)
[1c03e14]4260
[7f42aad]4261.. image:: img/image207.jpg
[1c03e14]4262
[6386cd8]4263where |gamma|\ *(x,U)* is the incomplete gamma function
[1c03e14]4264
[7f42aad]4265.. image:: img/image208.jpg
[1c03e14]4266
[6386cd8]4267and the variable *U* is given in terms of the scattering vector *Q* as
[1c03e14]4268
[7f42aad]4269.. image:: img/image209.jpg
[1c03e14]4270
[6386cd8]4271The square of the radius-of-gyration is defined as
[1c03e14]4272
[7f42aad]4273.. image:: img/image210.jpg
[1c03e14]4274
[6386cd8]4275Note that this model applies only in the mass fractal range (ie, 5/3 <= *m* <= 3) and **does not** apply to surface
4276fractals (3 < *m* <= 4). It also does not reproduce the rigid rod limit (*m* = 1) because it assumes chain flexibility
4277from the outset. It may cover a portion of the semi-flexible chain range (1 < *m* < 5/3).
[1c03e14]4278
[6386cd8]4279A low-*Q* expansion yields the Guinier form and a high-*Q* expansion yields the Porod form which is given by
[1c03e14]4280
[7f42aad]4281.. image:: img/image211.jpg
[1c03e14]4282
[6386cd8]4283Here |biggamma|\ *(x)* = |gamma|\ *(x,inf)* is the gamma function.
4284
4285The asymptotic limit is dominated by the first term
[1c03e14]4286
[7f42aad]4287.. image:: img/image212.jpg
[1c03e14]4288
[6386cd8]4289The special case when |nu| = 0.5 (or *m* = 1/|nu| = 2) corresponds to Gaussian chains for which the form factor is given
4290by the familiar Debye_ function.
[1c03e14]4291
[7f42aad]4292.. image:: img/image213.jpg
[1c03e14]4293
[93b6fcc]4294For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4295
[7f42aad]4296.. image:: img/image040.gif
[1c03e14]4297
[6386cd8]4298This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.2 |Ang^-1| and the default
4299values
[1c03e14]4300
[58eccf6]4301===================  ========  =============
4302Parameter name       Units     Default value
4303===================  ========  =============
4304scale                None      1.0
4305rg                   |Ang|     60.0
4306m (=Porod exponent)  None      3
4307background           |cm^-1|   0.0
4308===================  ========  =============
[1c03e14]4309
[7f42aad]4310.. image:: img/image214.jpg
[1c03e14]4311
4312*Figure. 1D plot using the default values (w/500 data points).*
4313
[6386cd8]4314REFERENCE
[1c03e14]4315
[6386cd8]4316H Benoit, *Comptes Rendus*, 245 (1957) 2244-2247
[1c03e14]4317
[6386cd8]4318B Hammouda, *SANS from Homogeneous Polymer Mixtures ­ A Unified Overview*, *Advances in Polym. Sci.*, 106 (1993) 87-133
[4ed2d0a1]4319
[1c03e14]4320
4321
[6386cd8]4322.. _RPA10Model:
[1c03e14]4323
[6386cd8]4324**2.2.22. RPA10Model**
[1c03e14]4325
[6386cd8]4326Calculates the macroscopic scattering intensity (units of |cm^-1|) for a multicomponent homogeneous mixture of polymers
4327using the Random Phase Approximation. This general formalism contains 10 specific cases
[1c03e14]4328
[6386cd8]4329Case 0: C/D binary mixture of homopolymers
[1c03e14]4330
[6386cd8]4331Case 1: C-D diblock copolymer
[1c03e14]4332
[6386cd8]4333Case 2: B/C/D ternary mixture of homopolymers
[1c03e14]4334
[6386cd8]4335Case 3: C/C-D mixture of a homopolymer B and a diblock copolymer C-D
[1c03e14]4336
[6386cd8]4337Case 4: B-C-D triblock copolymer
[1c03e14]4338
[6386cd8]4339Case 5: A/B/C/D quaternary mixture of homopolymers
[1c03e14]4340
[6386cd8]4341Case 6: A/B/C-D mixture of two homopolymers A/B and a diblock C-D
[1c03e14]4342
[6386cd8]4343Case 7: A/B-C-D mixture of a homopolymer A and a triblock B-C-D
[1c03e14]4344
[6386cd8]4345Case 8: A-B/C-D mixture of two diblock copolymers A-B and C-D
[1c03e14]4346
[6386cd8]4347Case 9: A-B-C-D tetra-block copolymer
[1c03e14]4348
[6386cd8]4349**NB: these case numbers are different from those in the NIST SANS package!**
[1c03e14]4350
[6386cd8]4351Only one case can be used at any one time.
[1c03e14]4352
[6386cd8]4353The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4354
[6386cd8]4355The RPA (mean field) formalism only applies only when the multicomponent polymer mixture is in the homogeneous
4356mixed-phase region.
[1c03e14]4357
[6386cd8]4358**Component D is assumed to be the "background" component (ie, all contrasts are calculated with respect to**
4359**component D).** So the scattering contrast for a C/D blend = [SLD(component C) - SLD(component D)]\ :sup:`2`.
[1c03e14]4360
[6386cd8]4361Depending on which case is being used, the number of fitting parameters - the segment lengths (ba, bb, etc) and |chi|
4362parameters (Kab, Kac, etc) - vary. The *scale* parameter should be held equal to unity.
[1c03e14]4363
[6386cd8]4364The input parameters are the degrees of polymerization, the volume fractions, the specific volumes, and the neutron
4365scattering length densities for each component.
[1c03e14]4366
[6386cd8]4367Fitting parameters for a Case 0 Model
[1c03e14]4368
[58eccf6]4369=======================  ========  =============
4370Parameter name           Units     Default value
4371=======================  ========  =============
4372background               |cm^-1|   0.0
4373scale                    None      1
4374bc (=segment Length_bc)  **unit**  5
4375bd (=segment length_bd)  **unit**  5
4376Kcd (=chi_cd)            **unit**  -0.0004
4377=======================  ========  =============
[1c03e14]4378
[6386cd8]4379Fixed parameters for a Case 0 Model
[1c03e14]4380
[58eccf6]4381=======================  ========  =============
4382Parameter name           Units     Default value
4383=======================  ========  =============
4384Lc (=scatter. length_c)  **unit**  1e-12
4385Ld (=scatter. length_d)  **unit**  0
4386Nc    (=degree polym_c)  None      1000
4387Nd    (=degree polym_d)  None      1000
4388Phic (=vol. fraction_c)  None      0.25
4389Phid (=vol. fraction_d)  None      0.25
4390vc (=specific volume_c)  **unit**  100
4391vd (=specific volume_d)  **unit**  100
4392=======================  ========  =============
[1c03e14]4393
[7f42aad]4394.. image:: img/image215.jpg
[1c03e14]4395
4396*Figure. 1D plot using the default values (w/500 data points).*
4397
[6386cd8]4398REFERENCE
4399
4400A Z Akcasu, R Klein and B Hammouda, *Macromolecules*, 26 (1993) 4136
[1c03e14]4401
4402
4403
[4ed2d0a1]4404.. _TwoLorentzian:
[1c03e14]4405
[58eccf6]4406**2.2.23. TwoLorentzian (Model)**
[1c03e14]4407
[6386cd8]4408This model calculates an empirical functional form for SAS data characterized by two Lorentzian-type functions.
[1c03e14]4409
[4ed2d0a1]4410The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4411
[6386cd8]4412*2.2.23.1. Definition*
[1c03e14]4413
[6386cd8]4414The scattering intensity *I(q)* is calculated as
[1c03e14]4415
[f8063bf]4416.. image:: img/image216.jpg 
[1c03e14]4417
[6386cd8]4418where *A* = Lorentzian scale factor #1, *C* = Lorentzian scale #2, |xi|\ :sub:`1` and |xi|\ :sub:`2` are the
4419corresponding correlation lengths, and *n* and *m* are the respective power law exponents (set *n* = *m* = 2 for
4420Ornstein-Zernicke behaviour).
[1c03e14]4421
[93b6fcc]4422For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4423
[7f42aad]4424.. image:: img/image040.gif
[1c03e14]4425
[58eccf6]4426===============================  ========  =============
4427Parameter name                   Units     Default value
4428===============================  ========  =============
4429scale_1 (=A)                     None      10
4430scale_2 (=C)                     None      1
44311ength_1 (=correlation length1)  |Ang|     100
44321ength_2 (=correlation length2)  |Ang|     10
4433exponent_1 (=n)                  None      3
4434exponent_2 (=m)                  None      2
4435background (=B)                  |cm^-1|   0.1
4436===============================  ========  =============
[1c03e14]4437
[7f42aad]4438.. image:: img/image217.jpg
[1c03e14]4439
4440*Figure. 1D plot using the default values (w/500 data points).*
4441
[bf8c07b]4442REFERENCE
4443
[6386cd8]4444None.
[1c03e14]4445
4446
4447
[4ed2d0a1]4448.. _TwoPowerLaw:
[1c03e14]4449
[58eccf6]4450**2.2.24. TwoPowerLaw (Model)**
[1c03e14]4451
[6386cd8]4452This model calculates an empirical functional form for SAS data characterized by two power laws.
[1c03e14]4453
[4ed2d0a1]4454The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4455
[6386cd8]4456*2.2.24.1. Definition*
4457
4458The scattering intensity *I(q)* is calculated as
[1c03e14]4459
[7f42aad]4460.. image:: img/image218.jpg
[1c03e14]4461
[6386cd8]4462where *qc* is the location of the crossover from one slope to the other. The scaling *coef_A* sets the overall
4463intensity of the lower *q* power law region. The scaling of the second power law region is then automatically scaled to
4464match the first.
4465
4466**NB: Be sure to enter the power law exponents as positive values!**
[1c03e14]4467
[93b6fcc]4468For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4469
[7f42aad]4470.. image:: img/image040.gif
[1c03e14]4471
[4ed2d0a1]4472==============  ========  =============
4473Parameter name  Units     Default value
4474==============  ========  =============
[58eccf6]4475coef_A          None      1.0
4476qc              |Ang^-1|  0.04
4477power_1 (=m1)   None      4
4478power_2 (=m2)   None      4
4479background      |cm^-1|   0.0
[4ed2d0a1]4480==============  ========  =============
[1c03e14]4481
[7f42aad]4482.. image:: img/image219.jpg
[1c03e14]4483
4484*Figure. 1D plot using the default values (w/500 data points).*
4485
[6386cd8]4486REFERENCE
4487
4488None.
4489
[1c03e14]4490
4491
[4ed2d0a1]4492.. _UnifiedPowerRg:
[1c03e14]4493
[58eccf6]4494**2.2.25. UnifiedPowerRg (Beaucage Model)**
[1c03e14]4495
[6386cd8]4496This model deploys the empirical multiple level unified Exponential/Power-law fit method developed by G Beaucage. Four
4497functions are included so that 1, 2, 3, or 4 levels can be used. In addition a 0 level has been added which simply
4498calculates
4499
4500*I(q)* = *scale* / *q* + *background*
4501
[4ed2d0a1]4502The returned value is scaled to units of |cm^-1|, absolute scale. 
4503
[6386cd8]4504The Beaucage method is able to reasonably approximate the scattering from many different types of particles, including
4505fractal clusters, random coils (Debye equation), ellipsoidal particles, etc. 
[1c03e14]4506
[6386cd8]4507*2.2.25.1 Definition*
[1c03e14]4508
[4ed2d0a1]4509The empirical fit function is 
[1c03e14]4510
[7f42aad]4511.. image:: img/image220.jpg
[1c03e14]4512
[6386cd8]4513For each level, the four parameters *Gi*, *Rg,i*, *Bi* and *Pi* must be chosen. 
[1c03e14]4514
[6386cd8]4515For example, to approximate the scattering from random coils (Debye_ equation), set *Rg,i* as the Guinier radius,
4516*Pi* = 2, and *Bi* = 2 *Gi* / *Rg,i* 
[1c03e14]4517
[6386cd8]4518See the references for further information on choosing the parameters.
[1c03e14]4519
[93b6fcc]4520For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4521
[7f42aad]4522.. image:: img/image040.gif
[1c03e14]4523
[4ed2d0a1]4524==============  ========  =============
4525Parameter name  Units     Default value
4526==============  ========  =============
[58eccf6]4527scale           None      1.0
4528Rg2             |Ang|     21
4529power2          None      2
4530G2              |cm^-1|   3
4531B2              |cm^-1|   0.0006
4532Rg1             |Ang|     15.8
4533power1          None      4
4534G1              |cm^-1|   400
4535B1              |cm^-1|   4.5e-6                |
4536background      |cm^-1|   0.0
[4ed2d0a1]4537==============  ========  =============
[1c03e14]4538
[7f42aad]4539.. image:: img/image221.jpg
[1c03e14]4540
4541*Figure. 1D plot using the default values (w/500 data points).*
4542
4543REFERENCE
4544
[6386cd8]4545G Beaucage, *J. Appl. Cryst.*, 28 (1995) 717-728
[1c03e14]4546
[6386cd8]4547G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146
[1c03e14]4548
4549
4550
[4ed2d0a1]4551.. _LineModel:
[1c03e14]4552
[4ed2d0a1]4553**2.2.26. LineModel**
[1c03e14]4554
[6386cd8]4555This calculates the simple linear function
[1c03e14]4556
[4ed2d0a1]4557.. image:: img/image222.PNG
[1c03e14]4558
[6386cd8]4559**NB: For 2D plots,** *I(q)* = *I(qx)*\ *\ *I(qy)*, **which is a different definition to other shape independent models.**
[1c03e14]4560
[6386cd8]4561==============  ==============  =============
4562Parameter name  Units           Default value
4563==============  ==============  =============
4564A               |cm^-1|         1.0
4565B               |Ang|\ |cm^-1|  1.0
4566==============  ==============  =============
[1c03e14]4567
[6386cd8]4568REFERENCE
[1c03e14]4569
[6386cd8]4570None.
[1c03e14]4571
4572
4573
[6386cd8]4574.. _GelFitModel:
[1c03e14]4575
[6386cd8]4576**2.2.27. GelFitModel**
[1c03e14]4577
[6386cd8]4578*This model was implemented by an interested user!*
[1c03e14]4579
[6386cd8]4580Unlike a concentrated polymer solution, the fine-scale polymer distribution in a gel involves at least two
4581characteristic length scales, a shorter correlation length (*a1*) to describe the rapid fluctuations in the position
4582of the polymer chains that ensure thermodynamic equilibrium, and a longer distance (denoted here as *a2*) needed to
4583account for the static accumulations of polymer pinned down by junction points or clusters of such points. The latter
4584is derived from a simple Guinier function.
[1c03e14]4585
[6386cd8]4586Also see the GaussLorentzGel_ Model.
[1c03e14]4587
[6386cd8]4588*2.2.27.1. Definition*
4589
4590The scattered intensity *I(q)* is calculated as
[1c03e14]4591
[7f42aad]4592.. image:: img/image233.gif
[1c03e14]4593
[6386cd8]4594where
[1c03e14]4595
[7f42aad]4596.. image:: img/image234.gif
[1c03e14]4597
[6386cd8]4598Note that the first term reduces to the Ornstein-Zernicke equation when *D* = 2; ie, when the Flory exponent is 0.5
4599(theta conditions). In gels with significant hydrogen bonding *D* has been reported to be ~2.6 to 2.8.
[1c03e14]4600
[6386cd8]4601============================  ========  =============
4602Parameter name                Units     Default value
4603============================  ========  =============
4604Background                    |cm^-1|   0.01
4605Guinier scale    (= *I(0)G*)  |cm^-1|   1.7
4606Lorentzian scale (= *I(0)L*)  |cm^-1|   3.5
4607Radius of gyration  (= *Rg*)  |Ang|     104
4608Fractal exponent     (= *D*)  None      2
4609Correlation length  (= *a1*)  |Ang|     16
4610============================  ========  =============
[1c03e14]4611
[7f42aad]4612.. image:: img/image235.gif
[1c03e14]4613
[6386cd8]4614*Figure. 1D plot using the default values (w/300 data points).*
[1c03e14]4615
[6386cd8]4616REFERENCE
[1c03e14]4617
[6386cd8]4618Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, J. Chem. Phys. 1992, 97 (9), 6829-6841
[1c03e14]4619
[6386cd8]4620Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, Macromolecules 1991, 24, 543-548
[1c03e14]4621
4622
4623
[6386cd8]4624.. _StarPolymer:
[1c03e14]4625
[6386cd8]4626**2.2.28. Star Polymer with Gaussian Statistics**
[1c03e14]4627
[6386cd8]4628This model is also known as the Benoit Star model.
[1c03e14]4629
[6386cd8]4630*2.2.28.1. Definition*
4631
4632For a star with *f* arms:
[1c03e14]4633
[7f42aad]4634.. image:: img/star1.png
[1c03e14]4635
[6386cd8]4636where
[1c03e14]4637
[7f42aad]4638.. image:: img/star2.png
[1c03e14]4639
[6386cd8]4640and
4641
[7f42aad]4642.. image:: img/star3.png
[1c03e14]4643
[6386cd8]4644is the square of the ensemble average radius-of-gyration of an arm.
[1c03e14]4645
[6386cd8]4646REFERENCE
[1c03e14]4647
[6386cd8]4648H Benoit,   J. Polymer Science.,  11, 596-599  (1953)
[1c03e14]4649
4650
4651
[6386cd8]4652.. _ReflectivityModel:
[1c03e14]4653
[6386cd8]4654**2.2.29. ReflectivityModel**
[1c03e14]4655
[6386cd8]4656*This model was contributed by an interested user!*
4657
4658This model calculates **reflectivity** using the Parrett algorithm.
4659
4660Up to nine film layers are supported between Bottom(substrate) and Medium(Superstrate) where the neutron enters the
4661first top film. Each of the layers are composed of
4662
4663[œ of the interface (from the previous layer or substrate) + flat portion + œ of the interface (to the next layer or medium)]
4664
4665Two simple functions are provided to describe the interfacial density distribution; a linear function and an error
4666function. The interfacial thickness is equivalent to (-2.5 |sigma| to +2.5 |sigma| for the error function, where
4667|sigma| = roughness).
4668
4669Also see ReflectivityIIModel_.
4670
[7f42aad]4671.. image:: img/image231.bmp
[6386cd8]4672
4673*Figure. Comparison (using the SLD profile below) with the NIST web calculation (circles)*
4674http://www.ncnr.nist.gov/resources/reflcalc.html
4675
[7f42aad]4676.. image:: img/image232.gif
[6386cd8]4677
4678*Figure. SLD profile used for the calculation (above).*
[1c03e14]4679
4680REFERENCE
4681
[6386cd8]4682None.
[1c03e14]4683
4684
4685
[6386cd8]4686.. _ReflectivityIIModel:
[1c03e14]4687
[6386cd8]4688**2.2.30. ReflectivityIIModel**
[1c03e14]4689
[6386cd8]4690*This model was contributed by an interested user!*
[1c03e14]4691
[6386cd8]4692This **reflectivity** model is a more flexible version of ReflectivityModel_. More interfacial density
4693functions are supported, and the number of points (*npts_inter*) for each interface can be chosen.
[1c03e14]4694
[6386cd8]4695The SLD at the interface between layers, |rho|\ *inter_i*, is calculated with a function chosen by a user, where the
4696available functions are
[1c03e14]4697
[6386cd8]46981) Erf
[1c03e14]4699
[7f42aad]4700.. image:: img/image051.gif
[1c03e14]4701
[6386cd8]47022) Power-Law
4703
[7f42aad]4704.. image:: img/image050.gif
[6386cd8]4705
47063) Exp
4707
[7f42aad]4708.. image:: img/image049.gif
[6386cd8]4709
4710The constant *A* in the expressions above (but the parameter *nu* in the model!) is an input.
[1c03e14]4711
4712REFERENCE
[bf8c07b]4713
[6386cd8]4714None.
[1c03e14]4715
4716
4717
47182.3 Structure-factor Functions
4719------------------------------
4720
[6386cd8]4721The information in this section originated from NIST SANS package.
[1c03e14]4722
4723.. _HardSphereStructure:
4724
4725**2.3.1. HardSphereStructure Factor**
4726
4727This calculates the interparticle structure factor for monodisperse spherical particles interacting through hard
4728sphere (excluded volume) interactions.
4729
4730The calculation uses the Percus-Yevick closure where the interparticle potential is
4731
4732.. image:: img/image223.PNG
4733
4734where *r* is the distance from the center of the sphere of a radius *R*.
4735
4736For a 2D plot, the wave transfer is defined as
4737
[7f42aad]4738.. image:: img/image040.gif
[1c03e14]4739
4740==============  ========  =============
4741Parameter name  Units     Default value
4742==============  ========  =============
4743effect_radius   |Ang|     50.0
4744volfraction     None      0.2
4745==============  ========  =============
4746
[7f42aad]4747.. image:: img/image224.jpg
[1c03e14]4748
4749*Figure. 1D plot using the default values (in linear scale).*
4750
4751REFERENCE
[bf8c07b]4752
[93b6fcc]4753J K Percus, J Yevick, *J. Phys. Rev.*, 110, (1958) 1
[1c03e14]4754
4755
4756
4757.. _SquareWellStructure:
4758
4759**2.3.2. SquareWellStructure Factor**
4760
4761This calculates the interparticle structure factor for a square well fluid spherical particles. The mean spherical
4762approximation (MSA) closure was used for this calculation, and is not the most appropriate closure for an attractive
4763interparticle potential. This solution has been compared to Monte Carlo simulations for a square well fluid, showing
4764this calculation to be limited in applicability to well depths |epsilon| < 1.5 kT and volume fractions |phi| < 0.08.
4765
4766Positive well depths correspond to an attractive potential well. Negative well depths correspond to a potential
4767"shoulder", which may or may not be physically reasonable.
4768
4769The well width (*l*\ ) is defined as multiples of the particle diameter (2\*\ *R*\ )
4770
4771The interaction potential is:
4772
4773.. image:: img/image225.PNG
4774
4775where *r* is the distance from the center of the sphere of a radius *R*.
4776
[93b6fcc]4777For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4778
[7f42aad]4779.. image:: img/image040.gif
[1c03e14]4780
4781==============  =========  =============
4782Parameter name  Units      Default value
4783==============  =========  =============
4784effect_radius   |Ang|      50.0
4785volfraction     None       0.04
4786welldepth       kT         1.5
4787wellwidth       diameters  1.2
4788==============  =========  =============
4789
[7f42aad]4790.. image:: img/image226.jpg
[1c03e14]4791
4792*Figure. 1D plot using the default values (in linear scale).*
4793
4794REFERENCE
[bf8c07b]4795
[93b6fcc]4796R V Sharma, K C Sharma, *Physica*, 89A (1977) 213
[1c03e14]4797
4798
4799
4800.. _HayterMSAStructure:
4801
4802**2.3.3. HayterMSAStructure Factor**
4803
[906a325]4804This is an implementation of the Rescaled Mean Spherical Approximation which calculates the structure factor (the
4805Fourier transform of the pair correlation function *g(r)*) for a system of charged, spheroidal objects in a
4806dielectric medium. When combined with an appropriate form factor (such as sphere,core+shell, ellipsoid, etc), this
4807allows for inclusion of the interparticle interference effects due to screened coulomb repulsion between charged particles.
[1c03e14]4808
4809**This routine only works for charged particles**. If the charge is set to zero the routine will self-destruct!
4810For non-charged particles use a hard sphere potential.
4811
4812The salt concentration is used to compute the ionic strength of the solution which in turn is used to compute the Debye
4813screening length. At present there is no provision for entering the ionic strength directly nor for use of any
4814multivalent salts. The counterions are also assumed to be monovalent.
4815
[93b6fcc]4816For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4817
4818.. image:: img/image040.gif
4819
4820==============  ========  =============
4821Parameter name  Units     Default value
4822==============  ========  =============
4823effect_radius   |Ang|     20.8
4824charge          *e*       19
4825volfraction     None      0.2
4826temperature     K         318
4827salt conc       M         0
4828dielectconst    None      71.1
4829==============  ========  =============
4830
[7f42aad]4831.. image:: img/image227.jpg
[1c03e14]4832
4833*Figure. 1D plot using the default values (in linear scale).*
4834
4835REFERENCE
[bf8c07b]4836
[93b6fcc]4837J B Hayter and J Penfold, *Molecular Physics*, 42 (1981) 109-118
[bf8c07b]4838
[93b6fcc]4839J P Hansen and J B Hayter, *Molecular Physics*, 46 (1982) 651-656
[1c03e14]4840
4841
4842.. _StickyHSStructure:
4843
4844**2.3.4. StickyHSStructure Factor**
4845
4846This calculates the interparticle structure factor for a hard sphere fluid with a narrow attractive well. A perturbative
4847solution of the Percus-Yevick closure is used. The strength of the attractive well is described in terms of "stickiness"
4848as defined below. The returned value is a dimensionless structure factor, *S(q)*.
4849
4850The perturb (perturbation parameter), |epsilon|, should be held between 0.01 and 0.1. It is best to hold the
4851perturbation parameter fixed and let the "stickiness" vary to adjust the interaction strength. The stickiness, |tau|,
4852is defined in the equation below and is a function of both the perturbation parameter and the interaction strength.
4853|tau| and |epsilon| are defined in terms of the hard sphere diameter (|sigma| = 2\*\ *R*\ ), the width of the square
4854well, |bigdelta| (same units as *R*), and the depth of the well, *Uo*, in units of kT. From the definition, it is clear
4855that smaller |tau| means stronger attraction.
4856
4857.. image:: img/image228.PNG
4858
4859where the interaction potential is
4860
4861.. image:: img/image229.PNG
4862
4863The Percus-Yevick (PY) closure was used for this calculation, and is an adequate closure for an attractive interparticle
4864potential. This solution has been compared to Monte Carlo simulations for a square well fluid, with good agreement.
4865
4866The true particle volume fraction, |phi|, is not equal to *h*, which appears in most of the reference. The two are
4867related in equation (24) of the reference. The reference also describes the relationship between this perturbation
4868solution and the original sticky hard sphere (or adhesive sphere) model by Baxter.
4869
4870NB: The calculation can go haywire for certain combinations of the input parameters, producing unphysical solutions - in
4871this case errors are reported to the command window and the *S(q)* is set to -1 (so it will disappear on a log-log
4872plot). Use tight bounds to keep the parameters to values that you know are physical (test them) and keep nudging them
4873until the optimization does not hit the constraints.
4874
[93b6fcc]4875For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4876
[7f42aad]4877.. image:: img/image040.gif
[1c03e14]4878
4879==============  ========  =============
4880Parameter name  Units     Default value
4881==============  ========  =============
4882effect_radius   |Ang|     50
4883perturb         None      0.05
4884volfraction     None      0.1
4885stickiness      K         0.2
4886==============  ========  =============
4887
[7f42aad]4888.. image:: img/image230.jpg
[1c03e14]4889
4890*Figure. 1D plot using the default values (in linear scale).*
4891
4892REFERENCE
[bf8c07b]4893
[93b6fcc]4894S V G Menon, C Manohar, and K S Rao, *J. Chem. Phys.*, 95(12) (1991) 9186-9190
[1c03e14]4895
4896
4897
48982.4 Customised Functions
4899------------------------------
4900
4901
4902Customized model functions can be redefined or added to by users (See SansView tutorial for details).
4903
4904.. _testmodel:
4905
4906**2.4.1. testmodel**
4907
4908This function, as an example of a user defined function, calculates
4909
4910*I(q)* = *A* + *B* cos(2\ *q*\ ) + *C* sin(2\ *q*\ )
4911
4912
4913
4914.. _testmodel_2:
4915
4916**2.4.2. testmodel_2**
4917
4918This function, as an example of a user defined function, calculates
4919
4920*I(q)* = *scale* * sin(*f*\ )/*f*
4921
4922where
4923
4924*f* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5`
4925
4926
4927
4928.. _sum_p1_p2:
4929
4930**2.4.3. sum_p1_p2**
4931
4932This function, as an example of a user defined function, calculates
4933
4934*I(q)* = *scale_factor* \* (CylinderModel + PolymerExclVolumeModel)
4935
4936To make your own (*p1 + p2*) model, select 'Easy Custom Sum' from the Fitting menu, or modify and compile the file
4937named 'sum_p1_p2.py' from 'Edit Custom Model' in the 'Fitting' menu.
4938
4939NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc).
4940
4941
4942
4943.. _sum_Ap1_1_Ap2:
4944
4945**2.4.4. sum_Ap1_1_Ap2**
4946
4947This function, as an example of a user defined function, calculates
4948
4949*I(q)* = (*scale_factor* \* CylinderModel + (1 - *scale_factor*\ ) \* PolymerExclVolume model)
4950
4951To make your own (*A*\ * *p1* + (1-*A*) \* *p2*) model, modify and compile the file named 'sum_Ap1_1_Ap2.py' from
4952'Edit Custom Model' in the 'Fitting' menu.
4953
4954NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc).
4955
4956
4957
4958.. _polynomial5:
4959
4960**2.4.5. polynomial5**
4961
4962This function, as an example of a user defined function, calculates
4963
4964*I(q)* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5`
4965
4966This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
4967
4968
4969
4970.. _sph_bessel_jn:
4971
4972**2.4.6. sph_bessel_jn**
4973
4974This function, as an example of a user defined function, calculates
4975
4976*I(q)* = *C* \* *sph_jn(Ax+B)+D*
4977
4978where *sph_jn* is a spherical Bessel function of order *n*.
4979
4980This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
Note: See TracBrowser for help on using the repository browser.