source: sasview/src/sas/models/media/model_functions.rst @ 8d302cd

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 8d302cd was 906a325, checked in by butler, 10 years ago

Edited documentation to make clear that HPMSA model is the RMSA pursuant
to Karen Edler query. This is a common question according to Steve
Kline.

  • Property mode set to 100644
File size: 165.5 KB
RevLine 
[1c03e14]1.. model_functions.rst
2
3.. This is a port of the original SasView model_functions.html to ReSTructured text
[6386cd8]4.. by S King, ISIS, during and after SasView CodeCamp-II in April 2014.
5
6.. Thanks are due to A Jackson & P Kienzle for advice on RST!
7
8.. The CoreShellEllipsoidXTModel was ported and documented by R K Heenan, ISIS, Apr 2014
9.. The RectangularPrism models were coded and documented by M A Gonzalez, ILL, Apr 2014
10
11.. To do:
12.. Add example parameters/plots for the CoreShellEllipsoidXTModel
13.. Add example parameters/plots for the RectangularPrism models
14.. Check the content against the NIST Igor Help File
15.. Wordsmith the content for consistency of style, etc
16
17
18
19.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
20
[1c03e14]21
[fb07044d]22.. note::  The contents of this document are awaiting proof reading. Feb2015
23
[1c03e14]24
25.. Set up some substitutions to make life easier...
26
27.. |alpha| unicode:: U+03B1
28.. |beta| unicode:: U+03B2
29.. |gamma| unicode:: U+03B3
30.. |delta| unicode:: U+03B4
31.. |epsilon| unicode:: U+03B5
32.. |zeta| unicode:: U+03B6
33.. |eta| unicode:: U+03B7
34.. |theta| unicode:: U+03B8
35.. |iota| unicode:: U+03B9
36.. |kappa| unicode:: U+03BA
37.. |lambda| unicode:: U+03BB
38.. |mu| unicode:: U+03BC
39.. |nu| unicode:: U+03BD
40.. |xi| unicode:: U+03BE
41.. |omicron| unicode:: U+03BF
42.. |pi| unicode:: U+03C0
43.. |rho| unicode:: U+03C1
44.. |sigma| unicode:: U+03C3
45.. |tau| unicode:: U+03C4
46.. |upsilon| unicode:: U+03C5
47.. |phi| unicode:: U+03C6
48.. |chi| unicode:: U+03C7
49.. |psi| unicode:: U+03C8
50.. |omega| unicode:: U+03C9
51.. |biggamma| unicode:: U+0393
[93b6fcc]52.. |bigdelta| unicode:: U+0394
53.. |bigzeta| unicode:: U+039E
[38d4102]54.. |bigpsi| unicode:: U+03A8
[1c03e14]55.. |drho| replace:: |bigdelta|\ |rho|
56.. |Ang| unicode:: U+212B
57.. |Ang^-1| replace:: |Ang|\ :sup:`-1`
58.. |Ang^2| replace:: |Ang|\ :sup:`2`
59.. |Ang^-2| replace:: |Ang|\ :sup:`-2`
60.. |Ang^3| replace:: |Ang|\ :sup:`3`
[58eccf6]61.. |Ang^-3| replace:: |Ang|\ :sup:`-3`
62.. |Ang^-4| replace:: |Ang|\ :sup:`-4`
[1c03e14]63.. |cm^-1| replace:: cm\ :sup:`-1`
64.. |cm^2| replace:: cm\ :sup:`2`
65.. |cm^-2| replace:: cm\ :sup:`-2`
66.. |cm^3| replace:: cm\ :sup:`3`
67.. |cm^-3| replace:: cm\ :sup:`-3`
68.. |sr^-1| replace:: sr\ :sup:`-1`
69.. |P0| replace:: P\ :sub:`0`\
70.. |A2| replace:: A\ :sub:`2`\
71
72
73
74.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
75
76
77
78.. Actual document starts here...
79
80SasView Model Functions
81=======================
82
83Contents
84--------
[98b30b4]851. Background_
[1c03e14]86
872. Model_ Functions
88
89 2.1 Shape-based_ Functions
[cd06a5f]90 
[1c03e14]91 2.2 Shape-independent_ Functions
[cd06a5f]92 
[1c03e14]93 2.3 Structure-factor_ Functions
[cd06a5f]94 
[1c03e14]95 2.4 Customised_ Functions
96
973. References_
98
99
100
101.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
102
103
104
[98b30b4]105.. _Background:
[1c03e14]106
[98b30b4]1071. Background
[1c03e14]108---------------
109
110Many of our models use the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
[6386cd8]111Research and thus some content and figures in this document are originated from or shared with the NIST SANS Igor-based
112analysis package.
[1c03e14]113
114This software provides form factors for various particle shapes. After giving a mathematical definition of each model,
115we show the list of parameters available to the user. Validation plots for each model are also presented.
116
117Instructions on how to use SasView itself are available separately.
118
119To easily compare to the scattering intensity measured in experiments, we normalize the form factors by the volume of
120the particle
121
122.. image:: img/image001.PNG
123
124with
125
126.. image:: img/image002.PNG
127
128where |P0|\ *(q)* is the un-normalized form factor, |rho|\ *(r)* is the scattering length density at a given
129point in space and the integration is done over the volume *V* of the scatterer.
130
131For systems without inter-particle interference, the form factors we provide can be related to the scattering intensity
132by the particle volume fraction
133
134.. image:: img/image003.PNG
135
136Our so-called 1D scattering intensity functions provide *P(q)* for the case where the scatterer is randomly oriented. In
[6386cd8]137that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SAS
[1c03e14]138detector will have an azimuthal symmetry around *q*\ =0 .
139
140Our so-called 2D scattering intensity functions provide *P(q,* |phi| *)* for an oriented system as a function of a
141q-vector in the plane of the detector. We define the angle |phi| as the angle between the q vector and the horizontal
142(x) axis of the plane of the detector.
143
144For information about polarised and magnetic scattering, click here_.
145
146.. _here: polar_mag_help.html
147
148
149
150.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
151
152
153
154.. _Model:
155
1562. Model functions
157------------------
158
159.. _Shape-based:
160
1612.1 Shape-based Functions
162-------------------------
163
164Sphere-based
165------------
166
167- SphereModel_ (including magnetic 2D version)
168- BinaryHSModel_
169- FuzzySphereModel_
170- RaspBerryModel_
171- CoreShellModel_ (including magnetic 2D version)
[7072ce6]172- MicelleSphCoreModel_
[1c03e14]173- CoreMultiShellModel_ (including magnetic 2D version)
174- Core2ndMomentModel_
175- MultiShellModel_
176- OnionExpShellModel_
177- VesicleModel_
178- SphericalSLDModel_
179- LinearPearlsModel_
180- PearlNecklaceModel_
181
182Cylinder-based
183--------------
184
185- CylinderModel_ (including magnetic 2D version)
186- HollowCylinderModel_
[38d4102]187- CappedCylinderModel_
188- CoreShellCylinderModel_
189- EllipticalCylinderModel_
[77cfcf0]190- FlexibleCylinderModel_
191- FlexCylEllipXModel_
192- CoreShellBicelleModel_
193- BarBellModel_
194- StackedDisksModel_
195- PringleModel_
[1c03e14]196
197Ellipsoid-based
198---------------
199
[990c2eb]200- EllipsoidModel_
201- CoreShellEllipsoidModel_
202- CoreShellEllipsoidXTModel_
[bf8c07b]203- TriaxialEllipsoidModel_
[1c03e14]204
205Lamellae
206--------
207
[1127c32]208- LamellarModel_
209- LamellarFFHGModel_
210- LamellarPSModel_
211- LamellarPSHGModel_
[1c03e14]212
213Paracrystals
214------------
215
[1127c32]216- LamellarPCrystalModel_
[d4117ccb]217- SCCrystalModel_
218- FCCrystalModel_
219- BCCrystalModel_
[1c03e14]220
221Parallelpipeds
222--------------
223
[bf8c07b]224- ParallelepipedModel_ (including magnetic 2D version)
225- CSParallelepipedModel_
[6386cd8]226- RectangularPrismModel_
227- RectangularHollowPrismModel_
228- RectangularHollowPrismInfThinWallsModel_
[1c03e14]229
230.. _Shape-independent:
231
2322.2 Shape-Independent Functions
233-------------------------------
234
[6386cd8]235(In alphabetical order)
236
[4ed2d0a1]237- AbsolutePower_Law_
[93b6fcc]238- BEPolyelectrolyte_
239- BroadPeakModel_
240- CorrLength_
241- DABModel_
242- Debye_
243- FractalModel_
244- FractalCoreShell_
245- GaussLorentzGel_
[6386cd8]246- GelFitModel_
[93b6fcc]247- Guinier_
248- GuinierPorod_
[6386cd8]249- LineModel_
[93b6fcc]250- Lorentz_
251- MassFractalModel_
252- MassSurfaceFractal_
[6386cd8]253- PeakGaussModel_
254- PeakLorentzModel_
255- Poly_GaussCoil_
256- PolyExclVolume_
257- PorodModel_
258- RPA10Model_
259- StarPolymer_
[93b6fcc]260- SurfaceFractalModel_
261- TeubnerStrey_
[6386cd8]262- TwoLorentzian_
263- TwoPowerLaw_
264- UnifiedPowerRg_
265- ReflectivityModel_
266- ReflectivityIIModel_
[1c03e14]267
268.. _Structure-factor:
269
2702.3 Structure Factor Functions
271------------------------------
272
273- HardSphereStructure_
274- SquareWellStructure_
275- HayterMSAStructure_
276- StickyHSStructure_
277
278.. _Customised:
279
2802.4 Customized Functions
281------------------------
282
283- testmodel_
284- testmodel_2_
285- sum_p1_p2_
286- sum_Ap1_1_Ap2_
287- polynomial5_
288- sph_bessel_jn_
289
290
291
292.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
293
294
295
296.. _References:
297
2983. References
299-------------
300
301*Small-Angle Scattering of X-Rays*
[93b6fcc]302A Guinier and G Fournet
[1c03e14]303John Wiley & Sons, New York (1955)
304
[93b6fcc]305P Stckel, R May, I Strell, Z Cejka, W Hoppe, H Heumann, W Zillig and H Crespi
[1c03e14]306*Eur. J. Biochem.*, 112, (1980), 411-417
307
[93b6fcc]308G Porod
[1c03e14]309in *Small Angle X-ray Scattering*
[93b6fcc]310(editors) O Glatter and O Kratky
[1c03e14]311Academic Press (1982)
312
313*Structure Analysis by Small-Angle X-Ray and Neutron Scattering*
[93b6fcc]314L.A Feigin and D I Svergun
[1c03e14]315Plenum Press, New York (1987)
316
[93b6fcc]317S Hansen
[1c03e14]318*J. Appl. Cryst.* 23, (1990), 344-346
319
[93b6fcc]320S J Henderson
[1c03e14]321*Biophys. J.* 70, (1996), 1618-1627
322
[93b6fcc]323B C McAlister and B P Grady
[1c03e14]324*J. Appl. Cryst.* 31, (1998), 594-599
325
[93b6fcc]326S R Kline
[1c03e14]327*J Appl. Cryst.* 39(6), (2006), 895
328
329**Also see the references at the end of the each model function descriptions.**
330
331
332
333.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
334
335
336
337Model Definitions
338-----------------
339
340.. _SphereModel:
341
342**2.1.1. SphereModel**
343
344This model provides the form factor, *P(q)*, for a monodisperse spherical particle with uniform scattering length
345density. The form factor is normalized by the particle volume as described below.
346
347For information about polarised and magnetic scattering, click here_.
348
349.. _here: polar_mag_help.html
350
351*2.1.1.1. Definition*
352
353The 1D scattering intensity is calculated in the following way (Guinier, 1955)
354
355.. image:: img/image004.PNG
356
357where *scale* is a volume fraction, *V* is the volume of the scatterer, *r* is the radius of the sphere, *bkg* is
358the background level and *sldXXX* is the scattering length density (SLD) of the scatterer or the solvent.
359
360Note that if your data is in absolute scale, the *scale* should represent the volume fraction (which is unitless) if
361you have a good fit. If not, it should represent the volume fraction \* a factor (by which your data might need to be
362rescaled).
363
364The 2D scattering intensity is the same as above, regardless of the orientation of the q vector.
365
366The returned value is scaled to units of |cm^-1| and the parameters of the SphereModel are the following:
367
368==============  ========  =============
369Parameter name  Units     Default value
370==============  ========  =============
371scale           None      1
372radius          |Ang|     60
373sldSph          |Ang^-2|  2.0e-6
374sldSolv         |Ang^-2|  1.0e-6
375background      |cm^-1|   0
376==============  ========  =============
377
378Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
379Research (Kline, 2006).
380
381REFERENCE
[bf8c07b]382
[93b6fcc]383A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]384
385*2.1.1.2. Validation of the SphereModel*
386
387Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
388NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software.
389
[7f42aad]390.. image:: img/image005.jpg
[1c03e14]391
392Figure 1: Comparison of the DANSE scattering intensity for a sphere with the output of the NIST SANS analysis software.
393The parameters were set to: Scale=1.0, Radius=60 |Ang|, Contrast=1e-6 |Ang^-2|, and Background=0.01 |cm^-1|.
394
[93b6fcc]395*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
[1c03e14]396
397
398
399.. _BinaryHSModel:
400
401**2.1.2. BinaryHSModel**
402
403*2.1.2.1. Definition*
404
405This model (binary hard sphere model) provides the scattering intensity, for binary mixture of spheres including hard
406sphere interaction between those particles. Using Percus-Yevick closure, the calculation is an exact multi-component
407solution
408
409.. image:: img/image006.PNG
410
411where *Sij* are the partial structure factors and *fi* are the scattering amplitudes of the particles. The subscript 1
412is for the smaller particle and 2 is for the larger. The number fraction of the larger particle, (*x* = n2/(n1+n2),
413where *n* = the number density) is internally calculated based on
414
415.. image:: img/image007.PNG
416
417The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
418
419.. image:: img/image008.PNG
420
421The parameters of the BinaryHSModel are the following (in the names, *l* (or *ls*\ ) stands for larger spheres
422while *s* (or *ss*\ ) for the smaller spheres).
423
424==============  ========  =============
425Parameter name  Units     Default value
426==============  ========  =============
427background      |cm^-1|   0.001
428l_radius        |Ang|     100.0
429ss_sld          |Ang^-2|  0.0
430ls_sld          |Ang^-2|  3e-6
431solvent_sld     |Ang^-2|  6e-6
432s_radius        |Ang|     25.0
433vol_frac_ls     None      0.1
434vol_frac_ss     None      0.2
435==============  ========  =============
436
[7f42aad]437.. image:: img/image009.jpg
[1c03e14]438
439*Figure. 1D plot using the default values above (w/200 data point).*
440
441Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
442Research (Kline, 2006).
443
444See the reference for details.
445
446REFERENCE
[bf8c07b]447
[93b6fcc]448N W Ashcroft and D C Langreth, *Physical Review*, 156 (1967) 685-692
[1c03e14]449[Errata found in *Phys. Rev.* 166 (1968) 934]
450
451
452
453.. _FuzzySphereModel:
454
455**2.1.3. FuzzySphereModel**
456
457This model is to calculate the scattering from spherical particles with a "fuzzy" interface.
458
459*2.1.3.1. Definition*
460
461The scattering intensity *I(q)* is calculated as:
462
463.. image:: img/image010.PNG
464
465where the amplitude *A(q)* is given as the typical sphere scattering convoluted with a Gaussian to get a gradual
466drop-off in the scattering length density
467
468.. image:: img/image011.PNG
469
470Here |A2|\ *(q)* is the form factor, *P(q)*. The scale is equivalent to the volume fraction of spheres, each of
471volume, *V*\. Contrast (|drho|) is the difference of scattering length densities of the sphere and the surrounding
472solvent.
473
474Poly-dispersion in radius and in fuzziness is provided for.
475
476The returned value is scaled to units of |cm^-1|\ |sr^-1|; ie, absolute scale.
477
478From the reference
479
480  The "fuzziness" of the interface is defined by the parameter |sigma| :sub:`fuzzy`\ . The particle radius *R*
481  represents the radius of the particle where the scattering length density profile decreased to 1/2 of the core
482  density. The |sigma| :sub:`fuzzy`\ is the width of the smeared particle surface; i.e., the standard deviation
483  from the average height of the fuzzy interface. The inner regions of the microgel that display a higher density
484  are described by the radial box profile extending to a radius of approximately *Rbox* ~ *R* - 2\ |sigma|\ . The
485  profile approaches zero as *Rsans* ~ *R* + 2\ |sigma|\ .
486
487For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
488
489.. image:: img/image008.PNG
490
491This example dataset is produced by running the FuzzySphereModel, using 200 data points, *qmin* = 0.001 -1,
492*qmax* = 0.7 |Ang^-1| and the default values
493
494==============  ========  =============
495Parameter name  Units     Default value
496==============  ========  =============
497scale           None      1.0
498radius          |Ang|     60
499fuzziness       |Ang|     10
500sldSolv         |Ang^-2|  3e-6
501sldSph          |Ang^-2|  1e-6
502background      |cm^-1|   0.001
503==============  ========  =============
504
[7f42aad]505.. image:: img/image012.jpg
[1c03e14]506
507*Figure. 1D plot using the default values (w/200 data point).*
508
509REFERENCE
[bf8c07b]510
[93b6fcc]511M Stieger, J. S Pedersen, P Lindner, W Richtering, *Langmuir*, 20 (2004) 7283-7292
[1c03e14]512
513
514
515.. _RaspBerryModel:
516
517**2.1.4. RaspBerryModel**
518
519Calculates the form factor, *P(q)*, for a "Raspberry-like" structure where there are smaller spheres at the surface
520of a larger sphere, such as the structure of a Pickering emulsion.
521
522*2.1.4.1. Definition*
523
524The structure is:
525
[7f42aad]526.. image:: img/raspberry_pic.jpg
[1c03e14]527
528where *Ro* = the radius of the large sphere, *Rp* = the radius of the smaller sphere on the surface, |delta| = the
529fractional penetration depth, and surface coverage = fractional coverage of the large sphere surface (0.9 max).
530
531The large and small spheres have their own SLD, as well as the solvent. The surface coverage term is a fractional
532coverage (maximum of approximately 0.9 for hexagonally-packed spheres on a surface). Since not all of the small
533spheres are necessarily attached to the surface, the excess free (small) spheres scattering is also included in the
534calculation. The function calculated follows equations (8)-(12) of the reference below, and the equations are not
535reproduced here.
536
537The returned value is scaled to units of |cm^-1|. No inter-particle scattering is included in this model.
538
539For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
540
541.. image:: img/image008.PNG
542
543This example dataset is produced by running the RaspBerryModel, using 2000 data points, *qmin* = 0.0001 |Ang^-1|,
544*qmax* = 0.2 |Ang^-1| and the default values below, where *Ssph/Lsph* stands for smaller or larger sphere, respectively,
545and *surfrac_Ssph* is the surface fraction of the smaller spheres.
546
547==============  ========  =============
548Parameter name  Units     Default value
549==============  ========  =============
550delta_Ssph      None      0
551radius_Lsph     |Ang|     5000
552radius_Ssph     |Ang|     100
553sld_Lsph        |Ang^-2|  -4e-07
554sld_Ssph        |Ang^-2|  3.5e-6
555sld_solv        |Ang^-2|  6.3e-6
556surfrac_Ssph    None      0.4
557volf_Lsph       None      0.05
558volf_Lsph       None      0.005
559background      |cm^-1|   0
560==============  ========  =============
561
[7f42aad]562.. image:: img/raspberry_plot.jpg
[1c03e14]563
564*Figure. 1D plot using the values of /2000 data points.*
565
566REFERENCE
[bf8c07b]567
[93b6fcc]568K Larson-Smith, A Jackson, and D C Pozzo, *Small angle scattering model for Pickering emulsions and raspberry*
[1c03e14]569*particles*, *Journal of Colloid and Interface Science*, 343(1) (2010) 36-41
570
571
572
573.. _CoreShellModel:
574
575**2.1.5. CoreShellModel**
576
577This model provides the form factor, *P(q)*, for a spherical particle with a core-shell structure. The form factor is
578normalized by the particle volume.
579
580For information about polarised and magnetic scattering, click here_.
581
582*2.1.5.1. Definition*
583
584The 1D scattering intensity is calculated in the following way (Guinier, 1955)
585
586.. image:: img/image013.PNG
587
588where *scale* is a scale factor, *Vs* is the volume of the outer shell, *Vc* is the volume of the core, *rs* is the
589radius of the shell, *rc* is the radius of the core, *c* is the scattering length density of the core, *s* is the
590scattering length density of the shell, *solv* is the scattering length density of the solvent, and *bkg* is the
591background level.
592
593The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
594
595NB: The outer most radius (ie, = *radius* + *thickness*) is used as the effective radius for *S(Q)* when
596*P(Q)* \* *S(Q)* is applied.
597
598The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellModel are the following
599
600==============  ========  =============
601Parameter name  Units     Default value
602==============  ========  =============
603scale           None      1.0
604(core) radius   |Ang|     60
605thickness       |Ang|     10
606core_sld        |Ang^-2|  1e-6
607shell_sld       |Ang^-2|  2e-6
608solvent_sld     |Ang^-2|  3e-6
609background      |cm^-1|   0.001
610==============  ========  =============
611
612Here, *radius* = the radius of the core and *thickness* = the thickness of the shell.
613
614Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
615Research (Kline, 2006).
616
617REFERENCE
[bf8c07b]618
[93b6fcc]619A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]620
621*2.1.5.2. Validation of the core-shell sphere model*
622
623Validation of our code was done by comparing the output of the 1D model to the output of the software provided by
624NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software.
625
[7f42aad]626.. image:: img/image014.jpg
[1c03e14]627
628Figure 1: Comparison of the SasView scattering intensity for a core-shell sphere with the output of the NIST SANS
629analysis software. The parameters were set to: *Scale* = 1.0, *Radius* = 60 , *Contrast* = 1e-6 |Ang^-2|, and
630*Background* = 0.001 |cm^-1|.
631
632
633
634.. _CoreMultiShellModel:
635
636**2.1.6. CoreMultiShellModel**
637
638This model provides the scattering from a spherical core with 1 to 4 concentric shell structures. The SLDs of the core
639and each shell are individually specified.
640
641For information about polarised and magnetic scattering, click here_.
642
643*2.1.6.1. Definition*
644
645This model is a trivial extension of the CoreShell function to a larger number of shells. See the CoreShell function
646for a diagram and documentation.
647
[77cfcf0]648The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]649
650Be careful! The SLDs and scale can be highly correlated. Hold as many of these parameters fixed as possible.
651
652The 2D scattering intensity is the same as P(q) of 1D, regardless of the orientation of the q vector.
653
654NB: The outer most radius (ie, = *radius* + 4 *thicknesses*) is used as the effective radius for *S(Q)* when
655*P(Q)* \* *S(Q)* is applied.
656
657The returned value is scaled to units of |cm^-1| and the parameters of the CoreMultiShell model are the following
658
659==============  ========  =============
660Parameter name  Units     Default value
661==============  ========  =============
662scale           None      1.0
663rad_core        |Ang|     60
664sld_core        |Ang^-2|  6.4e-6
665sld_shell1      |Ang^-2|  1e-6
666sld_shell2      |Ang^-2|  2e-6
667sld_shell3      |Ang^-2|  3e-6
668sld_shell4      |Ang^-2|  4e-6
669sld_solv        |Ang^-2|  6.4e-6
670thick_shell1    |Ang|     10
671thick_shell2    |Ang|     10
672thick_shell3    |Ang|     10
673thick_shell4    |Ang|     10
674background      |cm^-1|   0.001
675==============  ========  =============
676
677NB: Here, *rad_core* = the radius of the core, *thick_shelli* = the thickness of the shell *i* and
678*sld_shelli* = the SLD of the shell *i*. *sld_core* and the *sld_solv* are the SLD of the core and the solvent,
679respectively.
680
681Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
682Research (Kline, 2006).
683
684This example dataset is produced by running the CoreMultiShellModel using 200 data points, *qmin* = 0.001 -1,
685*qmax* = 0.7 -1 and the above default values.
686
[7f42aad]687.. image:: img/image015.jpg
[1c03e14]688
689*Figure: 1D plot using the default values (w/200 data point).*
690
691The scattering length density profile for the default sld values (w/ 4 shells).
692
[7f42aad]693.. image:: img/image016.jpg
[1c03e14]694
695*Figure: SLD profile against the radius of the sphere for default SLDs.*
696
697REFERENCE
[bf8c07b]698
699See the CoreShellModel_ documentation.
[1c03e14]700
701
702
703.. _Core2ndMomentModel:
704
705**2.1.7. Core2ndMomentModel**
706
707This model describes the scattering from a layer of surfactant or polymer adsorbed on spherical particles under the
708conditions that (i) the particles (cores) are contrast-matched to the dispersion medium, (ii) *S(Q)* ~ 1 (ie, the
709particle volume fraction is dilute), (iii) the particle radius is >> layer thickness (ie, the interface is locally
710flat), and (iv) scattering from excess unadsorbed adsorbate in the bulk medium is absent or has been corrected for.
711
712Unlike a core-shell model, this model does not assume any form for the density distribution of the adsorbed species
713normal to the interface (cf, a core-shell model which assumes the density distribution to be a homogeneous
714step-function). For comparison, if the thickness of a (core-shell like) step function distribution is *t*, the second
715moment, |sigma| = sqrt((*t* :sup:`2` )/12). The |sigma| is the second moment about the mean of the density distribution
716(ie, the distance of the centre-of-mass of the distribution from the interface).
717
718*2.1.7.1. Definition*
719
720The *I* :sub:`0` is calculated in the following way (King, 2002)
721
[7f42aad]722.. image:: img/secondmeq1.jpg
[1c03e14]723
724where *scale* is a scale factor, *poly* is the sld of the polymer (or surfactant) layer, *solv* is the sld of the
725solvent/medium and cores, |phi|\ :sub:`cores` is the volume fraction of the core paraticles, and |biggamma| and
726|delta| are the adsorbed amount and the bulk density of the polymers respectively. The |sigma| is the second moment
727of the thickness distribution.
728
729Note that all parameters except the |sigma| are correlated for fitting so that fitting those with more than one
730parameter will generally fail. Also note that unlike other shape models, no volume normalization is applied to this
731model (the calculation is exact).
732
733The returned value is scaled to units of |cm^-1| and the parameters are the following
734
735==============  ========  =============
736Parameter name  Units     Default value
737==============  ========  =============
738scale           None      1.0
739density_poly    g/cm2     0.7
740radius_core     |Ang|     500
741ads_amount      mg/m 2    1.9
742second_moment   |Ang|     23.0
743volf_cores      None      0.14
744sld_poly        |Ang^-2|  1.5e-6
745sld_solv        |Ang^-2|  6.3e-6
746background      |cm^-1|   0.0
747==============  ========  =============
748
[7f42aad]749.. image:: img/secongm_fig1.jpg
[1c03e14]750
751REFERENCE
[bf8c07b]752
[93b6fcc]753S King, P Griffiths, J. Hone, and T Cosgrove, *SANS from Adsorbed Polymer Layers*,
[1c03e14]754*Macromol. Symp.*, 190 (2002) 33-42
755
756
757
758.. _MultiShellModel:
759
760**2.1.8. MultiShellModel**
761
762This model provides the form factor, *P(q)*, for a multi-lamellar vesicle with *N* shells where the core is filled with
763solvent and the shells are interleaved with layers of solvent. For *N* = 1, this returns the VesicleModel (above).
764
[7f42aad]765.. image:: img/image020.jpg
[1c03e14]766
767The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
768
769.. image:: img/image008.PNG
770
771NB: The outer most radius (= *core_radius* + *n_pairs* \* *s_thickness* + (*n_pairs* - 1) \* *w_thickness*) is used
772as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
773
774The returned value is scaled to units of |cm^-1| and the parameters of the MultiShellModel are the following
775
776==============  ========  =============
777Parameter name  Units     Default value
778==============  ========  =============
779scale           None      1.0
780core_radius     |Ang|     60.0
781n_pairs         None      2.0
782core_sld        |Ang^-2|  6.3e-6
783shell_sld       |Ang^-2|  0.0
784background      |cm^-1|   0.0
785s_thickness     |Ang|     10
786w_thickness     |Ang|     10
787==============  ========  =============
788
789NB: *s_thickness* is the shell thickness while the *w_thickness* is the solvent thickness, and *n_pair*
790is the number of shells.
791
[7f42aad]792.. image:: img/image021.jpg
[1c03e14]793
794*Figure. 1D plot using the default values (w/200 data point).*
795
796Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
797Research (Kline, 2006).
798
799REFERENCE
[bf8c07b]800
[93b6fcc]801B Cabane, *Small Angle Scattering Methods*, in *Surfactant Solutions: New Methods of Investigation*, Ch.2,
802Surfactant Science Series Vol. 22, Ed. R Zana and M Dekker, New York, (1987).
[1c03e14]803
804
805
806.. _OnionExpShellModel:
807
808**2.1.9. OnionExpShellModel**
809
810This model provides the form factor, *P(q)*, for a multi-shell sphere where the scattering length density (SLD) of the
811each shell is described by an exponential (linear, or flat-top) function. The form factor is normalized by the volume
812of the sphere where the SLD is not identical to the SLD of the solvent. We currently provide up to 9 shells with this
813model.
814
815*2.1.9.1. Definition*
816
817The 1D scattering intensity is calculated in the following way
818
[7f42aad]819.. image:: img/image022.gif
[1c03e14]820
[7f42aad]821.. image:: img/image023.gif
[1c03e14]822
823where, for a spherically symmetric particle with a particle density |rho|\ *(r)*
824
[7f42aad]825.. image:: img/image024.gif
[1c03e14]826
827so that
828
[7f42aad]829.. image:: img/image025.gif
[1c03e14]830
[7f42aad]831.. image:: img/image026.gif
[1c03e14]832
[7f42aad]833.. image:: img/image027.gif
[1c03e14]834
835Here we assumed that the SLDs of the core and solvent are constant against *r*.
836
837Now lets consider the SLD of a shell, *r*\ :sub:`shelli`, defined by
838
[7f42aad]839.. image:: img/image028.gif
[1c03e14]840
841An example of a possible SLD profile is shown below where *sld_in_shelli* (|rho|\ :sub:`in`\ ) and
842*thick_shelli* (|bigdelta|\ *t* :sub:`shelli`\ ) stand for the SLD of the inner side of the *i*\ th shell and the
843thickness of the *i*\ th shell in the equation above, respectively.
844
845For \| *A* \| > 0,
846
[7f42aad]847.. image:: img/image029.gif
[1c03e14]848
849For *A* ~ 0 (eg., *A* = -0.0001), this function converges to that of the linear SLD profile (ie,
850|rho|\ :sub:`shelli`\ *(r)* = *A*\ :sup:`'` ( *r* - *r*\ :sub:`shelli` - 1) / |bigdelta|\ *t* :sub:`shelli`) + *B*\ :sup:`'`),
851so this case is equivalent to
852
[7f42aad]853.. image:: img/image030.gif
[1c03e14]854
[7f42aad]855.. image:: img/image031.gif
[1c03e14]856
[7f42aad]857.. image:: img/image032.gif
[1c03e14]858
[7f42aad]859.. image:: img/image033.gif
[1c03e14]860
861For *A* = 0, the exponential function has no dependence on the radius (so that *sld_out_shell* (|rho|\ :sub:`out`) is
862ignored this case) and becomes flat. We set the constant to |rho|\ :sub:`in` for convenience, and thus the form
863factor contributed by the shells is
864
[7f42aad]865.. image:: img/image034.gif
[1c03e14]866
[7f42aad]867.. image:: img/image035.gif
[1c03e14]868
869In the equation
870
[7f42aad]871.. image:: img/image036.gif
[1c03e14]872
873Finally, the form factor can be calculated by
874
[7f42aad]875.. image:: img/image037.gif
[1c03e14]876
877where
878
[7f42aad]879.. image:: img/image038.gif
[1c03e14]880
881and
882
[7f42aad]883.. image:: img/image039.gif
[1c03e14]884
885The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
886defined as
887
[7f42aad]888.. image:: img/image040.gif
[1c03e14]889
890NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
891
892The returned value is scaled to units of |cm^-1| and the parameters of this model (for only one shell) are the following
893
894==============  ========  =============
895Parameter name  Units     Default value
896==============  ========  =============
897A_shell1        None      1
898scale           None      1.0
899rad_core        |Ang|     200
900thick_shell1    |Ang|     50
901sld_core        |Ang^-2|  1.0e-06
902sld_in_shell1   |Ang^-2|  1.7e-06
903sld_out_shell1  |Ang^-2|  2.0e-06
904sld_solv        |Ang^-2|  6.4e-06
905background      |cm^-1|   0.0
906==============  ========  =============
907
908NB: *rad_core* represents the core radius (*R1*) and *thick_shell1* (*R2* - *R1*) is the thickness of the shell1, etc.
909
[7f42aad]910.. image:: img/image041.jpg
[1c03e14]911
912*Figure. 1D plot using the default values (w/400 point).*
913
[7f42aad]914.. image:: img/image042.jpg
[1c03e14]915
916*Figure. SLD profile from the default values.*
917
918REFERENCE
[bf8c07b]919
[93b6fcc]920L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
[1c03e14]921Plenum Press, New York, (1987).
922
923
924
925.. _VesicleModel:
926
927**2.1.10. VesicleModel**
928
929This model provides the form factor, *P(q)*, for an unilamellar vesicle. The form factor is normalized by the volume
930of the shell.
931
932*2.1.10.1. Definition*
933
934The 1D scattering intensity is calculated in the following way (Guinier, 1955)
935
936.. image:: img/image017.PNG
937
938where *scale* is a scale factor, *Vshell* is the volume of the shell, *V1* is the volume of the core, *V2* is the total
939volume, *R1* is the radius of the core, *R2* is the outer radius of the shell, |rho|\ :sub:`1` is the scattering
940length density of the core and the solvent, |rho|\ :sub:`2` is the scattering length density of the shell, *bkg* is
941the background level, and *J1* = (sin\ *x*- *x* cos\ *x*)/ *x* :sup:`2`\ . The functional form is identical to a
942"typical" core-shell structure, except that the scattering is normalized by the volume that is contributing to the
943scattering, namely the volume of the shell alone. Also, the vesicle is best defined in terms of a core radius (= *R1*)
944and a shell thickness, *t*.
945
[7f42aad]946.. image:: img/image018.jpg
[1c03e14]947
948The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
949defined as
950
951.. image:: img/image008.PNG
952
953NB: The outer most radius (= *radius* + *thickness*) is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)*
954is applied.
955
956The returned value is scaled to units of |cm^-1| and the parameters of the VesicleModel are the following
957
958==============  ========  =============
959Parameter name  Units     Default value
960==============  ========  =============
961scale           None      1.0
962radius          |Ang|     100
963thickness       |Ang|     30
964core_sld        |Ang^-2|  6.3e-6
965shell_sld       |Ang^-2|  0
966background      |cm^-1|   0.0
967==============  ========  =============
968
969NB: *radius* represents the core radius (*R1*) and the *thickness* (*R2* - *R1*) is the shell thickness.
970
[7f42aad]971.. image:: img/image019.jpg
[1c03e14]972
973*Figure. 1D plot using the default values (w/200 data point).*
974
975Our model uses the form factor calculations implemented in a c-library
976provided by the NIST Center for Neutron Research (Kline, 2006).
977
978REFERENCE
[bf8c07b]979
[93b6fcc]980A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]981
982
983
984.. _SphericalSLDModel:
985
986**2.1.11. SphericalSLDModel**
987
988Similarly to the OnionExpShellModel, this model provides the form factor, *P(q)*, for a multi-shell sphere, where the
989interface between the each neighboring shells can be described by one of a number of functions including error,
990power-law, and exponential functions. This model is to calculate the scattering intensity by building a continuous
991custom SLD profile against the radius of the particle. The SLD profile is composed of a flat core, a flat solvent,
992a number (up to 9 ) flat shells, and the interfacial layers between the adjacent flat shells (or core, and solvent)
993(see below). Unlike the OnionExpShellModel (using an analytical integration), the interfacial layers here are
994sub-divided and numerically integrated assuming each of the sub-layers are described by a line function. The number
995of the sub-layer can be given by users by setting the integer values of *npts_inter* in the GUI. The form factor is
996normalized by the total volume of the sphere.
997
998*2.1.11.1. Definition*
999
1000The 1D scattering intensity is calculated in the following way:
1001
[7f42aad]1002.. image:: img/image022.gif
[1c03e14]1003
[7f42aad]1004.. image:: img/image043.gif
[1c03e14]1005
1006where, for a spherically symmetric particle with a particle density |rho|\ *(r)*
1007
[7f42aad]1008.. image:: img/image024.gif
[1c03e14]1009
1010so that
1011
[7f42aad]1012.. image:: img/image044.gif
[1c03e14]1013
[7f42aad]1014.. image:: img/image045.gif
[1c03e14]1015
[7f42aad]1016.. image:: img/image046.gif
[1c03e14]1017
[7f42aad]1018.. image:: img/image047.gif
[1c03e14]1019
[7f42aad]1020.. image:: img/image048.gif
[1c03e14]1021
[7f42aad]1022.. image:: img/image027.gif
[1c03e14]1023
1024Here we assumed that the SLDs of the core and solvent are constant against *r*. The SLD at the interface between
1025shells, |rho|\ :sub:`inter_i`, is calculated with a function chosen by an user, where the functions are
1026
10271) Exp
1028
[7f42aad]1029.. image:: img/image049.gif
[1c03e14]1030
10312) Power-Law
1032
[7f42aad]1033.. image:: img/image050.gif
[1c03e14]1034
10353) Erf
1036
[7f42aad]1037.. image:: img/image051.gif
[1c03e14]1038
1039The functions are normalized so that they vary between 0 and 1, and they are constrained such that the SLD is
1040continuous at the boundaries of the interface as well as each sub-layers. Thus *B* and *C* are determined.
1041
1042Once |rho|\ :sub:`rinter_i` is found at the boundary of the sub-layer of the interface, we can find its contribution
1043to the form factor *P(q)*
1044
[7f42aad]1045.. image:: img/image052.gif
[1c03e14]1046
[7f42aad]1047.. image:: img/image053.gif
[1c03e14]1048
[7f42aad]1049.. image:: img/image054.gif
[1c03e14]1050
1051where we assume that |rho|\ :sub:`inter_i`\ *(r)* can be approximately linear within a sub-layer *j*.
1052
1053In the equation
1054
[7f42aad]1055.. image:: img/image055.gif
[1c03e14]1056
1057Finally, the form factor can be calculated by
1058
[7f42aad]1059.. image:: img/image037.gif
[1c03e14]1060
1061where
1062
[7f42aad]1063.. image:: img/image038.gif
[1c03e14]1064
1065and
1066
[7f42aad]1067.. image:: img/image056.gif
[1c03e14]1068
1069The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
1070defined as
1071
[7f42aad]1072.. image:: img/image040.gif
[1c03e14]1073
1074NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1075
1076The returned value is scaled to units of |cm^-1| and the parameters of this model (for just one shell) are the following
1077
1078==============  ========  =============
1079Parameter name  Units     Default value
1080==============  ========  =============
1081background      |cm^-1|   0.0
1082npts_inter      None      35
1083scale           None      1
1084sld_solv        |Ang^-2|  1e-006
1085func_inter1     None      Erf
1086nu_inter        None      2.5
1087thick_inter1    |Ang|     50
1088sld_flat1       |Ang^-2|  4e-006
1089thick_flat1     |Ang|     100
1090func_inter0     None      Erf
1091nu_inter0       None      2.5
1092rad_core0       |Ang|     50
1093sld_core0       |Ang^-2|  2.07e-06
1094thick_core0     |Ang|     50
1095==============  ========  =============
1096
1097NB: *rad_core0* represents the core radius (*R1*).
1098
[7f42aad]1099.. image:: img/image057.jpg
[1c03e14]1100
1101*Figure. 1D plot using the default values (w/400 point).*
1102
[7f42aad]1103.. image:: img/image058.jpg
[1c03e14]1104
1105*Figure. SLD profile from the default values.*
1106
1107REFERENCE
[bf8c07b]1108
[93b6fcc]1109L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
[1c03e14]1110Plenum Press, New York, (1987)
1111
1112
1113
1114.. _LinearPearlsModel:
1115
1116**2.1.12. LinearPearlsModel**
1117
1118This model provides the form factor for *N* spherical pearls of radius *R* linearly joined by short strings (or segment
1119length or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation distance. The thickness
1120of each string is assumed to be negligible.
1121
1122.. image:: img/linearpearls.jpg
1123
1124*2.1.12.1. Definition*
1125
1126The output of the scattering intensity function for the LinearPearlsModel is given by (Dobrynin, 1996)
1127
1128.. image:: img/linearpearl_eq1.gif
1129
1130where the mass *m*\ :sub:`p` is (SLD\ :sub:`pearl` - SLD\ :sub:`solvent`) \* (volume of *N* pearls). V is the total
1131volume.
1132
1133The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
1134
1135The returned value is scaled to units of |cm^-1| and the parameters of the LinearPearlsModel are the following
1136
1137===============  ========  =============
1138Parameter name   Units     Default value
1139===============  ========  =============
1140scale            None      1.0
1141radius           |Ang|     80.0
1142edge_separation  |Ang|     350.0
1143num_pearls       None      3
1144sld_pearl        |Ang^-2|  1e-6
1145sld_solv         |Ang^-2|  6.3e-6
1146background       |cm^-1|   0.0
1147===============  ========  =============
1148
1149NB: *num_pearls* must be an integer.
1150
1151.. image:: img/linearpearl_plot.jpg
1152
1153REFERENCE
[bf8c07b]1154
[93b6fcc]1155A V Dobrynin, M Rubinstein and S P Obukhov, *Macromol.*, 29 (1996) 2974-2979
[1c03e14]1156
1157
1158
1159.. _PearlNecklaceModel:
1160
1161**2.1.13. PearlNecklaceModel**
1162
1163This model provides the form factor for a pearl necklace composed of two elements: *N* pearls (homogeneous spheres
1164of radius *R*) freely jointed by *M* rods (like strings - with a total mass *Mw* = *M* \* *m*\ :sub:`r` + *N* \* *m*\ :sub:`s`,
1165and the string segment length (or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation
1166distance.
1167
1168.. image:: img/pearl_fig.jpg
1169
1170*2.1.13.1. Definition*
1171
1172The output of the scattering intensity function for the PearlNecklaceModel is given by (Schweins, 2004)
1173
1174.. image:: img/pearl_eq1.gif
1175
1176where
1177
1178.. image:: img/pearl_eq2.gif
1179
1180.. image:: img/pearl_eq3.gif
1181
1182.. image:: img/pearl_eq4.gif
1183
1184.. image:: img/pearl_eq5.gif
1185
1186.. image:: img/pearl_eq6.gif
1187
1188and
1189
1190.. image:: img/pearl_eq7.gif
1191
1192where the mass *m*\ :sub:`i` is (SLD\ :sub:`i` - SLD\ :sub:`solvent`) \* (volume of the *N* pearls/rods). *V* is the
1193total volume of the necklace.
1194
1195The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
1196
1197The returned value is scaled to units of |cm^-1| and the parameters of the PearlNecklaceModel are the following
1198
1199===============  ========  =============
1200Parameter name   Units     Default value
1201===============  ========  =============
1202scale            None      1.0
1203radius           |Ang|     80.0
1204edge_separation  |Ang|     350.0
1205num_pearls       None      3
1206sld_pearl        |Ang^-2|  1e-6
1207sld_solv         |Ang^-2|  6.3e-6
1208sld_string       |Ang^-2|  1e-6
1209thick_string
1210(=rod diameter)  |Ang|     2.5
1211background       |cm^-1|   0.0
1212===============  ========  =============
1213
1214NB: *num_pearls* must be an integer.
1215
1216.. image:: img/pearl_plot.jpg
1217
1218REFERENCE
[bf8c07b]1219
[93b6fcc]1220R Schweins and K Huber, *Particle Scattering Factor of Pearl Necklace Chains*, *Macromol. Symp.* 211 (2004) 25-42 2004
[1c03e14]1221
1222
1223
1224.. _CylinderModel:
1225
1226**2.1.14. CylinderModel**
1227
1228This model provides the form factor for a right circular cylinder with uniform scattering length density. The form
1229factor is normalized by the particle volume.
1230
1231For information about polarised and magnetic scattering, click here_.
1232
1233*2.1.14.1. Definition*
1234
1235The output of the 2D scattering intensity function for oriented cylinders is given by (Guinier, 1955)
1236
1237.. image:: img/image059.PNG
1238
1239where
1240
1241.. image:: img/image060.PNG
1242
1243and |alpha| is the angle between the axis of the cylinder and the *q*-vector, *V* is the volume of the cylinder,
[58eccf6]1244*L* is the length of the cylinder, *r* is the radius of the cylinder, and |drho| (contrast) is the
[1c03e14]1245scattering length density difference between the scatterer and the solvent. *J1* is the first order Bessel function.
1246
1247To provide easy access to the orientation of the cylinder, we define the axis of the cylinder using two angles |theta|
1248and |phi|. Those angles are defined in Figure 1.
1249
[7f42aad]1250.. image:: img/image061.jpg
[1c03e14]1251
1252*Figure 1. Definition of the angles for oriented cylinders.*
1253
[7f42aad]1254.. image:: img/image062.jpg
[1c03e14]1255
1256*Figure 2. Examples of the angles for oriented pp against the detector plane.*
1257
1258NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and length values, and used as the
1259effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1260
1261The returned value is scaled to units of |cm^-1| and the parameters of the CylinderModel are the following:
1262
1263==============  ========  =============
1264Parameter name  Units     Default value
1265==============  ========  =============
1266scale           None      1.0
1267radius          |Ang|     20.0
1268length          |Ang|     400.0
1269contrast        |Ang^-2|  3.0e-6
1270background      |cm^-1|   0.0
1271cyl_theta       degree    60
1272cyl_phi         degree    60
1273==============  ========  =============
1274
1275The output of the 1D scattering intensity function for randomly oriented cylinders is then given by
1276
1277.. image:: img/image063.PNG
1278
1279The *cyl_theta* and *cyl_phi* parameter are not used for the 1D output. Our implementation of the scattering kernel
1280and the 1D scattering intensity use the c-library from NIST.
1281
[38d4102]1282*2.1.14.2. Validation of the CylinderModel*
[1c03e14]1283
1284Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
1285NIST (Kline, 2006). Figure 3 shows a comparison of the 1D output of our model and the output of the NIST software.
1286
[7f42aad]1287.. image:: img/image065.jpg
[1c03e14]1288
[38d4102]1289*Figure 3: Comparison of the SasView scattering intensity for a cylinder with the output of the NIST SANS analysis*
1290*software.* The parameters were set to: *Scale* = 1.0, *Radius* = 20 |Ang|, *Length* = 400 |Ang|,
[1c03e14]1291*Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.01 |cm^-1|.
1292
1293In general, averaging over a distribution of orientations is done by evaluating the following
1294
1295.. image:: img/image064.PNG
1296
1297where *p(*\ |theta|,\ |phi|\ *)* is the probability distribution for the orientation and |P0|\ *(q,*\ |alpha|\ *)* is
1298the scattering intensity for the fully oriented system. Since we have no other software to compare the implementation
1299of the intensity for fully oriented cylinders, we can compare the result of averaging our 2D output using a uniform
1300distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 4 shows the result of such a cross-check.
1301
[7f42aad]1302.. image:: img/image066.jpg
[1c03e14]1303
[38d4102]1304*Figure 4: Comparison of the intensity for uniformly distributed cylinders calculated from our 2D model and the*
1305*intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius* = 20 |Ang|,
1306*Length* = 400 |Ang|, *Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]1307
1308
1309
1310.. _HollowCylinderModel:
1311
1312**2.1.15. HollowCylinderModel**
1313
1314This model provides the form factor, *P(q)*, for a monodisperse hollow right angle circular cylinder (tube) where the
1315form factor is normalized by the volume of the tube
1316
1317*P(q)* = *scale* \* *<F*\ :sup:`2`\ *>* / *V*\ :sub:`shell` + *background*
1318
1319where the averaging < > is applied only for the 1D calculation.
1320
1321The inside and outside of the hollow cylinder are assumed have the same SLD.
1322
[38d4102]1323*2.1.15.1 Definition*
1324
[1c03e14]1325The 1D scattering intensity is calculated in the following way (Guinier, 1955)
1326
1327.. image:: img/image072.PNG
1328
1329where *scale* is a scale factor, *J1* is the 1st order Bessel function, *J1(x)* = (sin *x* - *x* cos *x*)/ *x*\ :sup:`2`.
1330
1331To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
1332angles |theta| and |phi|\ . As for the case of the cylinder, those angles are defined in Figure 2 of the CylinderModel.
1333
1334NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as the
1335effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1336
1337In the parameters, the contrast represents SLD :sub:`shell` - SLD :sub:`solvent` and the *radius* = *R*\ :sub:`shell`
1338while *core_radius* = *R*\ :sub:`core`.
1339
1340==============  ========  =============
1341Parameter name  Units     Default value
1342==============  ========  =============
1343scale           None      1.0
1344radius          |Ang|     30
1345length          |Ang|     400
1346core_radius     |Ang|     20
1347sldCyl          |Ang^-2|  6.3e-6
1348sldSolv         |Ang^-2|  5e-06
1349background      |cm^-1|   0.01
1350==============  ========  =============
1351
[7f42aad]1352.. image:: img/image074.jpg
[1c03e14]1353
1354*Figure. 1D plot using the default values (w/1000 data point).*
1355
1356Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
1357(Kline, 2006).
1358
[7f42aad]1359.. image:: img/image061.jpg
[1c03e14]1360
[38d4102]1361*Figure. Definition of the angles for the oriented HollowCylinderModel.*
[1c03e14]1362
[7f42aad]1363.. image:: img/image062.jpg
[1c03e14]1364
[38d4102]1365*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1366
1367REFERENCE
[bf8c07b]1368
[93b6fcc]1369L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press,
[38d4102]1370New York, (1987)
[1c03e14]1371
1372
1373
1374.. _CappedCylinderModel:
1375
1376**2.1.16 CappedCylinderModel**
1377
[38d4102]1378Calculates the scattering from a cylinder with spherical section end-caps. This model simply becomes the ConvexLensModel
1379when the length of the cylinder *L* = 0, that is, a sphereocylinder with end caps that have a radius larger than that
1380of the cylinder and the center of the end cap radius lies within the cylinder. See the diagram for the details
[1c03e14]1381of the geometry and restrictions on parameter values.
1382
[38d4102]1383*2.1.16.1. Definition*
[1c03e14]1384
[77cfcf0]1385The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]1386
[38d4102]1387The Capped Cylinder geometry is defined as
[1c03e14]1388
[7f42aad]1389.. image:: img/image112.jpg
[1c03e14]1390
[38d4102]1391where *r* is the radius of the cylinder. All other parameters are as defined in the diagram. Since the end cap radius
1392*R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as
[1c03e14]1393
[38d4102]1394*h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`)
[1c03e14]1395
[38d4102]1396The scattered intensity *I(q)* is calculated as
[1c03e14]1397
[7f42aad]1398.. image:: img/image113.jpg
[1c03e14]1399
[38d4102]1400where the amplitude *A(q)* is given as
[1c03e14]1401
[7f42aad]1402.. image:: img/image114.jpg
[1c03e14]1403
[38d4102]1404The < > brackets denote an average of the structure over all orientations. <\ *A*\ :sup:`2`\ *(q)*> is then the form
1405factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is the
1406difference of scattering length densities of the cylinder and the surrounding solvent.
[1c03e14]1407
[38d4102]1408The volume of the Capped Cylinder is (with *h* as a positive value here)
[1c03e14]1409
[7f42aad]1410.. image:: img/image115.jpg
[1c03e14]1411
[6386cd8]1412and its radius-of-gyration
[1c03e14]1413
[7f42aad]1414.. image:: img/image116.jpg
[1c03e14]1415
[38d4102]1416**The requirement that** *R* >= *r* **is not enforced in the model! It is up to you to restrict this during analysis.**
[1c03e14]1417
[38d4102]1418This following example dataset is produced by running the MacroCappedCylinder(), using 200 data points,
1419*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]1420
1421==============  ========  =============
1422Parameter name  Units     Default value
1423==============  ========  =============
1424scale           None      1.0
1425len_cyl         |Ang|     400.0
1426rad_cap         |Ang|     40.0
1427rad_cyl         |Ang|     20.0
1428sld_capcyl      |Ang^-2|  1.0e-006
1429sld_solv        |Ang^-2|  6.3e-006
1430background      |cm^-1|   0
1431==============  ========  =============
1432
[7f42aad]1433.. image:: img/image117.jpg
[1c03e14]1434
1435*Figure. 1D plot using the default values (w/256 data point).*
1436
[38d4102]1437For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for
1438|theta| = 45 deg and |phi| =0 deg with default values for other parameters
[1c03e14]1439
[7f42aad]1440.. image:: img/image118.jpg
[1c03e14]1441
1442*Figure. 2D plot (w/(256X265) data points).*
1443
[7f42aad]1444.. image:: img/image061.jpg
[1c03e14]1445
[38d4102]1446*Figure. Definition of the angles for oriented 2D cylinders.*
[1c03e14]1447
[38d4102]1448.. image:: img/image062.jpg
[1c03e14]1449
[38d4102]1450*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1451
[38d4102]1452REFERENCE
[bf8c07b]1453
[93b6fcc]1454H Kaya, *J. Appl. Cryst.*, 37 (2004) 223-230
[bf8c07b]1455
[93b6fcc]1456H Kaya and N-R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata)
[1c03e14]1457
1458
1459
1460.. _CoreShellCylinderModel:
1461
[38d4102]1462**2.1.17. CoreShellCylinderModel**
[1c03e14]1463
[38d4102]1464This model provides the form factor for a circular cylinder with a core-shell scattering length density profile. The
1465form factor is normalized by the particle volume.
[1c03e14]1466
[38d4102]1467*2.1.17.1. Definition*
[1c03e14]1468
[38d4102]1469The output of the 2D scattering intensity function for oriented core-shell cylinders is given by (Kline, 2006)
[1c03e14]1470
[38d4102]1471.. image:: img/image067.PNG
[1c03e14]1472
[38d4102]1473where
[1c03e14]1474
[38d4102]1475.. image:: img/image068.PNG
[1c03e14]1476
[38d4102]1477.. image:: img/image239.PNG
[1c03e14]1478
[38d4102]1479and |alpha| is the angle between the axis of the cylinder and the *q*\ -vector, *Vs* is the volume of the outer shell
1480(i.e. the total volume, including the shell), *Vc* is the volume of the core, *L* is the length of the core, *r* is the
1481radius of the core, *t* is the thickness of the shell, |rho|\ :sub:`c` is the scattering length density of the core,
1482|rho|\ :sub:`s` is the scattering length density of the shell, |rho|\ :sub:`solv` is the scattering length density of
1483the solvent, and *bkg* is the background level. The outer radius of the shell is given by *r+t* and the total length of
1484the outer shell is given by *L+2t*. *J1* is the first order Bessel function.
[1c03e14]1485
[7f42aad]1486.. image:: img/image069.jpg
[1c03e14]1487
[38d4102]1488To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
1489angles |theta| and |phi|\ . As for the case of the cylinder, those angles are defined in Figure 2 of the CylinderModel.
[1c03e14]1490
[38d4102]1491NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as the
1492effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1493
[38d4102]1494The returned value is scaled to units of |cm^-1| and the parameters of the core-shell cylinder model are the following
[1c03e14]1495
1496==============  ========  =============
1497Parameter name  Units     Default value
1498==============  ========  =============
1499scale           None      1.0
1500radius          |Ang|     20.0
1501thickness       |Ang|     10.0
1502length          |Ang|     400.0
1503core_sld        |Ang^-2|  1e-6
1504shell_sld       |Ang^-2|  4e-6
1505solvent_sld     |Ang^-2|  1e-6
1506background      |cm^-1|   0.0
1507axis_theta      degree    90
1508axis_phi        degree    0.0
1509==============  ========  =============
1510
[38d4102]1511The output of the 1D scattering intensity function for randomly oriented cylinders is then given by the equation above.
[1c03e14]1512
[38d4102]1513The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering kernel
1514and the 1D scattering intensity use the c-library from NIST.
[1c03e14]1515
[38d4102]1516*2.1.17.2. Validation of the CoreShellCylinderModel*
[1c03e14]1517
[38d4102]1518Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
1519NIST (Kline, 2006). Figure 1 shows a comparison of the 1D output of our model and the output of the NIST software.
[1c03e14]1520
[7f42aad]1521.. image:: img/image070.jpg
[1c03e14]1522
[38d4102]1523*Figure 1: Comparison of the SasView scattering intensity for a core-shell cylinder with the output of the NIST SANS*
1524*analysis software.* The parameters were set to: *Scale* = 1.0, *Radius* = 20 |Ang|, *Thickness* = 10 |Ang|,
1525*Length* = 400 |Ang|, *Core_sld* = 1e-6 |Ang^-2|, *Shell_sld* = 4e-6 |Ang^-2|, *Solvent_sld* = 1e-6 |Ang^-2|,
1526and *Background* = 0.01 |cm^-1|.
[1c03e14]1527
[38d4102]1528Averaging over a distribution of orientation is done by evaluating the equation above. Since we have no other software
1529to compare the implementation of the intensity for fully oriented cylinders, we can compare the result of averaging our
15302D output using a uniform distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 2 shows the result of such a cross-check.
[1c03e14]1531
[7f42aad]1532.. image:: img/image071.jpg
[1c03e14]1533
[38d4102]1534*Figure 2: Comparison of the intensity for uniformly distributed core-shell cylinders calculated from our 2D model and*
1535*the intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius* = 20 |Ang|,
1536*Thickness* = 10 |Ang|, *Length* =400 |Ang|, *Core_sld* = 1e-6 |Ang^-2|, *Shell_sld* = 4e-6 |Ang^-2|,
1537*Solvent_sld* = 1e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]1538
[7f42aad]1539.. image:: img/image061.jpg
[1c03e14]1540
[38d4102]1541*Figure. Definition of the angles for oriented core-shell cylinders.*
[1c03e14]1542
[7f42aad]1543.. image:: img/image062.jpg
[1c03e14]1544
[38d4102]1545*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1546
15472013/11/26 - Description reviewed by Heenan, R.
1548
1549
1550
1551.. _EllipticalCylinderModel:
1552
1553**2.1.18 EllipticalCylinderModel**
1554
[38d4102]1555This function calculates the scattering from an elliptical cylinder.
[1c03e14]1556
[38d4102]1557*2.1.18.1 Definition for 2D (orientated system)*
[1c03e14]1558
[38d4102]1559The angles |theta| and |phi| define the orientation of the axis of the cylinder. The angle |bigpsi| is defined as the
1560orientation of the major axis of the ellipse with respect to the vector *Q*\ . A gaussian polydispersity can be added
1561to any of the orientation angles, and also for the minor radius and the ratio of the ellipse radii.
[1c03e14]1562
[38d4102]1563.. image:: img/image098.gif
[1c03e14]1564
[38d4102]1565*Figure.* *a* = *r_minor* and |nu|\ :sub:`n` = *r_ratio* (i.e., *r_major* / *r_minor*).
[1c03e14]1566
[38d4102]1567The function calculated is
[1c03e14]1568
[38d4102]1569.. image:: img/image099.PNG
[1c03e14]1570
[38d4102]1571with the functions
[1c03e14]1572
[38d4102]1573.. image:: img/image100.PNG
[1c03e14]1574
[38d4102]1575and the angle |bigpsi| is defined as the orientation of the major axis of the ellipse with respect to the vector *q*\ .
[1c03e14]1576
[38d4102]1577*2.1.18.2 Definition for 1D (no preferred orientation)*
[1c03e14]1578
[38d4102]1579The form factor is averaged over all possible orientation before normalized by the particle volume
[1c03e14]1580
[38d4102]1581*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V*
[1c03e14]1582
1583The returned value is scaled to units of |cm^-1|.
1584
[38d4102]1585To provide easy access to the orientation of the elliptical cylinder, we define the axis of the cylinder using two
1586angles |theta|, |phi| and |bigpsi|. As for the case of the cylinder, the angles |theta| and |phi| are defined on
1587Figure 2 of CylinderModel. The angle |bigpsi| is the rotational angle around its own long_c axis against the *q* plane.
1588For example, |bigpsi| = 0 when the *r_minor* axis is parallel to the *x*\ -axis of the detector.
[1c03e14]1589
[38d4102]1590All angle parameters are valid and given only for 2D calculation; ie, an oriented system.
[1c03e14]1591
[7f42aad]1592.. image:: img/image101.jpg
[1c03e14]1593
[38d4102]1594*Figure. Definition of angles for 2D*
[1c03e14]1595
[7f42aad]1596.. image:: img/image062.jpg
[1c03e14]1597
[38d4102]1598*Figure. Examples of the angles for oriented elliptical cylinders against the detector plane.*
[1c03e14]1599
[38d4102]1600NB: The 2nd virial coefficient of the cylinder is calculated based on the averaged radius (= sqrt(*r_minor*\ :sup:`2` \* *r_ratio*))
1601and length values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1602
1603==============  ========  =============
1604Parameter name  Units     Default value
1605==============  ========  =============
1606scale           None      1.0
1607r_minor         |Ang|     20.0
1608r_ratio         |Ang|     1.5
1609length          |Ang|     400.0
1610sldCyl          |Ang^-2|  4e-06
1611sldSolv         |Ang^-2|  1e-06
1612background      |cm^-1|   0
1613==============  ========  =============
1614
[7f42aad]1615.. image:: img/image102.jpg
[1c03e14]1616
1617*Figure. 1D plot using the default values (w/1000 data point).*
1618
[38d4102]1619*2.1.18.3 Validation of the EllipticalCylinderModel*
[1c03e14]1620
[38d4102]1621Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
1622the 2D calculation over all possible angles. The figure below shows the comparison where the solid dot refers to
1623averaged 2D values while the line represents the result of the 1D calculation (for the 2D averaging, values of 76, 180,
1624and 76 degrees are taken for the angles of |theta|, |phi|, and |bigpsi| respectively).
[1c03e14]1625
[7f42aad]1626.. image:: img/image103.gif
[1c03e14]1627
1628*Figure. Comparison between 1D and averaged 2D.*
1629
[38d4102]1630In the 2D average, more binning in the angle |phi| is necessary to get the proper result. The following figure shows
1631the results of the averaging by varying the number of angular bins.
[1c03e14]1632
[7f42aad]1633.. image:: img/image104.gif
[1c03e14]1634
1635*Figure. The intensities averaged from 2D over different numbers of bins and angles.*
1636
1637REFERENCE
[bf8c07b]1638
[93b6fcc]1639L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[38d4102]1640New York, (1987)
[1c03e14]1641
1642
1643
1644.. _FlexibleCylinderModel:
1645
1646**2.1.19. FlexibleCylinderModel**
1647
[38d4102]1648This model provides the form factor, *P(q)*, for a flexible cylinder where the form factor is normalized by the volume
1649of the cylinder. **Inter-cylinder interactions are NOT provided for.**
[1c03e14]1650
[38d4102]1651*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V* + *background*
[1c03e14]1652
[38d4102]1653where the averaging < > is applied over all orientations for 1D.
[1c03e14]1654
[38d4102]1655The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
1656
1657.. image:: img/image040.gif
1658
1659*2.1.19.1. Definition*
1660
[7f42aad]1661.. image:: img/image075.jpg
[38d4102]1662
1663The chain of contour length, *L*, (the total length) can be described as a chain of some number of locally stiff
1664segments of length *l*\ :sub:`p`\ , the persistence length (the length along the cylinder over which the flexible
1665cylinder can be considered a rigid rod). The Kuhn length (*b* = 2 \* *l* :sub:`p`) is also used to describe the
1666stiffness of a chain.
1667
1668The returned value is in units of |cm^-1|, on absolute scale.
1669
1670In the parameters, the sldCyl and sldSolv represent the SLD of the chain/cylinder and solvent respectively.
[1c03e14]1671
1672==============  ========  =============
1673Parameter name  Units     Default value
1674==============  ========  =============
1675scale           None      1.0
1676radius          |Ang|     20
1677length          |Ang|     1000
1678sldCyl          |Ang^-2|  1e-06
1679sldSolv         |Ang^-2|  6.3e-06
1680background      |cm^-1|   0.01
1681kuhn_length     |Ang|     100
1682==============  ========  =============
1683
[7f42aad]1684.. image:: img/image076.jpg
[1c03e14]1685
1686*Figure. 1D plot using the default values (w/1000 data point).*
1687
[38d4102]1688Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
1689(Kline, 2006).
[1c03e14]1690
[38d4102]1691From the reference
[1c03e14]1692
[38d4102]1693  "Method 3 With Excluded Volume" is used. The model is a parametrization of simulations of a discrete representation
1694  of the worm-like chain model of Kratky and Porod applied in the pseudocontinuous limit. See equations (13,26-27) in
1695  the original reference for the details.
[1c03e14]1696
[38d4102]1697REFERENCE
[bf8c07b]1698
[93b6fcc]1699J S Pedersen and P Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume*
[38d4102]1700*effects*. *Macromolecules*, 29 (1996) 7602-7612
[1c03e14]1701
[38d4102]1702Correction of the formula can be found in
[bf8c07b]1703
[93b6fcc]1704W R Chen, P D Butler and L J Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from*
[4ed2d0a1]1705*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548
[1c03e14]1706
1707
1708
1709.. _FlexCylEllipXModel:
1710
1711**2.1.20 FlexCylEllipXModel**
1712
[38d4102]1713This model calculates the form factor for a flexible cylinder with an elliptical cross section and a uniform scattering
1714length density. The non-negligible diameter of the cylinder is included by accounting for excluded volume interactions
1715within the walk of a single cylinder. The form factor is normalized by the particle volume such that
[1c03e14]1716
[38d4102]1717*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V* + *background*
1718
1719where < > is an average over all possible orientations of the flexible cylinder.
1720
1721*2.1.20.1. Definition*
[1c03e14]1722
[38d4102]1723The function calculated is from the reference given below. From that paper, "Method 3 With Excluded Volume" is used.
1724The model is a parameterization of simulations of a discrete representation of the worm-like chain model of Kratky and
1725Porod applied in the pseudo-continuous limit. See equations (13, 26-27) in the original reference for the details.
[1c03e14]1726
[38d4102]1727NB: there are several typos in the original reference that have been corrected by WRC. Details of the corrections are
1728in the reference below. Most notably
[1c03e14]1729
[38d4102]1730- Equation (13): the term (1 - w(QR)) should swap position with w(QR)
[1c03e14]1731
[38d4102]1732- Equations (23) and (24) are incorrect; WRC has entered these into Mathematica and solved analytically. The results
1733  were then converted to code.
[1c03e14]1734
1735- Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of max(a3*b/sqrt(RgSquare),3)
1736
1737- The scattering function is negative for a range of parameter values and q-values that are experimentally accessible. A correction function has been added to give the proper behavior.
1738
[7f42aad]1739.. image:: img/image077.jpg
[1c03e14]1740
[38d4102]1741The chain of contour length, *L*, (the total length) can be described as a chain of some number of locally stiff
1742segments of length *l*\ :sub:`p`\ , the persistence length (the length along the cylinder over which the flexible
1743cylinder can be considered a rigid rod). The Kuhn length (*b* = 2 \* *l* :sub:`p`) is also used to describe the
1744stiffness of a chain.
[1c03e14]1745
[38d4102]1746The cross section of the cylinder is elliptical, with minor radius *a*\ . The major radius is larger, so of course,
1747**the axis ratio (parameter 4) must be greater than one.** Simple constraints should be applied during curve fitting to
1748maintain this inequality.
[1c03e14]1749
1750The returned value is in units of |cm^-1|, on absolute scale.
1751
[38d4102]1752In the parameters, *sldCyl* and *sldSolv* represent the SLD of the chain/cylinder and solvent respectively. The
1753*scale*, and the contrast are both multiplicative factors in the model and are perfectly correlated. One or both of
1754these parameters must be held fixed during model fitting.
[1c03e14]1755
[38d4102]1756If the scale is set equal to the particle volume fraction, |phi|, the returned value is the scattered intensity per
1757unit volume, *I(q)* = |phi| \* *P(q)*.
[1c03e14]1758
[38d4102]1759**No inter-cylinder interference effects are included in this calculation.**
[1c03e14]1760
[38d4102]1761For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]1762
[38d4102]1763.. image:: img/image008.PNG
[1c03e14]1764
[38d4102]1765This example dataset is produced by running the Macro FlexCylEllipXModel, using 200 data points, *qmin* = 0.001 |Ang^-1|,
1766*qmax* = 0.7 |Ang^-1| and the default values below
[1c03e14]1767
1768==============  ========  =============
1769Parameter name  Units     Default value
1770==============  ========  =============
1771axis_ratio      None      1.5
1772background      |cm^-1|   0.0001
1773Kuhn_length     |Ang|     100
1774Contour length  |Ang|     1e+3
1775radius          |Ang|     20.0
1776scale           None      1.0
1777sldCyl          |Ang^-2|  1e-6
1778sldSolv         |Ang^-2|  6.3e-6
1779==============  ========  =============
1780
[7f42aad]1781.. image:: img/image078.jpg
[1c03e14]1782
1783*Figure. 1D plot using the default values (w/200 data points).*
1784
[38d4102]1785REFERENCE
[bf8c07b]1786
[93b6fcc]1787J S Pedersen and P Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume*
[38d4102]1788*effects*. *Macromolecules*, 29 (1996) 7602-7612
1789
1790Correction of the formula can be found in
[bf8c07b]1791
[93b6fcc]1792W R Chen, P D Butler and L J Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from*
[4ed2d0a1]1793*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548
[38d4102]1794
[1c03e14]1795
1796
1797.. _CoreShellBicelleModel:
1798
1799**2.1.21 CoreShellBicelleModel**
1800
[77cfcf0]1801This model provides the form factor for a circular cylinder with a core-shell scattering length density profile. The
1802form factor is normalized by the particle volume.
[1c03e14]1803
[77cfcf0]1804This model is a more general case of core-shell cylinder model (see above and reference below) in that the parameters
1805of the shell are separated into a face-shell and a rim-shell so that users can set different values of the thicknesses
1806and SLDs.
[1c03e14]1807
[7f42aad]1808.. image:: img/image240.png
[1c03e14]1809
[77cfcf0]1810*(Graphic from DOI: 10.1039/C0NP00002G)*
1811
1812The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellBicelleModel are the following
[1c03e14]1813
1814==============  ========  =============
1815Parameter name  Units     Default value
1816==============  ========  =============
1817scale           None      1.0
1818radius          |Ang|     20.0
1819rim_thick       |Ang|     10.0
1820face_thick      |Ang|     10.0
1821length          |Ang|     400.0
1822core_sld        |Ang^-2|  1e-6
1823rim_sld         |Ang^-2|  4e-6
1824face_sld        |Ang^-2|  4e-6
1825solvent_sld     |Ang^-2|  1e-6
1826background      |cm^-1|   0.0
1827axis_theta      degree    90
1828axis_phi        degree    0.0
1829==============  ========  =============
1830
[77cfcf0]1831The output of the 1D scattering intensity function for randomly oriented cylinders is then given by the equation above.
[1c03e14]1832
[77cfcf0]1833The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering kernel
1834and the 1D scattering intensity use the c-library from NIST.
[1c03e14]1835
[77cfcf0]1836.. image:: img/cscylbicelle_pic.jpg
[1c03e14]1837
1838*Figure. 1D plot using the default values (w/200 data point).*
1839
[7f42aad]1840.. image:: img/image061.jpg
[1c03e14]1841
[77cfcf0]1842*Figure. Definition of the angles for the oriented CoreShellBicelleModel.*
[1c03e14]1843
[7f42aad]1844.. image:: img/image062.jpg
[1c03e14]1845
[77cfcf0]1846*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1847
1848REFERENCE
[bf8c07b]1849
[93b6fcc]1850L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press,
[77cfcf0]1851New York, (1987)
[1c03e14]1852
1853
1854
1855.. _BarBellModel:
1856
1857**2.1.22. BarBellModel**
1858
[77cfcf0]1859Calculates the scattering from a barbell-shaped cylinder (This model simply becomes the DumBellModel when the length of
1860the cylinder, *L*, is set to zero). That is, a sphereocylinder with spherical end caps that have a radius larger than
1861that of the cylinder and the center of the end cap radius lies outside of the cylinder. All dimensions of the BarBell
1862are considered to be monodisperse. See the diagram for the details of the geometry and restrictions on parameter values.
[1c03e14]1863
[77cfcf0]1864*2.1.22.1. Definition*
[1c03e14]1865
[77cfcf0]1866The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]1867
1868The barbell geometry is defined as
1869
[7f42aad]1870.. image:: img/image105.jpg
[1c03e14]1871
[77cfcf0]1872where *r* is the radius of the cylinder. All other parameters are as defined in the diagram.
[1c03e14]1873
[77cfcf0]1874Since the end cap radius
1875*R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as
[1c03e14]1876
[77cfcf0]1877*h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`)
[1c03e14]1878
[77cfcf0]1879The scattered intensity *I(q)* is calculated as
[1c03e14]1880
[77cfcf0]1881.. image:: img/image106.PNG
[1c03e14]1882
[77cfcf0]1883where the amplitude *A(q)* is given as
[1c03e14]1884
[77cfcf0]1885.. image:: img/image107.PNG
[1c03e14]1886
[77cfcf0]1887The < > brackets denote an average of the structure over all orientations. <*A* :sup:`2`\ *(q)*> is then the form
1888factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is
1889the difference of scattering length densities of the cylinder and the surrounding solvent.
[1c03e14]1890
[77cfcf0]1891The volume of the barbell is
[1c03e14]1892
[7f42aad]1893.. image:: img/image108.jpg
[1c03e14]1894
1895
[6386cd8]1896and its radius-of-gyration is
[1c03e14]1897
[7f42aad]1898.. image:: img/image109.jpg
[1c03e14]1899
[77cfcf0]1900**The requirement that** *R* >= *r* **is not enforced in the model!** It is up to you to restrict this during analysis.
[1c03e14]1901
[77cfcf0]1902This example dataset is produced by running the Macro PlotBarbell(), using 200 data points, *qmin* = 0.001 |Ang^-1|,
1903*qmax* = 0.7 |Ang^-1| and the following default values
[1c03e14]1904
1905==============  ========  =============
1906Parameter name  Units     Default value
1907==============  ========  =============
1908scale           None      1.0
1909len_bar         |Ang|     400.0
1910rad_bar         |Ang|     20.0
1911rad_bell        |Ang|     40.0
1912sld_barbell     |Ang^-2|  1.0e-006
1913sld_solv        |Ang^-2|  6.3e-006
1914background      |cm^-1|   0
1915==============  ========  =============
1916
[7f42aad]1917.. image:: img/image110.jpg
[1c03e14]1918
1919*Figure. 1D plot using the default values (w/256 data point).*
1920
[77cfcf0]1921For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for
1922|theta| = 45 deg and |phi| = 0 deg with default values for other parameters
[1c03e14]1923
[7f42aad]1924.. image:: img/image111.jpg
[1c03e14]1925
1926*Figure. 2D plot (w/(256X265) data points).*
1927
[7f42aad]1928.. image:: img/image061.jpg
[1c03e14]1929
[77cfcf0]1930*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1931
[7f42aad]1932.. image:: img/image062.jpg
[1c03e14]1933
1934Figure. Definition of the angles for oriented 2D barbells.
1935
[77cfcf0]1936REFERENCE
[bf8c07b]1937
[93b6fcc]1938H Kaya, *J. Appl. Cryst.*, 37 (2004) 37 223-230
[bf8c07b]1939
[93b6fcc]1940H Kaya and N R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata)
[77cfcf0]1941
[1c03e14]1942
1943
1944.. _StackedDisksModel:
1945
1946**2.1.23. StackedDisksModel**
1947
[77cfcf0]1948This model provides the form factor, *P(q)*, for stacked discs (tactoids) with a core/layer structure where the form
1949factor is normalized by the volume of the cylinder. Assuming the next neighbor distance (d-spacing) in a stack of
1950parallel discs obeys a Gaussian distribution, a structure factor *S(q)* proposed by Kratky and Porod in 1949 is used
1951in this function.
[1c03e14]1952
[77cfcf0]1953Note that the resolution smearing calculation uses 76 Gauss quadrature points to properly smear the model since the
1954function is HIGHLY oscillatory, especially around the *q*-values that correspond to the repeat distance of the layers.
[1c03e14]1955
[77cfcf0]1956The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
[1c03e14]1957
[77cfcf0]1958.. image:: img/image008.PNG
[1c03e14]1959
[77cfcf0]1960The returned value is in units of |cm^-1| |sr^-1|, on absolute scale.
[1c03e14]1961
[77cfcf0]1962*2.1.23.1 Definition*
[1c03e14]1963
[7f42aad]1964.. image:: img/image079.gif
[1c03e14]1965
[4ed2d0a1]1966The scattering intensity *I(q)* is
[1c03e14]1967
[77cfcf0]1968.. image:: img/image081.PNG
[1c03e14]1969
[77cfcf0]1970where the contrast
[1c03e14]1971
[77cfcf0]1972.. image:: img/image082.PNG
[1c03e14]1973
[77cfcf0]1974and *N* is the number of discs per unit volume, |alpha| is the angle between the axis of the disc and *q*, and *Vt*
1975and *Vc* are the total volume and the core volume of a single disc, respectively.
[1c03e14]1976
[77cfcf0]1977.. image:: img/image083.PNG
[1c03e14]1978
[77cfcf0]1979where *d* = thickness of the layer (*layer_thick*), 2\ *h* = core thickness (*core_thick*), and *R* = radius of the
1980disc (*radius*).
[1c03e14]1981
[77cfcf0]1982.. image:: img/image084.PNG
[1c03e14]1983
[77cfcf0]1984where *n* = the total number of the disc stacked (*n_stacking*), *D* = the next neighbor center-to-center distance
1985(*d-spacing*), and |sigma|\ D= the Gaussian standard deviation of the d-spacing (*sigma_d*).
[1c03e14]1986
[77cfcf0]1987To provide easy access to the orientation of the stacked disks, we define the axis of the cylinder using two angles
1988|theta| and |phi|. These angles are defined on Figure 2 of CylinderModel.
[1c03e14]1989
[77cfcf0]1990NB: The 2nd virial coefficient of the cylinder is calculated based on the *radius* and *length* = *n_stacking* \*
1991(*core_thick* + 2 \* *layer_thick*) values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1992
1993==============  ========  =============
1994Parameter name  Units     Default value
1995==============  ========  =============
1996background      |cm^-1|   0.001
1997core_sld        |Ang^-2|  4e-006
1998core_thick      |Ang|     10
1999layer_sld       |Ang^-2|  0
2000layer_thick     |Ang|     15
2001n_stacking      None      1
2002radius          |Ang|     3e+03
2003scale           None      0.01
2004sigma_d         |Ang|     0
2005solvent_sld     |Ang^-2|  5e-06
2006==============  ========  =============
2007
[7f42aad]2008.. image:: img/image085.jpg
[1c03e14]2009
2010*Figure. 1D plot using the default values (w/1000 data point).*
2011
[7f42aad]2012.. image:: img/image086.jpg
[1c03e14]2013
[77cfcf0]2014*Figure. Examples of the angles for oriented stackeddisks against the detector plane.*
[1c03e14]2015
[7f42aad]2016.. image:: img/image062.jpg
[1c03e14]2017
[77cfcf0]2018*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]2019
[77cfcf0]2020Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2021(Kline, 2006)
[1c03e14]2022
2023REFERENCE
[bf8c07b]2024
[93b6fcc]2025A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, 1955
[bf8c07b]2026
[93b6fcc]2027O Kratky and G Porod, *J. Colloid Science*, 4, (1949) 35
[bf8c07b]2028
[93b6fcc]2029J S Higgins and H C Benoit, *Polymers and Neutron Scattering*, Clarendon, Oxford, 1994
[1c03e14]2030
2031
2032
2033.. _PringleModel:
2034
2035**2.1.24. PringleModel**
2036
[77cfcf0]2037This model provides the form factor, *P(q)*, for a 'pringle' or 'saddle-shaped' object (a hyperbolic paraboloid).
[1c03e14]2038
[7f42aad]2039.. image:: img/image241.png
[1c03e14]2040
[77cfcf0]2041*(Graphic from Matt Henderson, matt@matthen.com)*
[1c03e14]2042
2043The returned value is in units of |cm^-1|, on absolute scale.
2044
[77cfcf0]2045The form factor calculated is
[1c03e14]2046
[77cfcf0]2047.. image:: img/pringle_eqn_1.jpg
[1c03e14]2048
2049where
2050
[77cfcf0]2051.. image:: img/pringle_eqn_2.jpg
[1c03e14]2052
[77cfcf0]2053The parameters of the model and a plot comparing the pringle model with the equivalent cylinder are shown below.
[1c03e14]2054
2055==============  ========  =============
2056Parameter name  Units     Default value
2057==============  ========  =============
2058background      |cm^-1|   0.0
2059alpha           None      0.001
2060beta            None      0.02
2061radius          |Ang|     60
2062scale           None      1
2063sld_pringle     |Ang^-2|  1e-06
2064sld_solvent     |Ang^-2|  6.3e-06
2065thickness       |Ang|     10
2066==============  ========  =============
2067
[77cfcf0]2068.. image:: img/pringle-vs-cylinder.png
[1c03e14]2069
2070*Figure. 1D plot using the default values (w/150 data point).*
2071
2072REFERENCE
[bf8c07b]2073
[93b6fcc]2074S Alexandru Rautu, Private Communication.
[1c03e14]2075
2076
2077
2078.. _EllipsoidModel:
2079
2080**2.1.25. EllipsoidModel**
2081
[ca1af82]2082This model provides the form factor for an ellipsoid (ellipsoid of revolution) with uniform scattering length density.
2083The form factor is normalized by the particle volume.
[1c03e14]2084
[ca1af82]2085*2.1.25.1. Definition*
[1c03e14]2086
[ca1af82]2087The output of the 2D scattering intensity function for oriented ellipsoids is given by (Feigin, 1987)
[1c03e14]2088
[ca1af82]2089.. image:: img/image059.PNG
[1c03e14]2090
[ca1af82]2091where
[1c03e14]2092
[ca1af82]2093.. image:: img/image119.PNG
[1c03e14]2094
[ca1af82]2095and
[1c03e14]2096
[ca1af82]2097.. image:: img/image120.PNG
[1c03e14]2098
[ca1af82]2099|alpha| is the angle between the axis of the ellipsoid and the *q*\ -vector, *V* is the volume of the ellipsoid, *Ra*
2100is the radius along the rotational axis of the ellipsoid, *Rb* is the radius perpendicular to the rotational axis of
[58eccf6]2101the ellipsoid and |drho| (contrast) is the scattering length density difference between the scatterer and
[ca1af82]2102the solvent.
[1c03e14]2103
[ca1af82]2104To provide easy access to the orientation of the ellipsoid, we define the rotation axis of the ellipsoid using two
2105angles |theta| and |phi|\ . These angles are defined on Figure 2 of the CylinderModel_. For the ellipsoid, |theta|
2106is the angle between the rotational axis and the *z*\ -axis.
[1c03e14]2107
[ca1af82]2108NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the *radius_a* and *radius_b* values, and
2109used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2110
[ca1af82]2111The returned value is scaled to units of |cm^-1| and the parameters of the EllipsoidModel are the following
[1c03e14]2112
2113================  ========  =============
2114Parameter name    Units     Default value
2115================  ========  =============
2116scale             None      1.0
2117radius_a (polar)  |Ang|     20.0
2118radius_b (equat)  |Ang|     400.0
2119sldEll            |Ang^-2|  4.0e-6
2120sldSolv           |Ang^-2|  1.0e-6
2121background        |cm^-1|   0.0
2122axis_theta        degree    90
2123axis_phi          degree    0.0
2124================  ========  =============
2125
[ca1af82]2126The output of the 1D scattering intensity function for randomly oriented ellipsoids is then given by the equation
2127above.
[1c03e14]2128
[7f42aad]2129.. image:: img/image121.jpg
[1c03e14]2130
[ca1af82]2131The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering
2132kernel and the 1D scattering intensity use the c-library from NIST.
[1c03e14]2133
[7f42aad]2134.. image:: img/image122.jpg
[1c03e14]2135
[ca1af82]2136*Figure. The angles for oriented ellipsoid.*
[1c03e14]2137
[ca1af82]2138*2.1.25.1. Validation of the EllipsoidModel*
[1c03e14]2139
[ca1af82]2140Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
2141NIST (Kline, 2006). Figure 1 below shows a comparison of the 1D output of our model and the output of the NIST
2142software.
[1c03e14]2143
[7f42aad]2144.. image:: img/image123.jpg
[1c03e14]2145
[ca1af82]2146*Figure 1: Comparison of the SasView scattering intensity for an ellipsoid with the output of the NIST SANS analysis*
2147*software.* The parameters were set to: *Scale* = 1.0, *Radius_a* = 20, *Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|,
2148and *Background* = 0.01 |cm^-1|.
[1c03e14]2149
[ca1af82]2150Averaging over a distribution of orientation is done by evaluating the equation above. Since we have no other software
2151to compare the implementation of the intensity for fully oriented ellipsoids, we can compare the result of averaging
2152our 2D output using a uniform distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 2 shows the result of such a
[1c03e14]2153cross-check.
2154
[7f42aad]2155.. image:: img/image124.jpg
[1c03e14]2156
[ca1af82]2157*Figure 2: Comparison of the intensity for uniformly distributed ellipsoids calculated from our 2D model and the*
2158*intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius_a* = 20,
2159*Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]2160
[ca1af82]2161The discrepancy above *q* = 0.3 |cm^-1| is due to the way the form factors are calculated in the c-library provided by
2162NIST. A numerical integration has to be performed to obtain *P(q)* for randomly oriented particles. The NIST software
2163performs that integration with a 76-point Gaussian quadrature rule, which will become imprecise at high q where the
2164amplitude varies quickly as a function of *q*. The SasView result shown has been obtained by summing over 501
2165equidistant points in . Our result was found to be stable over the range of *q* shown for a number of points higher
2166than 500.
[1c03e14]2167
[ca1af82]2168REFERENCE
[bf8c07b]2169
[93b6fcc]2170L A Feigin and D I Svergun. *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[ca1af82]2171New York, 1987.
[1c03e14]2172
2173
2174
2175.. _CoreShellEllipsoidModel:
2176
2177**2.1.26. CoreShellEllipsoidModel**
2178
[990c2eb]2179This model provides the form factor, *P(q)*, for a core shell ellipsoid (below) where the form factor is normalized by
2180the volume of the cylinder.
[1c03e14]2181
[990c2eb]2182*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2183
[990c2eb]2184where the volume *V* = (4/3)\ |pi| (*r*\ :sub:`maj` *r*\ :sub:`min`\ :sup:`2`) and the averaging < > is applied over
2185all orientations for 1D.
[1c03e14]2186
[7f42aad]2187.. image:: img/image125.gif
[1c03e14]2188
[990c2eb]2189The returned value is in units of |cm^-1|, on absolute scale.
[1c03e14]2190
[990c2eb]2191*2.1.26.1. Definition*
[1c03e14]2192
[990c2eb]2193The form factor calculated is
[1c03e14]2194
[990c2eb]2195.. image:: img/image126.PNG
[1c03e14]2196
[990c2eb]2197To provide easy access to the orientation of the core-shell ellipsoid, we define the axis of the solid ellipsoid using
2198two angles |theta| and |phi|\ . These angles are defined on Figure 2 of the CylinderModel_. The contrast is defined as
2199SLD(core) - SLD(shell) and SLD(shell) - SLD(solvent).
[1c03e14]2200
[990c2eb]2201In the parameters, *equat_core* = equatorial core radius, *polar_core* = polar core radius, *equat_shell* =
2202*r*\ :sub:`min` (or equatorial outer radius), and *polar_shell* = = *r*\ :sub:`maj` (or polar outer radius).
[1c03e14]2203
[990c2eb]2204NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the *radius_a* (= *polar_shell*) and
2205*radius_b* (= *equat_shell*) values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2206
2207==============  ========  =============
2208Parameter name  Units     Default value
2209==============  ========  =============
2210background      |cm^-1|   0.001
2211equat_core      |Ang|     200
2212equat_shell     |Ang|     250
2213sld_solvent     |Ang^-2|  6e-06
2214ploar_shell     |Ang|     30
2215ploar_core      |Ang|     20
2216scale           None      1
2217sld_core        |Ang^-2|  2e-06
2218sld_shell       |Ang^-2|  1e-06
2219==============  ========  =============
2220
[7f42aad]2221.. image:: img/image127.jpg
[1c03e14]2222
2223*Figure. 1D plot using the default values (w/1000 data point).*
2224
[7f42aad]2225.. image:: img/image122.jpg
[1c03e14]2226
[990c2eb]2227*Figure. The angles for oriented CoreShellEllipsoid.*
[1c03e14]2228
[990c2eb]2229Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2230(Kline, 2006).
[1c03e14]2231
2232REFERENCE
[bf8c07b]2233
[93b6fcc]2234M Kotlarchyk, S H Chen, *J. Chem. Phys.*, 79 (1983) 2461
[bf8c07b]2235
[93b6fcc]2236S J Berr, *Phys. Chem.*, 91 (1987) 4760
[1c03e14]2237
2238
2239
[77cfcf0]2240.. _CoreShellEllipsoidXTModel:
2241
2242**2.1.27. CoreShellEllipsoidXTModel**
2243
2244An alternative version of *P(q)* for the core-shell ellipsoid (see CoreShellEllipsoidModel), having as parameters the
2245core axial ratio *X* and a shell thickness, which are more often what we would like to determine.
2246
2247This model is also better behaved when polydispersity is applied than the four independent radii in
2248CoreShellEllipsoidModel.
2249
[990c2eb]2250*2.1.27.1. Definition*
[77cfcf0]2251
2252.. image:: img/image125.gif
2253
2254The geometric parameters of this model are
2255
2256  *equat_core* = equatorial core radius = *Rminor_core*
2257  *X_core* = *polar_core* / *equat_core* = *Rmajor_core* / *Rminor_core*
2258  *T_shell* = *equat_outer* - *equat_core* = *Rminor_outer* - *Rminor_core*
2259  *XpolarShell* = *Tpolar_shell* / *T_shell* = (*Rmajor_outer* - *Rmajor_core*)/(*Rminor_outer* - *Rminor_core*)
2260
2261In terms of the original radii
2262
2263  *polar_core* = *equat_core* \* *X_core*
2264  *equat_shell* = *equat_core* + *T_shell*
2265  *polar_shell* = *equat_core* \* *X_core* + *T_shell* \* *XpolarShell*
2266
2267  (where we note that "shell" perhaps confusingly, relates to the outer radius)
2268
2269When *X_core* < 1 the core is oblate; when *X_core* > 1  it is prolate. *X_core* = 1 is a spherical core.
2270
2271For a fixed shell thickness *XpolarShell* = 1, to scale the shell thickness pro-rata with the radius
2272*XpolarShell* = *X_core*.
2273
2274When including an *S(q)*, the radius in *S(q)* is calculated to be that of a sphere with the same 2nd virial
2275coefficient of the **outer** surface of the ellipsoid. This may have some undesirable effects if the aspect ratio of
2276the ellipsoid is large (ie, if *X* << 1 or *X* >> 1), when the *S(q)* - which assumes spheres - will not in any case
2277be valid.
2278
[6386cd8]2279If SAS data are in absolute units, and the SLDs are correct, then *scale* should be the total volume fraction of the
[77cfcf0]2280"outer particle". When *S(q)* is introduced this moves to the *S(q)* volume fraction, and *scale* should then be 1.0,
2281or contain some other units conversion factor (for example, if you have SAXS data).
2282
2283==============  ========  =============
2284Parameter name  Units     Default value
2285==============  ========  =============
2286background      |cm^-1|   0.001
2287equat_core      |Ang|     20
2288scale           None      0.05
2289sld_core        |Ang^-2|  2.0e-6
2290sld_shell       |Ang^-2|  1.0e-6
2291sld_solv        |Ang^-2|  6.3e-6
2292T_shell         |Ang|     30
2293X_core          None      3.0
2294XpolarShell     None      1.0
2295==============  ========  =============
2296
2297REFERENCE
[bf8c07b]2298
[93b6fcc]2299R K Heenan, Private communication
[77cfcf0]2300
2301
2302
[bf8c07b]2303.. _TriaxialEllipsoidModel:
[1c03e14]2304
[77cfcf0]2305**2.1.28. TriaxialEllipsoidModel**
[1c03e14]2306
[990c2eb]2307This model provides the form factor, *P(q)*, for an ellipsoid (below) where all three axes are of different lengths,
2308i.e., *Ra* =< *Rb* =< *Rc*\ . **Users should maintain this inequality for all calculations**.
[1c03e14]2309
[990c2eb]2310*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2311
[990c2eb]2312where the volume *V* = (4/3)\ |pi| (*Ra* *Rb* *Rc*), and the averaging < > is applied over all orientations for 1D.
[1c03e14]2313
[7f42aad]2314.. image:: img/image128.jpg
[1c03e14]2315
2316The returned value is in units of |cm^-1|, on absolute scale.
2317
[990c2eb]2318*2.1.28.1. Definition*
2319
2320The form factor calculated is
[1c03e14]2321
[990c2eb]2322.. image:: img/image129.PNG
[1c03e14]2323
[990c2eb]2324To provide easy access to the orientation of the triaxial ellipsoid, we define the axis of the cylinder using the
2325angles |theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is
2326the rotational angle around its own *semi_axisC* axis against the *q* plane. For example, |bigpsi| = 0 when the
2327*semi_axisA* axis is parallel to the *x*-axis of the detector.
[1c03e14]2328
[6386cd8]2329The radius-of-gyration for this system is *Rg*\ :sup:`2` = (*Ra*\ :sup:`2` *Rb*\ :sup:`2` *Rc*\ :sup:`2`)/5.
[1c03e14]2330
[990c2eb]2331The contrast is defined as SLD(ellipsoid) - SLD(solvent). In the parameters, *semi_axisA* = *Ra* (or minor equatorial
2332radius), *semi_axisB* = *Rb* (or major equatorial radius), and *semi_axisC* = *Rc* (or polar radius of the ellipsoid).
[1c03e14]2333
[990c2eb]2334NB: The 2nd virial coefficient of the triaxial solid ellipsoid is calculated based on the
2335*radius_a* (= *semi_axisC*\ ) and *radius_b* (= sqrt(*semi_axisA* \* *semi_axisB*)) values, and used as the effective
2336radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2337
2338==============  ========  =============
2339Parameter name  Units     Default value
2340==============  ========  =============
2341background      |cm^-1|   0.0
2342semi_axisA      |Ang|     35
2343semi_axisB      |Ang|     100
2344semi_axisC      |Ang|     400
2345scale           None      1
2346sldEll          |Ang^-2|  1.0e-06
2347sldSolv         |Ang^-2|  6.3e-06
2348==============  ========  =============
2349
[7f42aad]2350.. image:: img/image130.jpg
[1c03e14]2351
2352*Figure. 1D plot using the default values (w/1000 data point).*
2353
[990c2eb]2354*2.1.28.2.Validation of the TriaxialEllipsoidModel*
[1c03e14]2355
[990c2eb]2356Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
23572D calculation over all possible angles. The Figure below shows the comparison where the solid dot refers to averaged
23582D while the line represents the result of 1D calculation (for 2D averaging, 76, 180, and 76 points are taken for the
2359angles of |theta|, |phi|, and |psi| respectively).
[1c03e14]2360
[7f42aad]2361.. image:: img/image131.gif
[1c03e14]2362
2363*Figure. Comparison between 1D and averaged 2D.*
2364
[7f42aad]2365.. image:: img/image132.jpg
[1c03e14]2366
[990c2eb]2367*Figure. The angles for oriented ellipsoid.*
[1c03e14]2368
[990c2eb]2369Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2370(Kline, 2006)
[1c03e14]2371
2372REFERENCE
[bf8c07b]2373
[93b6fcc]2374L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[990c2eb]2375New York, 1987.
[1c03e14]2376
2377
2378
2379.. _LamellarModel:
2380
[77cfcf0]2381**2.1.29. LamellarModel**
[1c03e14]2382
[1127c32]2383This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar phase where a uniform SLD and random
2384distribution in solution are assumed. Polydispersity in the bilayer thickness can be applied from the GUI.
[1c03e14]2385
[1127c32]2386*2.1.29.1. Definition*
[1c03e14]2387
[1127c32]2388The scattering intensity *I(q)* is
[1c03e14]2389
[1127c32]2390.. image:: img/image133.PNG
[1c03e14]2391
[1127c32]2392The form factor is
[1c03e14]2393
[1127c32]2394.. image:: img/image134.PNG
[1c03e14]2395
[1127c32]2396where |delta| = bilayer thickness.
[1c03e14]2397
[1127c32]2398The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2399
[7f42aad]2400.. image:: img/image040.gif
[1c03e14]2401
[1127c32]2402The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_bi* = SLD of the bilayer,
2403*sld_sol* = SLD of the solvent, and *bi_thick* = thickness of the bilayer.
[1c03e14]2404
2405==============  ========  =============
2406Parameter name  Units     Default value
2407==============  ========  =============
2408background      |cm^-1|   0.0
2409sld_bi          |Ang^-2|  1e-06
2410bi_thick        |Ang|     50
2411sld_sol         |Ang^-2|  6e-06
2412scale           None      1
2413==============  ========  =============
2414
[7f42aad]2415.. image:: img/image135.jpg
[1c03e14]2416
2417*Figure. 1D plot using the default values (w/1000 data point).*
2418
[1127c32]2419Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2420(Kline, 2006).
[1c03e14]2421
2422REFERENCE
2423
[93b6fcc]2424F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2425
[bf8c07b]2426also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2427
2428
2429
2430.. _LamellarFFHGModel:
2431
[77cfcf0]2432**2.1.30. LamellarFFHGModel**
[1c03e14]2433
[1127c32]2434This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar phase where a random distribution in
2435solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail region.
[1c03e14]2436
[1127c32]2437*2.1.31.1. Definition*
[1c03e14]2438
[1127c32]2439The scattering intensity *I(q)* is
[1c03e14]2440
[1127c32]2441.. image:: img/image136.PNG
[1c03e14]2442
[1127c32]2443The form factor is
[1c03e14]2444
[7f42aad]2445.. image:: img/image137.jpg
[1c03e14]2446
[1127c32]2447where |delta|\ T = tail length (or *t_length*), |delta|\ H = head thickness (or *h_thickness*),
[3342eb3]2448|drho|\ H = SLD(headgroup) - SLD(solvent), and |drho|\ T = SLD(tail) - SLD(solvent). The total thickness is 2(H+T).
[1c03e14]2449
[1127c32]2450The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2451
[7f42aad]2452.. image:: img/image040.gif
[1c03e14]2453
[1127c32]2454The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_tail* = SLD of the tail group,
2455and *sld_head* = SLD of the head group.
[1c03e14]2456
2457==============  ========  =============
2458Parameter name  Units     Default value
2459==============  ========  =============
2460background      |cm^-1|   0.0
2461sld_head        |Ang^-2|  3e-06
2462scale           None      1
2463sld_solvent     |Ang^-2|  6e-06
2464h_thickness     |Ang|     10
2465t_length        |Ang|     15
2466sld_tail        |Ang^-2|  0
2467==============  ========  =============
2468
[7f42aad]2469.. image:: img/image138.jpg
[1c03e14]2470
2471*Figure. 1D plot using the default values (w/1000 data point).*
2472
[1127c32]2473Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2474(Kline, 2006).
[1c03e14]2475
2476REFERENCE
2477
[93b6fcc]2478F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2479
[bf8c07b]2480also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2481
[93b6fcc]2482*2014/04/17 - Description reviewed by S King and P Butler.*
[4ed2d0a1]2483
[1c03e14]2484
2485
2486.. _LamellarPSModel:
2487
[77cfcf0]2488**2.1.31. LamellarPSModel**
[1c03e14]2489
[1127c32]2490This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lyotropic lamellar phase where a random
2491distribution in solution are assumed.
[1c03e14]2492
[1127c32]2493*2.1.31.1. Definition*
[1c03e14]2494
[1127c32]2495The scattering intensity *I(q)* is
[1c03e14]2496
[1127c32]2497.. image:: img/image139.PNG
[1c03e14]2498
2499The form factor is
2500
[1127c32]2501.. image:: img/image134.PNG
[1c03e14]2502
[1127c32]2503and the structure factor is
[1c03e14]2504
[1127c32]2505.. image:: img/image140.PNG
[1c03e14]2506
2507where
2508
[1127c32]2509.. image:: img/image141.PNG
[1c03e14]2510
[58eccf6]2511Here *d* = (repeat) spacing, |delta| = bilayer thickness, the contrast |drho| = SLD(headgroup) - SLD(solvent),
[1127c32]2512K = smectic bending elasticity, B = compression modulus, and N = number of lamellar plates (*n_plates*).
[1c03e14]2513
[1127c32]2514NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.**
2515And due to a complication of the model function, users are responsible for making sure that all the assumptions are
2516handled accurately (see the original reference below for more details).
[1c03e14]2517
[1127c32]2518The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2519
[7f42aad]2520.. image:: img/image040.gif
[1c03e14]2521
2522The returned value is in units of |cm^-1|, on absolute scale.
2523
2524==============  ========  =============
2525Parameter name  Units     Default value
2526==============  ========  =============
2527background      |cm^-1|   0.0
2528contrast        |Ang^-2|  5e-06
2529scale           None      1
2530delta           |Ang|     30
2531n_plates        None      20
2532spacing         |Ang|     400
2533caille          |Ang^-2|  0.1
2534==============  ========  =============
2535
[7f42aad]2536.. image:: img/image142.jpg
[1c03e14]2537
2538*Figure. 1D plot using the default values (w/6000 data point).*
2539
[1127c32]2540Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2541(Kline, 2006).
[1c03e14]2542
2543REFERENCE
2544
[93b6fcc]2545F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2546
[bf8c07b]2547also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2548
2549
2550
2551.. _LamellarPSHGModel:
2552
[77cfcf0]2553**2.1.32. LamellarPSHGModel**
[1c03e14]2554
[1127c32]2555This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lyotropic lamellar phase where a random
2556distribution in solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail
2557region.
[1c03e14]2558
[1127c32]2559*2.1.32.1. Definition*
[1c03e14]2560
[1127c32]2561The scattering intensity *I(q)* is
[1c03e14]2562
[1127c32]2563.. image:: img/image139.PNG
[1c03e14]2564
[1127c32]2565The form factor is
[1c03e14]2566
[1127c32]2567.. image:: img/image143.PNG
[1c03e14]2568
2569The structure factor is
2570
[1127c32]2571.. image:: img/image140.PNG
[1c03e14]2572
2573where
2574
[1127c32]2575.. image:: img/image141.PNG
[1c03e14]2576
[1127c32]2577where |delta|\ T = tail length (or *t_length*), |delta|\ H = head thickness (or *h_thickness*),
[58eccf6]2578|drho|\ H = SLD(headgroup) - SLD(solvent), and |drho|\ T = SLD(tail) - SLD(headgroup).
[1127c32]2579Here *d* = (repeat) spacing, *K* = smectic bending elasticity, *B* = compression modulus, and N = number of lamellar
2580plates (*n_plates*).
[1c03e14]2581
[1127c32]2582NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.**
2583And due to a complication of the model function, users are responsible for making sure that all the assumptions are
2584handled accurately (see the original reference below for more details).
[1c03e14]2585
[1127c32]2586The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2587
[7f42aad]2588.. image:: img/image040.gif
[1c03e14]2589
[1127c32]2590The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_tail* = SLD of the tail group,
2591*sld_head* = SLD of the head group, and *sld_solvent* = SLD of the solvent.
[1c03e14]2592
2593==============  ========  =============
2594Parameter name  Units     Default value
2595==============  ========  =============
2596background      |cm^-1|   0.001
2597sld_head        |Ang^-2|  2e-06
2598scale           None      1
2599sld_solvent     |Ang^-2|  6e-06
2600deltaH          |Ang|     2
2601deltaT          |Ang|     10
2602sld_tail        |Ang^-2|  0
2603n_plates        None      30
2604spacing         |Ang|     40
2605caille          |Ang^-2|  0.001
2606==============  ========  =============
2607
[7f42aad]2608.. image:: img/image144.jpg
[1c03e14]2609
2610*Figure. 1D plot using the default values (w/6000 data point).*
2611
[1127c32]2612Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2613(Kline, 2006).
[1c03e14]2614
2615REFERENCE
2616
[93b6fcc]2617F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2618
[bf8c07b]2619also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2620
2621
2622
2623.. _LamellarPCrystalModel:
2624
[77cfcf0]2625**2.1.33. LamellarPCrystalModel**
[1c03e14]2626
[1127c32]2627This model calculates the scattering from a stack of repeating lamellar structures. The stacks of lamellae (infinite
2628in lateral dimension) are treated as a paracrystal to account for the repeating spacing. The repeat distance is further
2629characterized by a Gaussian polydispersity. **This model can be used for large multilamellar vesicles.**
[1c03e14]2630
[1127c32]2631*2.1.33.1. Definition*
[1c03e14]2632
[1127c32]2633The scattering intensity *I(q)* is calculated as
[1c03e14]2634
[7f42aad]2635.. image:: img/image145.jpg
[1c03e14]2636
[1127c32]2637The form factor of the bilayer is approximated as the cross section of an infinite, planar bilayer of thickness *t*
[1c03e14]2638
[7f42aad]2639.. image:: img/image146.jpg
[1c03e14]2640
[1127c32]2641Here, the scale factor is used instead of the mass per area of the bilayer (*G*). The scale factor is the volume
[d4117ccb]2642fraction of the material in the bilayer, *not* the total excluded volume of the paracrystal. *Z*\ :sub:`N`\ *(q)*
2643describes the interference effects for aggregates consisting of more than one bilayer. The equations used are (3-5)
2644from the Bergstrom reference below.
[1c03e14]2645
[1127c32]2646Non-integer numbers of stacks are calculated as a linear combination of the lower and higher values
[1c03e14]2647
[7f42aad]2648.. image:: img/image147.jpg
[1c03e14]2649
[1127c32]2650The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
[1c03e14]2651
[7f42aad]2652.. image:: img/image040.gif
[1c03e14]2653
[1127c32]2654The parameters of the model are *Nlayers* = no. of layers, and *pd_spacing* = polydispersity of spacing.
[1c03e14]2655
2656==============  ========  =============
2657Parameter name  Units     Default value
2658==============  ========  =============
2659background      |cm^-1|   0
2660scale           None      1
2661Nlayers         None      20
2662pd_spacing      None      0.2
2663sld_layer       |Ang^-2|  1e-6
2664sld_solvent     |Ang^-2|  6.34e-6
2665spacing         |Ang|     250
2666thickness       |Ang|     33
2667==============  ========  =============
2668
[7f42aad]2669.. image:: img/image148.jpg
[1c03e14]2670
[1127c32]2671*Figure. 1D plot using the default values above (w/20000 data point).*
[1c03e14]2672
[1127c32]2673Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2674(Kline, 2006).
[1c03e14]2675
2676REFERENCE
2677
[93b6fcc]2678M Bergstrom, J S Pedersen, P Schurtenberger, S U Egelhaaf, *J. Phys. Chem. B*, 103 (1999) 9888-9897
[1c03e14]2679
2680
2681
2682.. _SCCrystalModel:
2683
[77cfcf0]2684**2.1.34. SCCrystalModel**
[1c03e14]2685
[d4117ccb]2686Calculates the scattering from a **simple cubic lattice** with paracrystalline distortion. Thermal vibrations are
2687considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed
2688to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2689
[77cfcf0]2690The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2691
[d4117ccb]2692*2.1.34.1. Definition*
[1c03e14]2693
[4ed2d0a1]2694The scattering intensity *I(q)* is calculated as
[1c03e14]2695
[7f42aad]2696.. image:: img/image149.jpg
[1c03e14]2697
[d4117ccb]2698where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2699correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2700paracrystalline structure factor for a simple cubic structure.
[1c03e14]2701
[d4117ccb]2702Equation (16) of the 1987 reference is used to calculate *Z(q)*, using equations (13)-(15) from the 1987 paper for
2703*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2704
[d4117ccb]2705The lattice correction (the occupied volume of the lattice) for a simple cubic structure of particles of radius *R*
2706and nearest neighbor separation *D* is
[1c03e14]2707
[7f42aad]2708.. image:: img/image150.jpg
[1c03e14]2709
[d4117ccb]2710The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2711
[7f42aad]2712.. image:: img/image151.jpg
[1c03e14]2713
[d4117ccb]2714where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2715
[d4117ccb]2716The simple cubic lattice is
[1c03e14]2717
[7f42aad]2718.. image:: img/image152.jpg
[1c03e14]2719
[d4117ccb]2720For a crystal, diffraction peaks appear at reduced *q*\ -values given by
[1c03e14]2721
[7f42aad]2722.. image:: img/image153.jpg
[1c03e14]2723
[d4117ccb]2724where for a simple cubic lattice any *h*\ , *k*\ , *l* are allowed and none are forbidden. Thus the peak positions
2725correspond to (just the first 5)
[1c03e14]2726
[7f42aad]2727.. image:: img/image154.jpg
[1c03e14]2728
[d4117ccb]2729**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2730**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2731SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2732makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2733
2734==============  ========  =============
2735Parameter name  Units     Default value
2736==============  ========  =============
2737background      |cm^-1|   0
2738dnn             |Ang|     220
2739scale           None      1
2740sldSolv         |Ang^-2|  6.3e-06
2741radius          |Ang|     40
2742sld_Sph         |Ang^-2|  3e-06
2743d_factor        None      0.06
2744==============  ========  =============
2745
[d4117ccb]2746This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2747default values.
[bf8c07b]2748
[7f42aad]2749.. image:: img/image155.jpg
[1c03e14]2750
[d4117ccb]2751*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2752
[d4117ccb]2753The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2754scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2755computation.
[1c03e14]2756
[7f42aad]2757.. image:: img/image156.jpg
[1c03e14]2758
[7f42aad]2759.. image:: img/image157.jpg
[1c03e14]2760
[d4117ccb]2761*Figure. 2D plot using the default values (w/200X200 pixels).*
[1c03e14]2762
[d4117ccb]2763REFERENCE
[1c03e14]2764
[d4117ccb]2765Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2766(Original Paper)
[1c03e14]2767
[d4117ccb]2768Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2769(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2770
2771
2772
2773.. _FCCrystalModel:
2774
[77cfcf0]2775**2.1.35. FCCrystalModel**
[1c03e14]2776
[d4117ccb]2777Calculates the scattering from a **face-centered cubic lattice** with paracrystalline distortion. Thermal vibrations
2778are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
2779assumed to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2780
[77cfcf0]2781The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2782
[d4117ccb]2783*2.1.35.1. Definition*
[1c03e14]2784
[d4117ccb]2785The scattering intensity *I(q)* is calculated as
[1c03e14]2786
[7f42aad]2787.. image:: img/image158.jpg
[1c03e14]2788
[d4117ccb]2789where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2790correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2791paracrystalline structure factor for a face-centered cubic structure.
[1c03e14]2792
[d4117ccb]2793Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (23)-(25) from the 1987 paper for
2794*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2795
[d4117ccb]2796The lattice correction (the occupied volume of the lattice) for a face-centered cubic structure of particles of radius
2797*R* and nearest neighbor separation *D* is
[1c03e14]2798
[7f42aad]2799.. image:: img/image159.jpg
[1c03e14]2800
[d4117ccb]2801The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2802
[7f42aad]2803.. image:: img/image160.jpg
[1c03e14]2804
[d4117ccb]2805where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2806
[d4117ccb]2807The face-centered cubic lattice is
[1c03e14]2808
[7f42aad]2809.. image:: img/image161.jpg
[1c03e14]2810
[d4117ccb]2811For a crystal, diffraction peaks appear at reduced q-values given by
[1c03e14]2812
[7f42aad]2813.. image:: img/image162.jpg
[1c03e14]2814
[d4117ccb]2815where for a face-centered cubic lattice *h*\ , *k*\ , *l* all odd or all even are allowed and reflections where
2816*h*\ , *k*\ , *l* are mixed odd/even are forbidden. Thus the peak positions correspond to (just the first 5)
[1c03e14]2817
[7f42aad]2818.. image:: img/image163.jpg
[1c03e14]2819
[d4117ccb]2820**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2821**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2822SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2823makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2824
2825==============  ========  =============
2826Parameter name  Units     Default value
2827==============  ========  =============
2828background      |cm^-1|   0
2829dnn             |Ang|     220
2830scale           None      1
2831sldSolv         |Ang^-2|  6.3e-06
2832radius          |Ang|     40
2833sld_Sph         |Ang^-2|  3e-06
2834d_factor        None      0.06
2835==============  ========  =============
2836
[d4117ccb]2837This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2838default values.
[1c03e14]2839
[7f42aad]2840.. image:: img/image164.jpg
[1c03e14]2841
[d4117ccb]2842*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2843
[d4117ccb]2844The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2845scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2846computation.
[1c03e14]2847
[7f42aad]2848.. image:: img/image165.gif
[1c03e14]2849
[7f42aad]2850.. image:: img/image166.jpg
[1c03e14]2851
2852*Figure. 2D plot using the default values (w/200X200 pixels).*
2853
[d4117ccb]2854REFERENCE
[1c03e14]2855
[d4117ccb]2856Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2857(Original Paper)
[1c03e14]2858
[d4117ccb]2859Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2860(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2861
2862
2863
[d4117ccb]2864.. _BCCrystalModel:
[1c03e14]2865
[d4117ccb]2866**2.1.36. BCCrystalModel**
[1c03e14]2867
[d4117ccb]2868Calculates the scattering from a **body-centered cubic lattice** with paracrystalline distortion. Thermal vibrations
2869are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
2870assumed to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2871
[d4117ccb]2872The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2873
[d4117ccb]2874*2.1.36.1. Definition**
[1c03e14]2875
[d4117ccb]2876The scattering intensity *I(q)* is calculated as
[1c03e14]2877
[7f42aad]2878.. image:: img/image167.jpg
[1c03e14]2879
[d4117ccb]2880where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2881correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2882paracrystalline structure factor for a body-centered cubic structure.
[1c03e14]2883
[d4117ccb]2884Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (29)-(31) from the 1987 paper for
2885*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2886
[d4117ccb]2887The lattice correction (the occupied volume of the lattice) for a body-centered cubic structure of particles of radius
2888*R* and nearest neighbor separation *D* is
[1c03e14]2889
[7f42aad]2890.. image:: img/image159.jpg
[1c03e14]2891
[d4117ccb]2892The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2893
[7f42aad]2894.. image:: img/image160.jpg
[1c03e14]2895
[d4117ccb]2896where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2897
[d4117ccb]2898The body-centered cubic lattice is
[1c03e14]2899
[7f42aad]2900.. image:: img/image168.jpg
[1c03e14]2901
[d4117ccb]2902For a crystal, diffraction peaks appear at reduced q-values given by
[1c03e14]2903
[7f42aad]2904.. image:: img/image162.jpg
[1c03e14]2905
[d4117ccb]2906where for a body-centered cubic lattice, only reflections where (\ *h* + *k* + *l*\ ) = even are allowed and
2907reflections where (\ *h* + *k* + *l*\ ) = odd are forbidden. Thus the peak positions correspond to (just the first 5)
[1c03e14]2908
[7f42aad]2909.. image:: img/image169.jpg
[1c03e14]2910
[d4117ccb]2911**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2912**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2913SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2914makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2915
2916==============  ========  =============
2917Parameter name  Units     Default value
2918==============  ========  =============
2919background      |cm^-1|   0
2920dnn             |Ang|     220
2921scale           None      1
2922sldSolv         |Ang^-2|  6.3e-006
2923radius          |Ang|     40
2924sld_Sph         |Ang^-2|  3e-006
2925d_factor        None      0.06
2926==============  ========  =============
2927
[d4117ccb]2928This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2929default values.
[bf8c07b]2930
[7f42aad]2931.. image:: img/image170.jpg
[1c03e14]2932
[d4117ccb]2933*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2934
[d4117ccb]2935The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2936scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2937computation.
[1c03e14]2938
[7f42aad]2939.. image:: img/image165.gif
[1c03e14]2940
[7f42aad]2941.. image:: img/image171.jpg
[1c03e14]2942
[d4117ccb]2943*Figure. 2D plot using the default values (w/200X200 pixels).*
[1c03e14]2944
[d4117ccb]2945REFERENCE
[1c03e14]2946
[d4117ccb]2947Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2948(Original Paper)
[1c03e14]2949
[d4117ccb]2950Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2951(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2952
2953
2954
2955.. _ParallelepipedModel:
2956
[77cfcf0]2957**2.1.37. ParallelepipedModel**
[1c03e14]2958
[bf8c07b]2959This model provides the form factor, *P(q)*, for a rectangular cylinder (below) where the form factor is normalized by
[6386cd8]2960the volume of the cylinder. If you need to apply polydispersity, see the RectangularPrismModel_.
[1c03e14]2961
[bf8c07b]2962*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2963
[bf8c07b]2964where the volume *V* = *A B C* and the averaging < > is applied over all orientations for 1D.
[1c03e14]2965
[bf8c07b]2966For information about polarised and magnetic scattering, click here_.
[1c03e14]2967
[7f42aad]2968.. image:: img/image087.jpg
[1c03e14]2969
[bf8c07b]2970*2.1.37.1. Definition*
[1c03e14]2971
[bf8c07b]2972**The edge of the solid must satisfy the condition that** *A* < *B*. Then, assuming *a* = *A* / *B* < 1,
2973*b* = *B* / *B* = 1, and *c* = *C* / *B* > 1, the form factor is
[1c03e14]2974
[bf8c07b]2975.. image:: img/image088.PNG
[1c03e14]2976
[bf8c07b]2977and the contrast is defined as
[1c03e14]2978
[bf8c07b]2979.. image:: img/image089.PNG
[1c03e14]2980
[bf8c07b]2981The scattering intensity per unit volume is returned in units of |cm^-1|; ie, *I(q)* = |phi| *P(q)*\ .
[1c03e14]2982
[bf8c07b]2983NB: The 2nd virial coefficient of the parallelpiped is calculated based on the the averaged effective radius
2984(= sqrt(*short_a* \* *short_b* / |pi|)) and length(= *long_c*) values, and used as the effective radius for
2985*S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2986
[bf8c07b]2987To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles
2988|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the
2989rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is
2990parallel to the *x*-axis of the detector.
[1c03e14]2991
[7f42aad]2992.. image:: img/image090.jpg
[1c03e14]2993
2994*Figure. Definition of angles for 2D*.
2995
[7f42aad]2996.. image:: img/image091.jpg
[1c03e14]2997
[bf8c07b]2998*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]2999
3000==============  ========  =============
3001Parameter name  Units     Default value
3002==============  ========  =============
3003background      |cm^-1|   0.0
3004contrast        |Ang^-2|  5e-06
3005long_c          |Ang|     400
3006short_a         |Ang^-2|  35
3007short_b         |Ang|     75
3008scale           None      1
3009==============  ========  =============
3010
[7f42aad]3011.. image:: img/image092.jpg
[1c03e14]3012
3013*Figure. 1D plot using the default values (w/1000 data point).*
3014
[bf8c07b]3015*2.1.37.2. Validation of the parallelepiped 2D model*
[1c03e14]3016
[bf8c07b]3017Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
3018a 2D calculation over all possible angles. The Figure below shows the comparison where the solid dot refers to averaged
30192D while the line represents the result of the 1D calculation (for the averaging, 76, 180, 76 points are taken for the
3020angles of |theta|, |phi|, and |psi| respectively).
[1c03e14]3021
[7f42aad]3022.. image:: img/image093.gif
[1c03e14]3023
3024*Figure. Comparison between 1D and averaged 2D.*
3025
[bf8c07b]3026Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
3027(Kline, 2006).
[1c03e14]3028
3029REFERENCE
3030
[93b6fcc]3031P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
[1c03e14]3032Equations (1), (13-14). (in German)
3033
3034
3035
3036.. _CSParallelepipedModel:
3037
[77cfcf0]3038**2.1.38. CSParallelepipedModel**
[1c03e14]3039
[bf8c07b]3040Calculates the form factor for a rectangular solid with a core-shell structure. **The thickness and the scattering**
3041**length density of the shell or "rim" can be different on all three (pairs) of faces.**
3042
3043The form factor is normalized by the particle volume *V* such that
[1c03e14]3044
[bf8c07b]3045*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]3046
[bf8c07b]3047where < > is an average over all possible orientations of the rectangular solid.
[1c03e14]3048
[bf8c07b]3049An instrument resolution smeared version of the model is also provided.
[1c03e14]3050
[bf8c07b]3051*2.1.38.1. Definition*
[1c03e14]3052
[bf8c07b]3053The function calculated is the form factor of the rectangular solid below. The core of the solid is defined by the
3054dimensions *A*, *B*, *C* such that *A* < *B* < *C*.
[1c03e14]3055
[7f42aad]3056.. image:: img/image087.jpg
[1c03e14]3057
[bf8c07b]3058There are rectangular "slabs" of thickness *tA* that add to the *A* dimension (on the *BC* faces). There are similar
3059slabs on the *AC* (= *tB*) and *AB* (= *tC*) faces. The projection in the *AB* plane is then
[1c03e14]3060
[7f42aad]3061.. image:: img/image094.jpg
[1c03e14]3062
[bf8c07b]3063The volume of the solid is
[1c03e14]3064
[bf8c07b]3065.. image:: img/image095.PNG
[1c03e14]3066
[bf8c07b]3067**meaning that there are "gaps" at the corners of the solid.**
[1c03e14]3068
[bf8c07b]3069The intensity calculated follows the ParallelepipedModel_, with the core-shell intensity being calculated as the
3070square of the sum of the amplitudes of the core and shell, in the same manner as a CoreShellModel_.
[1c03e14]3071
[bf8c07b]3072**For the calculation of the form factor to be valid, the sides of the solid MUST be chosen such that** *A* < *B* < *C*.
3073**If this inequality is not satisfied, the model will not report an error, and the calculation will not be correct.**
[1c03e14]3074
[bf8c07b]3075FITTING NOTES
3076If the scale is set equal to the particle volume fraction, |phi|, the returned value is the scattered intensity per
3077unit volume; ie, *I(q)* = |phi| *P(q)*\ . However, **no interparticle interference effects are included in this**
3078**calculation.**
[1c03e14]3079
[bf8c07b]3080There are many parameters in this model. Hold as many fixed as possible with known values, or you will certainly end
3081up at a solution that is unphysical.
[1c03e14]3082
[bf8c07b]3083Constraints must be applied during fitting to ensure that the inequality *A* < *B* < *C* is not violated. The
3084calculation will not report an error, but the results will not be correct.
[1c03e14]3085
3086The returned value is in units of |cm^-1|, on absolute scale.
3087
[bf8c07b]3088NB: The 2nd virial coefficient of the CSParallelpiped is calculated based on the the averaged effective radius
3089(= sqrt((*short_a* + 2 *rim_a*) \* (*short_b* + 2 *rim_b*) / |pi|)) and length(= *long_c* + 2 *rim_c*) values, and
3090used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]3091
[bf8c07b]3092To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles
3093|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the
3094rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is
3095parallel to the *x*-axis of the detector.
[1c03e14]3096
[7f42aad]3097.. image:: img/image090.jpg
[1c03e14]3098
3099*Figure. Definition of angles for 2D*.
3100
[7f42aad]3101.. image:: img/image091.jpg
[1c03e14]3102
[bf8c07b]3103*Figure. Examples of the angles for oriented cspp against the detector plane.*
[1c03e14]3104
[bf8c07b]3105This example dataset was produced by running the Macro Plot_CSParallelepiped(), using 100 data points,
3106*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]3107
3108==============  ========  =============
3109Parameter name  Units     Default value
3110==============  ========  =============
3111background      |cm^-1|   0.06
3112sld_pcore       |Ang^-2|  1e-06
3113sld_rimA        |Ang^-2|  2e-06
3114sld_rimB        |Ang^-2|  4e-06
3115sld_rimC        |Ang^-2|  2e-06
3116sld_solv        |Ang^-2|  6e-06
3117rimA            |Ang|     10
3118rimB            |Ang|     10
3119rimC            |Ang|     10
3120longC           |Ang|     400
3121shortA          |Ang|     35
3122midB            |Ang|     75
3123scale           None      1
3124==============  ========  =============
3125
[7f42aad]3126.. image:: img/image096.jpg
[1c03e14]3127
3128*Figure. 1D plot using the default values (w/256 data points).*
3129
[7f42aad]3130.. image:: img/image097.jpg
[1c03e14]3131
[bf8c07b]3132*Figure. 2D plot using the default values (w/(256X265) data points).*
[1c03e14]3133
[bf8c07b]3134Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
3135(Kline, 2006).
[1c03e14]3136
3137REFERENCE
3138
[93b6fcc]3139P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
[bf8c07b]3140Equations (1), (13-14). (in German)
[1c03e14]3141
3142
3143
[6386cd8]3144.. _RectangularPrismModel:
3145
3146**2.1.39. RectangularPrismModel**
3147
3148This model provides the form factor, *P(q)*, for a rectangular prism.
3149
3150Note that this model is almost totally equivalent to the existing ParallelepipedModel_. The only difference is that the
3151way the relevant parameters are defined here (*a*, *b/a*, *c/a* instead of *a*, *b*, *c*) allows to use polydispersity
3152with this model while keeping the shape of the prism (e.g. setting *b/a* = 1 and *c/a* = 1 and applying polydispersity
3153to *a* will generate a distribution of cubes of different sizes).
3154
3155*2.1.39.1. Definition*
3156
3157The 1D scattering intensity for this model was calculated by Mittelbach and Porod (Mittelbach, 1961), but the
3158implementation here is closer to the equations given by Nayuk and Huber (Nayuk, 2012).
3159
3160The scattering from a massive parallelepiped with an orientation with respect to the scattering vector given by |theta|
3161and |phi| is given by
3162
3163.. math::
3164  A_P\,(q) =  \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \, \times \,
3165  \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \, \times \,
3166  \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi}
3167
3168where *A*, *B* and *C* are the sides of the parallelepiped and must fulfill :math:`A \le B \le C`, |theta| is the angle
3169between the *z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering
3170vector (lying in the *xy* plane) and the *y* axis.
3171
3172The normalized form factor in 1D is obtained averaging over all possible orientations
3173
3174.. math::
3175  P(q) =  \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_P^2(q) \, \sin\theta \, d\theta \, d\phi
3176
3177The 1D scattering intensity is then calculated as
3178
3179.. math::
3180  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3181
3182where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the
3183parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute
3184units) *scale* represents the volume fraction (which is unitless).
3185
3186**The 2D scattering intensity is not computed by this model.**
3187
3188The returned value is scaled to units of |cm^-1| and the parameters of the RectangularPrismModel are the following
3189
3190==============  ========  =============
3191Parameter name  Units     Default value
3192==============  ========  =============
3193scale           None      1
3194short_side      |Ang|     35
3195b2a_ratio       None      1
3196c2a_ratio       None      1
3197sldPipe         |Ang^-2|  6.3e-6
3198sldSolv         |Ang^-2|  1.0e-6
3199background      |cm^-1|   0
3200==============  ========  =============
3201
3202*2.1.39.2. Validation of the RectangularPrismModel*
3203
3204Validation of the code was conducted by comparing the output of the 1D model to the output of the existing
3205parallelepiped model.
3206
3207REFERENCES
3208
3209P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
3210
3211R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3212
3213
3214
3215.. _RectangularHollowPrismModel:
3216
3217**2.1.40. RectangularHollowPrismModel**
3218
3219This model provides the form factor, *P(q)*, for a hollow rectangular parallelepiped with a wall thickness |bigdelta|.
3220
3221*2.1.40.1. Definition*
3222
3223The 1D scattering intensity for this model is calculated by forming the difference of the amplitudes of two massive
3224parallelepipeds differing in their outermost dimensions in each direction by the same length increment 2 |bigdelta|
3225(Nayuk, 2012).
3226
3227As in the case of the massive parallelepiped, the scattering amplitude is computed for a particular orientation of the
3228parallelepiped with respect to the scattering vector and then averaged over all possible orientations, giving
3229
3230.. math::
3231  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_{P\Delta}^2(q) \,
3232  \sin\theta \, d\theta \, d\phi
3233
3234where |theta| is the angle between the *z* axis and the longest axis of the parallelepiped, |phi| is the angle between
3235the scattering vector (lying in the *xy* plane) and the *y* axis, and
3236
3237.. math::
3238  A_{P\Delta}\,(q) =  A \, B \, C \, \times
3239                      \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \,
3240                      \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \,
3241                      \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi} -
3242                      8 \, \bigl( \frac{A}{2} - \Delta \bigr) \, \bigl( \frac{B}{2} - \Delta \bigr) \,
3243                      \bigl( \frac{C}{2} - \Delta \bigr) \, \times
3244                      \frac{\sin \bigl[ q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta \bigr]}
3245                      {q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta} \,
3246                      \frac{\sin \bigl[ q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi \bigr]}
3247                      {q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi} \,
3248                      \frac{\sin \bigl[ q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi \bigr]}
3249                      {q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi} \,
3250
3251where *A*, *B* and *C* are the external sides of the parallelepiped fulfilling :math:`A \le B \le C`, and the volume *V*
3252of the parallelepiped is
3253
3254.. math::
3255  V = A B C \, - \, (A - 2\Delta) (B - 2\Delta) (C - 2\Delta)
3256
3257The 1D scattering intensity is then calculated as
3258
3259.. math::
3260  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3261
3262where :math:`\rho_{\mbox{pipe}}` is the scattering length of the parallelepiped, :math:`\rho_{\mbox{solvent}}` is the
3263scattering length of the solvent, and (if the data are in absolute units) *scale* represents the volume fraction (which
3264is unitless).
3265
3266**The 2D scattering intensity is not computed by this model.**
3267
3268The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismModel are the
3269following
3270
3271==============  ========  =============
3272Parameter name  Units     Default value
3273==============  ========  =============
3274scale           None      1
3275short_side      |Ang|     35
3276b2a_ratio       None      1
3277c2a_ratio       None      1
3278thickness       |Ang|     1
3279sldPipe         |Ang^-2|  6.3e-6
3280sldSolv         |Ang^-2|  1.0e-6
3281background      |cm^-1|   0
3282==============  ========  =============
3283
3284*2.1.40.2. Validation of the RectangularHollowPrismModel*
3285
3286Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown in
3287(Nayuk, 2012).
3288
3289REFERENCES
3290
3291R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3292
3293
3294
3295.. _RectangularHollowPrismInfThinWallsModel:
3296
3297**2.1.41. RectangularHollowPrismInfThinWallsModel**
3298
3299This model provides the form factor, *P(q)*, for a hollow rectangular prism with infinitely thin walls.
3300
3301*2.1.41.1. Definition*
3302
3303The 1D scattering intensity for this model is calculated according to the equations given by Nayuk and Huber
3304(Nayuk, 2012).
3305
3306Assuming a hollow parallelepiped with infinitely thin walls, edge lengths :math:`A \le B \le C` and presenting an
3307orientation with respect to the scattering vector given by |theta| and |phi|, where |theta| is the angle between the
3308*z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering vector
3309(lying in the *xy* plane) and the *y* axis, the form factor is given by
3310
3311.. math::
3312  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} [A_L(q)+A_T(q)]^2
3313  \, \sin\theta \, d\theta \, d\phi
3314
3315where
3316
3317.. math::
3318  V = 2AB + 2AC + 2BC
3319
3320.. math::
3321  A_L\,(q) =  8 \times \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3322                              \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr)
3323                              \cos \bigl( q \frac{C}{2} \cos\theta \bigr) }
3324                            {q^2 \, \sin^2\theta \, \sin\phi \cos\phi}
3325
3326.. math::
3327  A_T\,(q) =  A_F\,(q) \times \frac{2 \, \sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \, \cos\theta}
3328
3329and
3330
3331.. math::
3332  A_F\,(q) =  4 \frac{ \cos \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3333                       \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) }
3334                     {q \, \cos\phi \, \sin\theta} +
3335              4 \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3336                       \cos \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) }
3337                     {q \, \sin\phi \, \sin\theta}
3338
3339The 1D scattering intensity is then calculated as
3340
3341.. math::
3342  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3343
3344where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the
3345parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute
3346units) *scale* represents the volume fraction (which is unitless).
3347
3348**The 2D scattering intensity is not computed by this model.**
3349
3350The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismInfThinWallModel
3351are the following
3352
3353==============  ========  =============
3354Parameter name  Units     Default value
3355==============  ========  =============
3356scale           None      1
3357short_side      |Ang|     35
3358b2a_ratio       None      1
3359c2a_ratio       None      1
3360sldPipe         |Ang^-2|  6.3e-6
3361sldSolv         |Ang^-2|  1.0e-6
3362background      |cm^-1|   0
3363==============  ========  =============
3364
3365*2.1.41.2. Validation of the RectangularHollowPrismInfThinWallsModel*
3366
3367Validation of the code was conducted  by qualitatively comparing the output of the 1D model to the curves shown in
3368(Nayuk, 2012).
3369
3370REFERENCES
3371
3372R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3373
3374
3375
[7072ce6]3376.. _MicelleSphCoreModel:
3377
3378**2.1.42. MicelleSphCoreModel**
3379
3380This model provides the form factor, *P(q)*, for a micelle with a spherical core
3381and Gaussian polymer chains attached to the surface.
3382
3383*2.1.42.1. Definition*
3384
3385The 1D scattering intensity for this model is calculated according to the equations given by Pedersen
3386(Pedersen, 2000).
3387
3388*2.1.42.2. Validation of the MicelleSphCoreModel*
3389
3390This model has not yet been validated. Feb2015
3391
3392REFERENCES
3393
3394J Pedersen, *J. Appl. Cryst.*, 33 (2000) 637-640
3395
3396
3397
[1c03e14]33982.2 Shape-independent Functions
3399-------------------------------
3400
[6386cd8]3401The following are models used for shape-independent SAS analysis.
[1c03e14]3402
[4ed2d0a1]3403.. _Debye:
[1c03e14]3404
[58eccf6]3405**2.2.1. Debye (Gaussian Coil Model)**
[1c03e14]3406
[6386cd8]3407The Debye model is a form factor for a linear polymer chain obeying Gaussian statistics (ie, it is in the theta state).
3408In addition to the radius-of-gyration, *Rg*, a scale factor *scale*, and a constant background term are included in the
3409calculation. **NB: No size polydispersity is included in this model, use the** Poly_GaussCoil_ **Model instead**
[1c03e14]3410
[4ed2d0a1]3411.. image:: img/image172.PNG
[1c03e14]3412
[93b6fcc]3413For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3414
[7f42aad]3415.. image:: img/image040.gif
[1c03e14]3416
[4ed2d0a1]3417==============  ========  =============
3418Parameter name  Units     Default value
3419==============  ========  =============
[58eccf6]3420scale           None      1.0
3421rg              |Ang|     50.0
3422background      |cm^-1|   0.0
[4ed2d0a1]3423==============  ========  =============
[1c03e14]3424
[7f42aad]3425.. image:: img/image173.jpg
[1c03e14]3426
[4ed2d0a1]3427*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3428
[4ed2d0a1]3429REFERENCE
[1c03e14]3430
[93b6fcc]3431R J Roe, *Methods of X-Ray and Neutron Scattering in Polymer Science*, Oxford University Press, New York (2000)
[1c03e14]3432
3433
3434
[4ed2d0a1]3435.. _BroadPeakModel:
[1c03e14]3436
[58eccf6]3437**2.2.2. BroadPeakModel**
[1c03e14]3438
[6386cd8]3439This model calculates an empirical functional form for SAS data characterized by a broad scattering peak. Many SAS
[93b6fcc]3440spectra are characterized by a broad peak even though they are from amorphous soft materials. For example, soft systems
[6386cd8]3441that show a SAS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc.
[93b6fcc]3442
3443The d-spacing corresponding to the broad peak is a characteristic distance between the scattering inhomogeneities (such
3444as in lamellar, cylindrical, or spherical morphologies, or for bicontinuous structures).
[1c03e14]3445
[4ed2d0a1]3446The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3447
[93b6fcc]3448*2.2.2.1. Definition*
3449
3450The scattering intensity *I(q)* is calculated as
[1c03e14]3451
[7f42aad]3452.. image:: img/image174.jpg
[1c03e14]3453
[93b6fcc]3454Here the peak position is related to the d-spacing as *Q0* = 2|pi| / *d0*.
[1c03e14]3455
[93b6fcc]3456For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3457
[7f42aad]3458.. image:: img/image040.gif
[1c03e14]3459
[93b6fcc]3460==================  ========  =============
3461Parameter name      Units     Default value
3462==================  ========  =============
3463scale_l    (=C)     None      10
3464scale_p    (=A)     None      1e-05
3465length_l (= |xi| )  |Ang|     50
3466q_peak    (=Q0)     |Ang^-1|  0.1
3467exponent_p (=n)     None      2
3468exponent_l (=m)     None      3
3469Background (=B)     |cm^-1|   0.1
3470==================  ========  =============
[1c03e14]3471
[7f42aad]3472.. image:: img/image175.jpg
[1c03e14]3473
[4ed2d0a1]3474*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3475
[4ed2d0a1]3476REFERENCE
[1c03e14]3477
[4ed2d0a1]3478None.
[1c03e14]3479
[93b6fcc]3480*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3481
3482
3483
[4ed2d0a1]3484.. _CorrLength:
[1c03e14]3485
[58eccf6]3486**2.2.3. CorrLength (Correlation Length Model)**
[1c03e14]3487
[6386cd8]3488Calculates an empirical functional form for SAS data characterized by a low-Q signal and a high-Q signal.
[1c03e14]3489
[4ed2d0a1]3490The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3491
[93b6fcc]3492*2.2.3. Definition*
3493
3494The scattering intensity *I(q)* is calculated as
[1c03e14]3495
[7f42aad]3496.. image:: img/image176.jpg
[1c03e14]3497
[93b6fcc]3498The first term describes Porod scattering from clusters (exponent = n) and the second term is a Lorentzian function
3499describing scattering from polymer chains (exponent = *m*). This second term characterizes the polymer/solvent
3500interactions and therefore the thermodynamics. The two multiplicative factors *A* and *C*, the incoherent
3501background *B* and the two exponents *n* and *m* are used as fitting parameters. The final parameter |xi| is a
3502correlation length for the polymer chains. Note that when *m*\ =2 this functional form becomes the familiar Lorentzian
3503function. 
[1c03e14]3504
[93b6fcc]3505For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3506
[7f42aad]3507.. image:: img/image040.gif
[1c03e14]3508
[93b6fcc]3509====================  ========  =============
3510Parameter name        Units     Default value
3511====================  ========  =============
3512scale_l    (=C)       None      10
3513scale_p    (=A)       None      1e-06
3514length_l   (= |xi| )  |Ang|     50
3515exponent_p (=n)       None      2
3516exponent_l (=m)       None      3
3517Background (=B)       |cm^-1|   0.1
3518====================  ========  =============
[1c03e14]3519
[7f42aad]3520.. image:: img/image177.jpg
[1c03e14]3521
[4ed2d0a1]3522*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3523
[4ed2d0a1]3524REFERENCE
[1c03e14]3525
[93b6fcc]3526B Hammouda, D L Ho and S R Kline, *Insight into Clustering in Poly(ethylene oxide) Solutions*, *Macromolecules*, 37
3527(2004) 6932-6937
[1c03e14]3528
[93b6fcc]3529*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3530
3531
3532
[4ed2d0a1]3533.. _Lorentz:
[1c03e14]3534
[58eccf6]3535**2.2.4. Lorentz (Ornstein-Zernicke Model)**
[1c03e14]3536
[93b6fcc]3537*2.2.4.1. Definition*
3538
3539The Ornstein-Zernicke model is defined by
[1c03e14]3540
[4ed2d0a1]3541.. image:: img/image178.PNG
[1c03e14]3542
[93b6fcc]3543The parameter *L* is the screening length.
[1c03e14]3544
[93b6fcc]3545For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3546
[7f42aad]3547.. image:: img/image040.gif
[bf8c07b]3548
[4ed2d0a1]3549==============  ========  =============
3550Parameter name  Units     Default value
3551==============  ========  =============
[58eccf6]3552scale           None      1.0
3553length          |Ang|     50.0
3554background      |cm^-1|   0.0
[4ed2d0a1]3555==============  ========  =============
[1c03e14]3556
[7f42aad]3557.. image:: img/image179.jpg
[1c03e14]3558
[93b6fcc]3559* Figure. 1D plot using the default values (w/200 data point).*
3560
3561REFERENCE
3562
3563None.
[1c03e14]3564
3565
3566
[4ed2d0a1]3567.. _DABModel:
[1c03e14]3568
[58eccf6]3569**2.2.5. DABModel (Debye-Anderson-Brumberger Model)**
[1c03e14]3570
[93b6fcc]3571Calculates the scattering from a randomly distributed, two-phase system based on the Debye-Anderson-Brumberger (DAB)
3572model for such systems. The two-phase system is characterized by a single length scale, the correlation length, which
3573is a measure of the average spacing between regions of phase 1 and phase 2. **The model also assumes smooth interfaces**
3574**between the phases** and hence exhibits Porod behavior (I ~ *q*\ :sup:`-4`) at large *q* (*QL* >> 1).
3575
3576The DAB model is ostensibly a development of the earlier Debye-Bueche model.
3577
3578*2.2.5.1. Definition*
[1c03e14]3579
[4ed2d0a1]3580.. image:: img/image180.PNG
[1c03e14]3581
[93b6fcc]3582The parameter *L* is the correlation length.
[1c03e14]3583
[93b6fcc]3584For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3585
[7f42aad]3586.. image:: img/image040.gif
[1c03e14]3587
[4ed2d0a1]3588==============  ========  =============
3589Parameter name  Units     Default value
3590==============  ========  =============
[58eccf6]3591scale           None      1.0
3592length          |Ang|     50.0
3593background      |cm^-1|   0.0
[4ed2d0a1]3594==============  ========  =============
[1c03e14]3595
[7f42aad]3596.. image:: img/image181.jpg
[1c03e14]3597
[93b6fcc]3598* Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3599
[4ed2d0a1]3600REFERENCE
[1c03e14]3601
[93b6fcc]3602P Debye, H R Anderson, H Brumberger, *Scattering by an Inhomogeneous Solid. II. The Correlation Function*
3603*and its Application*, *J. Appl. Phys.*, 28(6) (1957) 679
[1c03e14]3604
[93b6fcc]3605P Debye, A M Bueche, *Scattering by an Inhomogeneous Solid*, *J. Appl. Phys.*, 20 (1949) 518
[1c03e14]3606
[93b6fcc]3607*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3608
3609
3610
[4ed2d0a1]3611.. _AbsolutePower_Law:
[1c03e14]3612
[58eccf6]3613**2.2.6. AbsolutePower_Law**
[1c03e14]3614
[93b6fcc]3615This model describes a simple power law with background.
[1c03e14]3616
[4ed2d0a1]3617.. image:: img/image182.PNG
[1c03e14]3618
[93b6fcc]3619Note the minus sign in front of the exponent. The parameter *m* should therefore be entered as a **positive** number.
[1c03e14]3620
[4ed2d0a1]3621==============  ========  =============
3622Parameter name  Units     Default value
3623==============  ========  =============
[58eccf6]3624Scale           None      1.0
3625m               None      4
3626Background      |cm^-1|   0.0
[4ed2d0a1]3627==============  ========  =============
[1c03e14]3628
[7f42aad]3629.. image:: img/image183.jpg
[1c03e14]3630
[4ed2d0a1]3631*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3632
[93b6fcc]3633REFERENCE
3634
3635None.
3636
[1c03e14]3637
3638
[93b6fcc]3639.. _TeubnerStrey:
[1c03e14]3640
[93b6fcc]3641**2.2.7. TeubnerStrey (Model)**
[1c03e14]3642
[93b6fcc]3643This function calculates the scattered intensity of a two-component system using the Teubner-Strey model. Unlike the
3644DABModel_ this function generates a peak.
3645
3646*2.2.7.1. Definition*
[1c03e14]3647
[4ed2d0a1]3648.. image:: img/image184.PNG
[1c03e14]3649
[93b6fcc]3650For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3651
[7f42aad]3652.. image:: img/image040.gif
[1c03e14]3653
[4ed2d0a1]3654==============  ========  =============
3655Parameter name  Units     Default value
3656==============  ========  =============
[58eccf6]3657scale           None      0.1
3658c1              None      -30.0
3659c2              None      5000.0
3660background      |cm^-1|   0.0
[4ed2d0a1]3661==============  ========  =============
[1c03e14]3662
[7f42aad]3663.. image:: img/image185.jpg
[1c03e14]3664
[4ed2d0a1]3665*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3666
[4ed2d0a1]3667REFERENCE
[1c03e14]3668
[93b6fcc]3669M Teubner, R Strey, *J. Chem. Phys.*, 87 (1987) 3195
[1c03e14]3670
[93b6fcc]3671K V Schubert, R Strey, S R Kline and E W Kaler, *J. Chem. Phys.*, 101 (1994) 5343
[1c03e14]3672
3673
3674
[4ed2d0a1]3675.. _FractalModel:
[1c03e14]3676
[58eccf6]3677**2.2.8. FractalModel**
[1c03e14]3678
[93b6fcc]3679Calculates the scattering from fractal-like aggregates built from spherical building blocks following the Texiera
3680reference.
3681
3682The value returned is in |cm^-1|\ .
3683
3684*2.2.8.1. Definition*
[1c03e14]3685
[4ed2d0a1]3686.. image:: img/image186.PNG
[1c03e14]3687
[93b6fcc]3688The *scale* parameter is the volume fraction of the building blocks, *R0* is the radius of the building block, *Df* is
3689the fractal dimension, |xi| is the correlation length, |rho|\ *solvent* is the scattering length density of the
3690solvent, and |rho|\ *block* is the scattering length density of the building blocks.
[1c03e14]3691
[93b6fcc]3692**Polydispersity on the radius is provided for.**
[1c03e14]3693
[93b6fcc]3694For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3695
[7f42aad]3696.. image:: img/image040.gif
[1c03e14]3697
[4ed2d0a1]3698==============  ========  =============
3699Parameter name  Units     Default value
3700==============  ========  =============
[58eccf6]3701scale           None      0.05
3702radius          |Ang|     5.0
3703fractal_dim     None      2
3704corr_length     |Ang|     100.0
3705block_sld       |Ang^-2|  2e-6
3706solvent_sld     |Ang^-2|  6e-6
3707background      |cm^-1|   0.0
[4ed2d0a1]3708==============  ========  =============
[1c03e14]3709
[7f42aad]3710.. image:: img/image187.jpg
[1c03e14]3711
3712*Figure. 1D plot using the default values (w/200 data point).*
3713
[4ed2d0a1]3714REFERENCE
[1c03e14]3715
[93b6fcc]3716J Teixeira, *J. Appl. Cryst.*, 21 (1988) 781-785
[1c03e14]3717
3718
3719
[4ed2d0a1]3720.. _MassFractalModel:
[1c03e14]3721
[4ed2d0a1]3722**2.2.9. MassFractalModel**
[1c03e14]3723
[93b6fcc]3724Calculates the scattering from fractal-like aggregates based on the Mildner reference.
3725
3726*2.2.9.1. Definition*
[1c03e14]3727
[7f42aad]3728.. image:: img/mass_fractal_eq1.jpg
[1c03e14]3729
[93b6fcc]3730where *R* is the radius of the building block, *Dm* is the **mass** fractal dimension, |zeta| is the cut-off length,
3731|rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *particle* is the scattering length
3732density of particles.
[1c03e14]3733
[93b6fcc]3734Note:  The mass fractal dimension *Dm* is only valid if 1 < mass_dim < 6. It is also only valid over a limited
3735*q* range (see the reference for details).
[1c03e14]3736
[4ed2d0a1]3737==============  ========  =============
3738Parameter name  Units     Default value
3739==============  ========  =============
[58eccf6]3740scale           None      1
3741radius          |Ang|     10.0
3742mass_dim        None      1.9
3743co_length       |Ang|     100.0
3744background      |cm^-1|   0.0
[4ed2d0a1]3745==============  ========  =============
[1c03e14]3746
[7f42aad]3747.. image:: img/mass_fractal_fig1.jpg
[1c03e14]3748
[93b6fcc]3749*Figure. 1D plot using default values.*
[1c03e14]3750
[4ed2d0a1]3751REFERENCE
[1c03e14]3752
[93b6fcc]3753D Mildner and P Hall, *J. Phys. D: Appl. Phys.*,  19 (1986) 1535-1545
3754Equation(9)
[1c03e14]3755
[93b6fcc]3756*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3757
3758
3759
[4ed2d0a1]3760.. _SurfaceFractalModel:
[1c03e14]3761
[4ed2d0a1]3762**2.2.10. SurfaceFractalModel**
[1c03e14]3763
[93b6fcc]3764Calculates the scattering from fractal-like aggregates based on the Mildner reference.
3765
3766*2.2.10.1. Definition*
[1c03e14]3767
[f8063bf]3768.. image:: img/surface_fractal_eq1.gif
[1c03e14]3769
[93b6fcc]3770where *R* is the radius of the building block, *Ds* is the **surface** fractal dimension, |zeta| is the cut-off length,
3771|rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *particle* is the scattering length
3772density of particles.
[1c03e14]3773
[93b6fcc]3774Note:  The surface fractal dimension *Ds* is only valid if 1 < surface_dim < 3. It is also only valid over a limited
3775*q* range (see the reference for details).
[1c03e14]3776
[4ed2d0a1]3777==============  ========  =============
3778Parameter name  Units     Default value
3779==============  ========  =============
[58eccf6]3780scale           None      1
3781radius          |Ang|     10.0
3782surface_dim     None      2.0
3783co_length       |Ang|     500.0
3784background      |cm^-1|   0.0
[4ed2d0a1]3785==============  ========  =============
[1c03e14]3786
[7f42aad]3787.. image:: img/surface_fractal_fig1.jpg
[1c03e14]3788
[93b6fcc]3789*Figure. 1D plot using default values.*
[1c03e14]3790
[4ed2d0a1]3791REFERENCE
[1c03e14]3792
[93b6fcc]3793D Mildner and P Hall, *J. Phys. D: Appl. Phys.*,  19 (1986) 1535-1545
3794Equation(13)
[1c03e14]3795
3796
3797
[4ed2d0a1]3798.. _MassSurfaceFractal:
[1c03e14]3799
[58eccf6]3800**2.2.11. MassSurfaceFractal (Model)**
[1c03e14]3801
[93b6fcc]3802A number of natural and commercial processes form high-surface area materials as a result of the vapour-phase
3803aggregation of primary particles. Examples of such materials include soots, aerosols, and fume or pyrogenic silicas.
3804These are all characterised by cluster mass distributions (sometimes also cluster size distributions) and internal
3805surfaces that are fractal in nature. The scattering from such materials displays two distinct breaks in log-log
3806representation, corresponding to the radius-of-gyration of the primary particles, *rg*, and the radius-of-gyration of
3807the clusters (aggregates), *Rg*. Between these boundaries the scattering follows a power law related to the mass
3808fractal dimension, *Dm*, whilst above the high-Q boundary the scattering follows a power law related to the surface
3809fractal dimension of the primary particles, *Ds*.
3810
3811*2.2.11.1. Definition*
3812
3813The scattered intensity *I(q)* is  calculated using a modified Ornstein-Zernicke equation
[1c03e14]3814
[f8063bf]3815.. image:: img/masssurface_fractal_eq1.jpg
[1c03e14]3816
[93b6fcc]3817where *Rg* is the size of the cluster, *rg* is the size of the primary particle, *Ds* is the surface fractal dimension,
3818*Dm* is the mass fractal dimension, |rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *p* is
3819the scattering length density of particles.
[1c03e14]3820
[93b6fcc]3821Note:  The surface (*Ds*) and mass (*Dm*) fractal dimensions are only valid if 0 < *surface_dim* < 6,
38220 < *mass_dim* < 6, and (*surface_dim*+*mass_dim*) < 6. 
[1c03e14]3823
[4ed2d0a1]3824==============  ========  =============
3825Parameter name  Units     Default value
3826==============  ========  =============
[58eccf6]3827scale           None      1
3828primary_rg      |Ang|     4000.0
3829cluster_rg      |Ang|     86.7
3830surface_dim     None      2.3
3831mass_dim        None      1.8
3832background      |cm^-1|   0.0
[4ed2d0a1]3833==============  ========  =============
[1c03e14]3834
[7f42aad]3835.. image:: img/masssurface_fractal_fig1.jpg
[1c03e14]3836
[93b6fcc]3837*Figure. 1D plot using default values.*
[1c03e14]3838
[4ed2d0a1]3839REFERENCE
[1c03e14]3840
[93b6fcc]3841P Schmidt, *J Appl. Cryst.*, 24 (1991) 414-435
3842Equation(19)
[1c03e14]3843
[93b6fcc]3844A J Hurd, D W Schaefer, J E Martin, *Phys. Rev. A*, 35 (1987) 2361-2364
3845Equation(2)
[1c03e14]3846
3847
3848
[4ed2d0a1]3849.. _FractalCoreShell:
[1c03e14]3850
[58eccf6]3851**2.2.12. FractalCoreShell (Model)**
[1c03e14]3852
[93b6fcc]3853Calculates the scattering from a fractal structure with a primary building block of core-shell spheres, as opposed to
3854just homogeneous spheres in the FractalModel_. This model could find use for aggregates of coated particles, or
3855aggregates of vesicles.
3856
3857The returned value is scaled to units of |cm^-1|, absolute scale.
3858
3859*2.2.12.1. Definition*
[1c03e14]3860
[7f42aad]3861.. image:: img/fractcore_eq1.gif
[1c03e14]3862
[93b6fcc]3863The form factor *P(q)* is that from CoreShellModel_ with *bkg* = 0
[1c03e14]3864
[4ed2d0a1]3865.. image:: img/image013.PNG
[1c03e14]3866
[93b6fcc]3867while the fractal structure factor S(q) is
[1c03e14]3868
[4ed2d0a1]3869.. image:: img/fractcore_eq3.gif
[1c03e14]3870
[93b6fcc]3871where *Df* = frac_dim, |xi| = cor_length, *rc* = (core) radius, and *scale* = volume fraction.
[1c03e14]3872
[93b6fcc]3873The fractal structure is as documented in the FractalModel_. Polydispersity of radius and thickness is provided for.
[1c03e14]3874
[93b6fcc]3875For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3876
[7f42aad]3877.. image:: img/image040.gif
[1c03e14]3878
[4ed2d0a1]3879==============  ========  =============
3880Parameter name  Units     Default value
3881==============  ========  =============
[58eccf6]3882volfraction     None      0.05
3883frac_dim        None      2
3884thickness       |Ang|     5.0
3885radius          |Ang|     20.0
3886cor_length      |Ang|     100.0
3887core_sld        |Ang^-2|  3.5e-6
3888shell_sld       |Ang^-2|  1e-6
3889solvent_sld     |Ang^-2|  6.35e-6
3890background      |cm^-1|   0.0
[4ed2d0a1]3891==============  ========  =============
[1c03e14]3892
[7f42aad]3893.. image:: img/image188.jpg
[1c03e14]3894
[4ed2d0a1]3895*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3896
[4ed2d0a1]3897REFERENCE
[1c03e14]3898
[93b6fcc]3899See the CoreShellModel_ and FractalModel_ descriptions.
[1c03e14]3900
3901
3902
[4ed2d0a1]3903.. _GaussLorentzGel:
[1c03e14]3904
[58eccf6]3905**2.2.13. GaussLorentzGel(Model)**
[1c03e14]3906
[93b6fcc]3907Calculates the scattering from a gel structure, but typically a physical rather than chemical network. It is modeled as
3908a sum of a low-*q* exponential decay plus a lorentzian at higher *q*-values.
[1c03e14]3909
[6386cd8]3910Also see the GelFitModel_.
3911
[4ed2d0a1]3912The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3913
[93b6fcc]3914*2.2.13.1. Definition*
3915
3916The scattering intensity *I(q)* is calculated as (eqn 5 from the reference)
[1c03e14]3917
[7f42aad]3918.. image:: img/image189.jpg
[1c03e14]3919
[93b6fcc]3920|bigzeta| is the length scale of the static correlations in the gel, which can be attributed to the "frozen-in"
3921crosslinks. |xi| is the dynamic correlation length, which can be attributed to the fluctuating polymer chains between
3922crosslinks. *I*\ :sub:`G`\ *(0)* and *I*\ :sub:`L`\ *(0)* are the scaling factors for each of these structures. **Think carefully about how**
3923**these map to your particular system!**
[1c03e14]3924
[93b6fcc]3925NB: The peaked structure at higher *q* values (Figure 2 from the reference) is not reproduced by the model. Peaks can
3926be introduced into the model by summing this model with the PeakGaussModel_ function.
[1c03e14]3927
[93b6fcc]3928For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3929
[7f42aad]3930.. image:: img/image040.gif
[1c03e14]3931
[58eccf6]3932===================================  ========  =============
3933Parameter name                       Units     Default value
3934===================================  ========  =============
3935dyn_colength (=dynamic corr length)  |Ang|     20.0
3936scale_g       (=Gauss scale factor)  None      100
3937scale_l  (=Lorentzian scale factor)  None      50
3938stat_colength (=static corr length)  |Ang|     100.0
3939background                           |cm^-1|   0.0
3940===================================  ========  =============
[1c03e14]3941
[7f42aad]3942.. image:: img/image190.jpg
[1c03e14]3943
[4ed2d0a1]3944*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3945
[4ed2d0a1]3946REFERENCE
[1c03e14]3947
[93b6fcc]3948G Evmenenko, E Theunissen, K Mortensen, H Reynaers, *Polymer*, 42 (2001) 2907-2913
[1c03e14]3949
3950
3951
[4ed2d0a1]3952.. _BEPolyelectrolyte:
[1c03e14]3953
[58eccf6]3954**2.2.14. BEPolyelectrolyte (Model)**
[1c03e14]3955
[93b6fcc]3956Calculates the structure factor of a polyelectrolyte solution with the RPA expression derived by Borue and Erukhimovich.
3957
3958The value returned is in |cm^-1|.
3959
3960*2.2.14.1. Definition*
[1c03e14]3961
[4ed2d0a1]3962.. image:: img/image191.PNG
[1c03e14]3963
[93b6fcc]3964where *K* is the contrast factor for the polymer, *Lb* is the Bjerrum length, *h* is the virial parameter, *b* is the
3965monomer length, *Cs* is the concentration of monovalent salt, |alpha| is the ionization degree, *Ca* is the polymer
3966molar concentration, and *background* is the incoherent background.
[1c03e14]3967
[93b6fcc]3968For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3969
[7f42aad]3970.. image:: img/image040.gif
[1c03e14]3971
[4ed2d0a1]3972==============  ========  =============
3973Parameter name  Units     Default value
3974==============  ========  =============
[58eccf6]3975K               barns     10
3976Lb              |Ang|     7.1
3977h               |Ang^-3|  12
3978b               |Ang|     10
3979Cs              mol/L     0
3980alpha           None      0.05
3981Ca              mol/L     0.7
3982background      |cm^-1|   0.0
[4ed2d0a1]3983==============  ========  =============
[1c03e14]3984
[58eccf6]3985NB: 1 barn = 10\ :sup:`-24` |cm^2|
3986
[4ed2d0a1]3987REFERENCE
[1c03e14]3988
[93b6fcc]3989V Y Borue, I Y Erukhimovich, *Macromolecules*, 21 (1988) 3240
[1c03e14]3990
[93b6fcc]3991J F Joanny, L Leibler, *Journal de Physique*, 51 (1990) 545
[1c03e14]3992
[93b6fcc]3993A Moussaid, F Schosseler, J P Munch, S Candau, *J. Journal de Physique II France*, 3 (1993) 573
[1c03e14]3994
[93b6fcc]3995E Raphael, J F Joanny, *Europhysics Letters*, 11 (1990) 179
[1c03e14]3996
3997
3998
[4ed2d0a1]3999.. _Guinier:
[1c03e14]4000
[4ed2d0a1]4001**2.2.15. Guinier (Model)**
[1c03e14]4002
[93b6fcc]4003This model fits the Guinier function
[1c03e14]4004
[4ed2d0a1]4005.. image:: img/image192.PNG
[1c03e14]4006
[93b6fcc]4007to the data directly without any need for linearisation (*cf*. Ln *I(q)* vs *q*\ :sup:`2`).
4008
4009For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4010
[7f42aad]4011.. image:: img/image040.gif
[1c03e14]4012
[4ed2d0a1]4013==============  ========  =============
4014Parameter name  Units     Default value
4015==============  ========  =============
[58eccf6]4016scale           |cm^-1|   1.0
4017Rg              |Ang|     0.1
[4ed2d0a1]4018==============  ========  =============
[1c03e14]4019
[93b6fcc]4020REFERENCE
4021
4022A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley & Sons, New York (1955)
4023
[1c03e14]4024
4025
[4ed2d0a1]4026.. _GuinierPorod:
[1c03e14]4027
[4ed2d0a1]4028**2.2.16. GuinierPorod (Model)**
[1c03e14]4029
[93b6fcc]4030Calculates the scattering for a generalized Guinier/power law object. This is an empirical model that can be used to
4031determine the size and dimensionality of scattering objects, including asymmetric objects such as rods or platelets, and
4032shapes intermediate between spheres and rods or between rods and platelets.
[1c03e14]4033
[93b6fcc]4034The result is in the units of |cm^-1|, absolute scale.
[1c03e14]4035
[93b6fcc]4036*2.2.16.1 Definition*
[1c03e14]4037
[93b6fcc]4038The following functional form is used
[1c03e14]4039
[7f42aad]4040.. image:: img/image193.jpg
[1c03e14]4041
[93b6fcc]4042This is based on the generalized Guinier law for such elongated objects (see the Glatter reference below). For 3D
4043globular objects (such as spheres), *s* = 0 and one recovers the standard Guinier_ formula. For 2D symmetry (such as
4044for rods) *s* = 1, and for 1D symmetry (such as for lamellae or platelets) *s* = 2. A dimensionality parameter (3-*s*)
4045is thus defined, and is 3 for spherical objects, 2 for rods, and 1 for plates.
4046
4047Enforcing the continuity of the Guinier and Porod functions and their derivatives yields
[1c03e14]4048
[7f42aad]4049.. image:: img/image194.jpg
[1c03e14]4050
[4ed2d0a1]4051and
[1c03e14]4052
[7f42aad]4053.. image:: img/image195.jpg
[1c03e14]4054
[93b6fcc]4055Note that
[1c03e14]4056
[6386cd8]4057 the radius-of-gyration for a sphere of radius *R* is given by *Rg* = *R* sqrt(3/5)
[1c03e14]4058
[6386cd8]4059 the cross-sectional radius-of-gyration for a randomly oriented cylinder of radius *R* is given by *Rg* = *R* / sqrt(2)
[1c03e14]4060
[6386cd8]4061 the cross-sectional radius-of-gyration of a randomly oriented lamella of thickness *T* is given by *Rg* = *T* / sqrt(12)
[1c03e14]4062
[93b6fcc]4063For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4064
[4ed2d0a1]4065.. image:: img/image008.PNG
[1c03e14]4066
[58eccf6]4067==============================  ========  =============
4068Parameter name                  Units     Default value
4069==============================  ========  =============
4070scale      (=Guinier scale, G)  |cm^-1|   1.0
4071rg                              |Ang|     100
4072dim (=dimensional variable, s)  None      1
4073m            (=Porod exponent)  None      3
4074background                      |cm^-1|   0.1
4075==============================  ========  =============
[1c03e14]4076
[7f42aad]4077.. image:: img/image196.jpg
[1c03e14]4078
[4ed2d0a1]4079*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4080
[93b6fcc]4081REFERENCE
4082
4083A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
4084
4085O Glatter, O Kratky, *Small-Angle X-Ray Scattering*, Academic Press (1982)
4086Check out Chapter 4 on Data Treatment, pages 155-156.
4087
[1c03e14]4088
4089
[4ed2d0a1]4090.. _PorodModel:
[1c03e14]4091
[4ed2d0a1]4092**2.2.17. PorodModel**
[1c03e14]4093
[6386cd8]4094This model fits the Porod function
[1c03e14]4095
[4ed2d0a1]4096.. image:: img/image197.PNG
[1c03e14]4097
[6386cd8]4098to the data directly without any need for linearisation (*cf*. Log *I(q)* vs Log *q*).
[1c03e14]4099
[6386cd8]4100Here *C* is the scale factor and *Sv* is the specific surface area (ie, surface area / volume) of the sample, and
4101|drho| is the contrast factor.
[1c03e14]4102
[93b6fcc]4103For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4104
[7f42aad]4105.. image:: img/image040.gif
[1c03e14]4106
[4ed2d0a1]4107==============  ========  =============
4108Parameter name  Units     Default value
4109==============  ========  =============
[58eccf6]4110scale           |Ang^-4|  0.1
4111background      |cm^-1|   0
[4ed2d0a1]4112==============  ========  =============
[1c03e14]4113
[6386cd8]4114REFERENCE
4115
4116None.
4117
[1c03e14]4118
4119
[4ed2d0a1]4120.. _PeakGaussModel:
[1c03e14]4121
[4ed2d0a1]4122**2.2.18. PeakGaussModel**
[1c03e14]4123
[6386cd8]4124This model describes a Gaussian shaped peak on a flat background
[1c03e14]4125
[4ed2d0a1]4126.. image:: img/image198.PNG
[1c03e14]4127
[6386cd8]4128with the peak having height of *I0* centered at *q0* and having a standard deviation of *B*.  The FWHM (full-width
4129half-maximum) is 2.354 B.  
[1c03e14]4130
[93b6fcc]4131For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4132
[7f42aad]4133.. image:: img/image040.gif
[1c03e14]4134
[4ed2d0a1]4135==============  ========  =============
4136Parameter name  Units     Default value
4137==============  ========  =============
[58eccf6]4138scale           |cm^-1|   100
4139q0              |Ang^-1|  0.05
4140B               |Ang^-1|  0.005
4141background      |cm^-1|   1
[4ed2d0a1]4142==============  ========  =============
[1c03e14]4143
[7f42aad]4144.. image:: img/image199.jpg
[1c03e14]4145
[4ed2d0a1]4146*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4147
[6386cd8]4148REFERENCE
4149
4150None.
4151
[1c03e14]4152
4153
[4ed2d0a1]4154.. _PeakLorentzModel:
[1c03e14]4155
[4ed2d0a1]4156**2.2.19. PeakLorentzModel**
[1c03e14]4157
[6386cd8]4158This model describes a Lorentzian shaped peak on a flat background
[1c03e14]4159
[4ed2d0a1]4160.. image:: img/image200.PNG
[1c03e14]4161
[6386cd8]4162with the peak having height of *I0* centered at *q0* and having a HWHM (half-width half-maximum) of B. 
[1c03e14]4163
[93b6fcc]4164For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4165
[7f42aad]4166.. image:: img/image040.gif
[1c03e14]4167
[4ed2d0a1]4168==============  ========  =============
4169Parameter name  Units     Default value
4170==============  ========  =============
[58eccf6]4171scale           |cm^-1|   100
4172q0              |Ang^-1|  0.05
4173B               |Ang^-1|  0.005
4174background      |cm^-1|     1
[4ed2d0a1]4175==============  ========  =============
[1c03e14]4176
[7f42aad]4177.. image:: img/image201.jpg
[1c03e14]4178
[4ed2d0a1]4179*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4180
[6386cd8]4181REFERENCE
4182
4183None.
4184
[1c03e14]4185
4186
[4ed2d0a1]4187.. _Poly_GaussCoil:
[1c03e14]4188
[4ed2d0a1]4189**2.2.20. Poly_GaussCoil (Model)**
[1c03e14]4190
[6386cd8]4191This model calculates an empirical functional form for the scattering from a **polydisperse** polymer chain in the
4192theta state assuming a Schulz-Zimm type molecular weight distribution. Polydispersity on the radius-of-gyration is also
4193provided for.
[1c03e14]4194
[4ed2d0a1]4195The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4196
[6386cd8]4197*2.2.20.1. Definition*
4198
4199The scattering intensity *I(q)* is calculated as
4200
[4ed2d0a1]4201.. image:: img/image202.PNG
[1c03e14]4202
[6386cd8]4203where the dimensionless chain dimension is
[1c03e14]4204
[4ed2d0a1]4205.. image:: img/image203.PNG
[1c03e14]4206
[6386cd8]4207and the polydispersity is
[1c03e14]4208
[4ed2d0a1]4209.. image:: img/image204.PNG
[1c03e14]4210
[93b6fcc]4211For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4212
[7f42aad]4213.. image:: img/image040.gif
[1c03e14]4214
[6386cd8]4215This example dataset is produced using 200 data points, using 200 data points,
4216*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]4217
[4ed2d0a1]4218==============  ========  =============
4219Parameter name  Units     Default value
4220==============  ========  =============
[58eccf6]4221scale           None      1.0
4222rg              |Ang|     60.0
4223poly_m (Mw/Mn)  None      2
4224background      |cm^-1|   0.001
[4ed2d0a1]4225==============  ========  =============
[1c03e14]4226
[7f42aad]4227.. image:: img/image205.jpg
[1c03e14]4228
4229*Figure. 1D plot using the default values (w/200 data point).*
4230
[bf8c07b]4231REFERENCE
[1c03e14]4232
[6386cd8]4233O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982)
4234Page 404
[1c03e14]4235
[93b6fcc]4236J S Higgins, and H C Benoit, Polymers and Neutron Scattering, Oxford Science Publications (1996)
[4ed2d0a1]4237
[1c03e14]4238
[4ed2d0a1]4239
4240.. _PolyExclVolume:
4241
4242**2.2.21. PolymerExclVolume (Model)**
[1c03e14]4243
[6386cd8]4244This model describes the scattering from polymer chains subject to excluded volume effects, and has been used as a
4245template for describing mass fractals.
[1c03e14]4246
[4ed2d0a1]4247The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4248
[6386cd8]4249*2.2.21.1 Definition*
[1c03e14]4250
[6386cd8]4251The form factor  was originally presented in the following integral form (Benoit, 1957)
[1c03e14]4252
[7f42aad]4253.. image:: img/image206.jpg
[1c03e14]4254
[6386cd8]4255where |nu| is the excluded volume parameter (which is related to the Porod exponent *m* as |nu| = 1 / *m*), *a* is the
4256statistical segment length of the polymer chain, and *n* is the degree of polymerization. This integral was later put
4257into an almost analytical form as follows (Hammouda, 1993)
[1c03e14]4258
[7f42aad]4259.. image:: img/image207.jpg
[1c03e14]4260
[6386cd8]4261where |gamma|\ *(x,U)* is the incomplete gamma function
[1c03e14]4262
[7f42aad]4263.. image:: img/image208.jpg
[1c03e14]4264
[6386cd8]4265and the variable *U* is given in terms of the scattering vector *Q* as
[1c03e14]4266
[7f42aad]4267.. image:: img/image209.jpg
[1c03e14]4268
[6386cd8]4269The square of the radius-of-gyration is defined as
[1c03e14]4270
[7f42aad]4271.. image:: img/image210.jpg
[1c03e14]4272
[6386cd8]4273Note that this model applies only in the mass fractal range (ie, 5/3 <= *m* <= 3) and **does not** apply to surface
4274fractals (3 < *m* <= 4). It also does not reproduce the rigid rod limit (*m* = 1) because it assumes chain flexibility
4275from the outset. It may cover a portion of the semi-flexible chain range (1 < *m* < 5/3).
[1c03e14]4276
[6386cd8]4277A low-*Q* expansion yields the Guinier form and a high-*Q* expansion yields the Porod form which is given by
[1c03e14]4278
[7f42aad]4279.. image:: img/image211.jpg
[1c03e14]4280
[6386cd8]4281Here |biggamma|\ *(x)* = |gamma|\ *(x,inf)* is the gamma function.
4282
4283The asymptotic limit is dominated by the first term
[1c03e14]4284
[7f42aad]4285.. image:: img/image212.jpg
[1c03e14]4286
[6386cd8]4287The special case when |nu| = 0.5 (or *m* = 1/|nu| = 2) corresponds to Gaussian chains for which the form factor is given
4288by the familiar Debye_ function.
[1c03e14]4289
[7f42aad]4290.. image:: img/image213.jpg
[1c03e14]4291
[93b6fcc]4292For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4293
[7f42aad]4294.. image:: img/image040.gif
[1c03e14]4295
[6386cd8]4296This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.2 |Ang^-1| and the default
4297values
[1c03e14]4298
[58eccf6]4299===================  ========  =============
4300Parameter name       Units     Default value
4301===================  ========  =============
4302scale                None      1.0
4303rg                   |Ang|     60.0
4304m (=Porod exponent)  None      3
4305background           |cm^-1|   0.0
4306===================  ========  =============
[1c03e14]4307
[7f42aad]4308.. image:: img/image214.jpg
[1c03e14]4309
4310*Figure. 1D plot using the default values (w/500 data points).*
4311
[6386cd8]4312REFERENCE
[1c03e14]4313
[6386cd8]4314H Benoit, *Comptes Rendus*, 245 (1957) 2244-2247
[1c03e14]4315
[6386cd8]4316B Hammouda, *SANS from Homogeneous Polymer Mixtures ­ A Unified Overview*, *Advances in Polym. Sci.*, 106 (1993) 87-133
[4ed2d0a1]4317
[1c03e14]4318
4319
[6386cd8]4320.. _RPA10Model:
[1c03e14]4321
[6386cd8]4322**2.2.22. RPA10Model**
[1c03e14]4323
[6386cd8]4324Calculates the macroscopic scattering intensity (units of |cm^-1|) for a multicomponent homogeneous mixture of polymers
4325using the Random Phase Approximation. This general formalism contains 10 specific cases
[1c03e14]4326
[6386cd8]4327Case 0: C/D binary mixture of homopolymers
[1c03e14]4328
[6386cd8]4329Case 1: C-D diblock copolymer
[1c03e14]4330
[6386cd8]4331Case 2: B/C/D ternary mixture of homopolymers
[1c03e14]4332
[6386cd8]4333Case 3: C/C-D mixture of a homopolymer B and a diblock copolymer C-D
[1c03e14]4334
[6386cd8]4335Case 4: B-C-D triblock copolymer
[1c03e14]4336
[6386cd8]4337Case 5: A/B/C/D quaternary mixture of homopolymers
[1c03e14]4338
[6386cd8]4339Case 6: A/B/C-D mixture of two homopolymers A/B and a diblock C-D
[1c03e14]4340
[6386cd8]4341Case 7: A/B-C-D mixture of a homopolymer A and a triblock B-C-D
[1c03e14]4342
[6386cd8]4343Case 8: A-B/C-D mixture of two diblock copolymers A-B and C-D
[1c03e14]4344
[6386cd8]4345Case 9: A-B-C-D tetra-block copolymer
[1c03e14]4346
[6386cd8]4347**NB: these case numbers are different from those in the NIST SANS package!**
[1c03e14]4348
[6386cd8]4349Only one case can be used at any one time.
[1c03e14]4350
[6386cd8]4351The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4352
[6386cd8]4353The RPA (mean field) formalism only applies only when the multicomponent polymer mixture is in the homogeneous
4354mixed-phase region.
[1c03e14]4355
[6386cd8]4356**Component D is assumed to be the "background" component (ie, all contrasts are calculated with respect to**
4357**component D).** So the scattering contrast for a C/D blend = [SLD(component C) - SLD(component D)]\ :sup:`2`.
[1c03e14]4358
[6386cd8]4359Depending on which case is being used, the number of fitting parameters - the segment lengths (ba, bb, etc) and |chi|
4360parameters (Kab, Kac, etc) - vary. The *scale* parameter should be held equal to unity.
[1c03e14]4361
[6386cd8]4362The input parameters are the degrees of polymerization, the volume fractions, the specific volumes, and the neutron
4363scattering length densities for each component.
[1c03e14]4364
[6386cd8]4365Fitting parameters for a Case 0 Model
[1c03e14]4366
[58eccf6]4367=======================  ========  =============
4368Parameter name           Units     Default value
4369=======================  ========  =============
4370background               |cm^-1|   0.0
4371scale                    None      1
4372bc (=segment Length_bc)  **unit**  5
4373bd (=segment length_bd)  **unit**  5
4374Kcd (=chi_cd)            **unit**  -0.0004
4375=======================  ========  =============
[1c03e14]4376
[6386cd8]4377Fixed parameters for a Case 0 Model
[1c03e14]4378
[58eccf6]4379=======================  ========  =============
4380Parameter name           Units     Default value
4381=======================  ========  =============
4382Lc (=scatter. length_c)  **unit**  1e-12
4383Ld (=scatter. length_d)  **unit**  0
4384Nc    (=degree polym_c)  None      1000
4385Nd    (=degree polym_d)  None      1000
4386Phic (=vol. fraction_c)  None      0.25
4387Phid (=vol. fraction_d)  None      0.25
4388vc (=specific volume_c)  **unit**  100
4389vd (=specific volume_d)  **unit**  100
4390=======================  ========  =============
[1c03e14]4391
[7f42aad]4392.. image:: img/image215.jpg
[1c03e14]4393
4394*Figure. 1D plot using the default values (w/500 data points).*
4395
[6386cd8]4396REFERENCE
4397
4398A Z Akcasu, R Klein and B Hammouda, *Macromolecules*, 26 (1993) 4136
[1c03e14]4399
4400
4401
[4ed2d0a1]4402.. _TwoLorentzian:
[1c03e14]4403
[58eccf6]4404**2.2.23. TwoLorentzian (Model)**
[1c03e14]4405
[6386cd8]4406This model calculates an empirical functional form for SAS data characterized by two Lorentzian-type functions.
[1c03e14]4407
[4ed2d0a1]4408The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4409
[6386cd8]4410*2.2.23.1. Definition*
[1c03e14]4411
[6386cd8]4412The scattering intensity *I(q)* is calculated as
[1c03e14]4413
[f8063bf]4414.. image:: img/image216.jpg 
[1c03e14]4415
[6386cd8]4416where *A* = Lorentzian scale factor #1, *C* = Lorentzian scale #2, |xi|\ :sub:`1` and |xi|\ :sub:`2` are the
4417corresponding correlation lengths, and *n* and *m* are the respective power law exponents (set *n* = *m* = 2 for
4418Ornstein-Zernicke behaviour).
[1c03e14]4419
[93b6fcc]4420For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4421
[7f42aad]4422.. image:: img/image040.gif
[1c03e14]4423
[58eccf6]4424===============================  ========  =============
4425Parameter name                   Units     Default value
4426===============================  ========  =============
4427scale_1 (=A)                     None      10
4428scale_2 (=C)                     None      1
44291ength_1 (=correlation length1)  |Ang|     100
44301ength_2 (=correlation length2)  |Ang|     10
4431exponent_1 (=n)                  None      3
4432exponent_2 (=m)                  None      2
4433background (=B)                  |cm^-1|   0.1
4434===============================  ========  =============
[1c03e14]4435
[7f42aad]4436.. image:: img/image217.jpg
[1c03e14]4437
4438*Figure. 1D plot using the default values (w/500 data points).*
4439
[bf8c07b]4440REFERENCE
4441
[6386cd8]4442None.
[1c03e14]4443
4444
4445
[4ed2d0a1]4446.. _TwoPowerLaw:
[1c03e14]4447
[58eccf6]4448**2.2.24. TwoPowerLaw (Model)**
[1c03e14]4449
[6386cd8]4450This model calculates an empirical functional form for SAS data characterized by two power laws.
[1c03e14]4451
[4ed2d0a1]4452The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4453
[6386cd8]4454*2.2.24.1. Definition*
4455
4456The scattering intensity *I(q)* is calculated as
[1c03e14]4457
[7f42aad]4458.. image:: img/image218.jpg
[1c03e14]4459
[6386cd8]4460where *qc* is the location of the crossover from one slope to the other. The scaling *coef_A* sets the overall
4461intensity of the lower *q* power law region. The scaling of the second power law region is then automatically scaled to
4462match the first.
4463
4464**NB: Be sure to enter the power law exponents as positive values!**
[1c03e14]4465
[93b6fcc]4466For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4467
[7f42aad]4468.. image:: img/image040.gif
[1c03e14]4469
[4ed2d0a1]4470==============  ========  =============
4471Parameter name  Units     Default value
4472==============  ========  =============
[58eccf6]4473coef_A          None      1.0
4474qc              |Ang^-1|  0.04
4475power_1 (=m1)   None      4
4476power_2 (=m2)   None      4
4477background      |cm^-1|   0.0
[4ed2d0a1]4478==============  ========  =============
[1c03e14]4479
[7f42aad]4480.. image:: img/image219.jpg
[1c03e14]4481
4482*Figure. 1D plot using the default values (w/500 data points).*
4483
[6386cd8]4484REFERENCE
4485
4486None.
4487
[1c03e14]4488
4489
[4ed2d0a1]4490.. _UnifiedPowerRg:
[1c03e14]4491
[58eccf6]4492**2.2.25. UnifiedPowerRg (Beaucage Model)**
[1c03e14]4493
[6386cd8]4494This model deploys the empirical multiple level unified Exponential/Power-law fit method developed by G Beaucage. Four
4495functions are included so that 1, 2, 3, or 4 levels can be used. In addition a 0 level has been added which simply
4496calculates
4497
4498*I(q)* = *scale* / *q* + *background*
4499
[4ed2d0a1]4500The returned value is scaled to units of |cm^-1|, absolute scale. 
4501
[6386cd8]4502The Beaucage method is able to reasonably approximate the scattering from many different types of particles, including
4503fractal clusters, random coils (Debye equation), ellipsoidal particles, etc. 
[1c03e14]4504
[6386cd8]4505*2.2.25.1 Definition*
[1c03e14]4506
[4ed2d0a1]4507The empirical fit function is 
[1c03e14]4508
[7f42aad]4509.. image:: img/image220.jpg
[1c03e14]4510
[6386cd8]4511For each level, the four parameters *Gi*, *Rg,i*, *Bi* and *Pi* must be chosen. 
[1c03e14]4512
[6386cd8]4513For example, to approximate the scattering from random coils (Debye_ equation), set *Rg,i* as the Guinier radius,
4514*Pi* = 2, and *Bi* = 2 *Gi* / *Rg,i* 
[1c03e14]4515
[6386cd8]4516See the references for further information on choosing the parameters.
[1c03e14]4517
[93b6fcc]4518For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4519
[7f42aad]4520.. image:: img/image040.gif
[1c03e14]4521
[4ed2d0a1]4522==============  ========  =============
4523Parameter name  Units     Default value
4524==============  ========  =============
[58eccf6]4525scale           None      1.0
4526Rg2             |Ang|     21
4527power2          None      2
4528G2              |cm^-1|   3
4529B2              |cm^-1|   0.0006
4530Rg1             |Ang|     15.8
4531power1          None      4
4532G1              |cm^-1|   400
4533B1              |cm^-1|   4.5e-6                |
4534background      |cm^-1|   0.0
[4ed2d0a1]4535==============  ========  =============
[1c03e14]4536
[7f42aad]4537.. image:: img/image221.jpg
[1c03e14]4538
4539*Figure. 1D plot using the default values (w/500 data points).*
4540
4541REFERENCE
4542
[6386cd8]4543G Beaucage, *J. Appl. Cryst.*, 28 (1995) 717-728
[1c03e14]4544
[6386cd8]4545G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146
[1c03e14]4546
4547
4548
[4ed2d0a1]4549.. _LineModel:
[1c03e14]4550
[4ed2d0a1]4551**2.2.26. LineModel**
[1c03e14]4552
[6386cd8]4553This calculates the simple linear function
[1c03e14]4554
[4ed2d0a1]4555.. image:: img/image222.PNG
[1c03e14]4556
[6386cd8]4557**NB: For 2D plots,** *I(q)* = *I(qx)*\ *\ *I(qy)*, **which is a different definition to other shape independent models.**
[1c03e14]4558
[6386cd8]4559==============  ==============  =============
4560Parameter name  Units           Default value
4561==============  ==============  =============
4562A               |cm^-1|         1.0
4563B               |Ang|\ |cm^-1|  1.0
4564==============  ==============  =============
[1c03e14]4565
[6386cd8]4566REFERENCE
[1c03e14]4567
[6386cd8]4568None.
[1c03e14]4569
4570
4571
[6386cd8]4572.. _GelFitModel:
[1c03e14]4573
[6386cd8]4574**2.2.27. GelFitModel**
[1c03e14]4575
[6386cd8]4576*This model was implemented by an interested user!*
[1c03e14]4577
[6386cd8]4578Unlike a concentrated polymer solution, the fine-scale polymer distribution in a gel involves at least two
4579characteristic length scales, a shorter correlation length (*a1*) to describe the rapid fluctuations in the position
4580of the polymer chains that ensure thermodynamic equilibrium, and a longer distance (denoted here as *a2*) needed to
4581account for the static accumulations of polymer pinned down by junction points or clusters of such points. The latter
4582is derived from a simple Guinier function.
[1c03e14]4583
[6386cd8]4584Also see the GaussLorentzGel_ Model.
[1c03e14]4585
[6386cd8]4586*2.2.27.1. Definition*
4587
4588The scattered intensity *I(q)* is calculated as
[1c03e14]4589
[7f42aad]4590.. image:: img/image233.gif
[1c03e14]4591
[6386cd8]4592where
[1c03e14]4593
[7f42aad]4594.. image:: img/image234.gif
[1c03e14]4595
[6386cd8]4596Note that the first term reduces to the Ornstein-Zernicke equation when *D* = 2; ie, when the Flory exponent is 0.5
4597(theta conditions). In gels with significant hydrogen bonding *D* has been reported to be ~2.6 to 2.8.
[1c03e14]4598
[6386cd8]4599============================  ========  =============
4600Parameter name                Units     Default value
4601============================  ========  =============
4602Background                    |cm^-1|   0.01
4603Guinier scale    (= *I(0)G*)  |cm^-1|   1.7
4604Lorentzian scale (= *I(0)L*)  |cm^-1|   3.5
4605Radius of gyration  (= *Rg*)  |Ang|     104
4606Fractal exponent     (= *D*)  None      2
4607Correlation length  (= *a1*)  |Ang|     16
4608============================  ========  =============
[1c03e14]4609
[7f42aad]4610.. image:: img/image235.gif
[1c03e14]4611
[6386cd8]4612*Figure. 1D plot using the default values (w/300 data points).*
[1c03e14]4613
[6386cd8]4614REFERENCE
[1c03e14]4615
[6386cd8]4616Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, J. Chem. Phys. 1992, 97 (9), 6829-6841
[1c03e14]4617
[6386cd8]4618Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, Macromolecules 1991, 24, 543-548
[1c03e14]4619
4620
4621
[6386cd8]4622.. _StarPolymer:
[1c03e14]4623
[6386cd8]4624**2.2.28. Star Polymer with Gaussian Statistics**
[1c03e14]4625
[6386cd8]4626This model is also known as the Benoit Star model.
[1c03e14]4627
[6386cd8]4628*2.2.28.1. Definition*
4629
4630For a star with *f* arms:
[1c03e14]4631
[7f42aad]4632.. image:: img/star1.png
[1c03e14]4633
[6386cd8]4634where
[1c03e14]4635
[7f42aad]4636.. image:: img/star2.png
[1c03e14]4637
[6386cd8]4638and
4639
[7f42aad]4640.. image:: img/star3.png
[1c03e14]4641
[6386cd8]4642is the square of the ensemble average radius-of-gyration of an arm.
[1c03e14]4643
[6386cd8]4644REFERENCE
[1c03e14]4645
[6386cd8]4646H Benoit,   J. Polymer Science.,  11, 596-599  (1953)
[1c03e14]4647
4648
4649
[6386cd8]4650.. _ReflectivityModel:
[1c03e14]4651
[6386cd8]4652**2.2.29. ReflectivityModel**
[1c03e14]4653
[6386cd8]4654*This model was contributed by an interested user!*
4655
4656This model calculates **reflectivity** using the Parrett algorithm.
4657
4658Up to nine film layers are supported between Bottom(substrate) and Medium(Superstrate) where the neutron enters the
4659first top film. Each of the layers are composed of
4660
4661[œ of the interface (from the previous layer or substrate) + flat portion + œ of the interface (to the next layer or medium)]
4662
4663Two simple functions are provided to describe the interfacial density distribution; a linear function and an error
4664function. The interfacial thickness is equivalent to (-2.5 |sigma| to +2.5 |sigma| for the error function, where
4665|sigma| = roughness).
4666
4667Also see ReflectivityIIModel_.
4668
[7f42aad]4669.. image:: img/image231.bmp
[6386cd8]4670
4671*Figure. Comparison (using the SLD profile below) with the NIST web calculation (circles)*
4672http://www.ncnr.nist.gov/resources/reflcalc.html
4673
[7f42aad]4674.. image:: img/image232.gif
[6386cd8]4675
4676*Figure. SLD profile used for the calculation (above).*
[1c03e14]4677
4678REFERENCE
4679
[6386cd8]4680None.
[1c03e14]4681
4682
4683
[6386cd8]4684.. _ReflectivityIIModel:
[1c03e14]4685
[6386cd8]4686**2.2.30. ReflectivityIIModel**
[1c03e14]4687
[6386cd8]4688*This model was contributed by an interested user!*
[1c03e14]4689
[6386cd8]4690This **reflectivity** model is a more flexible version of ReflectivityModel_. More interfacial density
4691functions are supported, and the number of points (*npts_inter*) for each interface can be chosen.
[1c03e14]4692
[6386cd8]4693The SLD at the interface between layers, |rho|\ *inter_i*, is calculated with a function chosen by a user, where the
4694available functions are
[1c03e14]4695
[6386cd8]46961) Erf
[1c03e14]4697
[7f42aad]4698.. image:: img/image051.gif
[1c03e14]4699
[6386cd8]47002) Power-Law
4701
[7f42aad]4702.. image:: img/image050.gif
[6386cd8]4703
47043) Exp
4705
[7f42aad]4706.. image:: img/image049.gif
[6386cd8]4707
4708The constant *A* in the expressions above (but the parameter *nu* in the model!) is an input.
[1c03e14]4709
4710REFERENCE
[bf8c07b]4711
[6386cd8]4712None.
[1c03e14]4713
4714
4715
47162.3 Structure-factor Functions
4717------------------------------
4718
[6386cd8]4719The information in this section originated from NIST SANS package.
[1c03e14]4720
4721.. _HardSphereStructure:
4722
4723**2.3.1. HardSphereStructure Factor**
4724
4725This calculates the interparticle structure factor for monodisperse spherical particles interacting through hard
4726sphere (excluded volume) interactions.
4727
4728The calculation uses the Percus-Yevick closure where the interparticle potential is
4729
4730.. image:: img/image223.PNG
4731
4732where *r* is the distance from the center of the sphere of a radius *R*.
4733
4734For a 2D plot, the wave transfer is defined as
4735
[7f42aad]4736.. image:: img/image040.gif
[1c03e14]4737
4738==============  ========  =============
4739Parameter name  Units     Default value
4740==============  ========  =============
4741effect_radius   |Ang|     50.0
4742volfraction     None      0.2
4743==============  ========  =============
4744
[7f42aad]4745.. image:: img/image224.jpg
[1c03e14]4746
4747*Figure. 1D plot using the default values (in linear scale).*
4748
4749REFERENCE
[bf8c07b]4750
[93b6fcc]4751J K Percus, J Yevick, *J. Phys. Rev.*, 110, (1958) 1
[1c03e14]4752
4753
4754
4755.. _SquareWellStructure:
4756
4757**2.3.2. SquareWellStructure Factor**
4758
4759This calculates the interparticle structure factor for a square well fluid spherical particles. The mean spherical
4760approximation (MSA) closure was used for this calculation, and is not the most appropriate closure for an attractive
4761interparticle potential. This solution has been compared to Monte Carlo simulations for a square well fluid, showing
4762this calculation to be limited in applicability to well depths |epsilon| < 1.5 kT and volume fractions |phi| < 0.08.
4763
4764Positive well depths correspond to an attractive potential well. Negative well depths correspond to a potential
4765"shoulder", which may or may not be physically reasonable.
4766
4767The well width (*l*\ ) is defined as multiples of the particle diameter (2\*\ *R*\ )
4768
4769The interaction potential is:
4770
4771.. image:: img/image225.PNG
4772
4773where *r* is the distance from the center of the sphere of a radius *R*.
4774
[93b6fcc]4775For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4776
[7f42aad]4777.. image:: img/image040.gif
[1c03e14]4778
4779==============  =========  =============
4780Parameter name  Units      Default value
4781==============  =========  =============
4782effect_radius   |Ang|      50.0
4783volfraction     None       0.04
4784welldepth       kT         1.5
4785wellwidth       diameters  1.2
4786==============  =========  =============
4787
[7f42aad]4788.. image:: img/image226.jpg
[1c03e14]4789
4790*Figure. 1D plot using the default values (in linear scale).*
4791
4792REFERENCE
[bf8c07b]4793
[93b6fcc]4794R V Sharma, K C Sharma, *Physica*, 89A (1977) 213
[1c03e14]4795
4796
4797
4798.. _HayterMSAStructure:
4799
4800**2.3.3. HayterMSAStructure Factor**
4801
[906a325]4802This is an implementation of the Rescaled Mean Spherical Approximation which calculates the structure factor (the
4803Fourier transform of the pair correlation function *g(r)*) for a system of charged, spheroidal objects in a
4804dielectric medium. When combined with an appropriate form factor (such as sphere,core+shell, ellipsoid, etc), this
4805allows for inclusion of the interparticle interference effects due to screened coulomb repulsion between charged particles.
[1c03e14]4806
4807**This routine only works for charged particles**. If the charge is set to zero the routine will self-destruct!
4808For non-charged particles use a hard sphere potential.
4809
4810The salt concentration is used to compute the ionic strength of the solution which in turn is used to compute the Debye
4811screening length. At present there is no provision for entering the ionic strength directly nor for use of any
4812multivalent salts. The counterions are also assumed to be monovalent.
4813
[93b6fcc]4814For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4815
4816.. image:: img/image040.gif
4817
4818==============  ========  =============
4819Parameter name  Units     Default value
4820==============  ========  =============
4821effect_radius   |Ang|     20.8
4822charge          *e*       19
4823volfraction     None      0.2
4824temperature     K         318
4825salt conc       M         0
4826dielectconst    None      71.1
4827==============  ========  =============
4828
[7f42aad]4829.. image:: img/image227.jpg
[1c03e14]4830
4831*Figure. 1D plot using the default values (in linear scale).*
4832
4833REFERENCE
[bf8c07b]4834
[93b6fcc]4835J B Hayter and J Penfold, *Molecular Physics*, 42 (1981) 109-118
[bf8c07b]4836
[93b6fcc]4837J P Hansen and J B Hayter, *Molecular Physics*, 46 (1982) 651-656
[1c03e14]4838
4839
4840.. _StickyHSStructure:
4841
4842**2.3.4. StickyHSStructure Factor**
4843
4844This calculates the interparticle structure factor for a hard sphere fluid with a narrow attractive well. A perturbative
4845solution of the Percus-Yevick closure is used. The strength of the attractive well is described in terms of "stickiness"
4846as defined below. The returned value is a dimensionless structure factor, *S(q)*.
4847
4848The perturb (perturbation parameter), |epsilon|, should be held between 0.01 and 0.1. It is best to hold the
4849perturbation parameter fixed and let the "stickiness" vary to adjust the interaction strength. The stickiness, |tau|,
4850is defined in the equation below and is a function of both the perturbation parameter and the interaction strength.
4851|tau| and |epsilon| are defined in terms of the hard sphere diameter (|sigma| = 2\*\ *R*\ ), the width of the square
4852well, |bigdelta| (same units as *R*), and the depth of the well, *Uo*, in units of kT. From the definition, it is clear
4853that smaller |tau| means stronger attraction.
4854
4855.. image:: img/image228.PNG
4856
4857where the interaction potential is
4858
4859.. image:: img/image229.PNG
4860
4861The Percus-Yevick (PY) closure was used for this calculation, and is an adequate closure for an attractive interparticle
4862potential. This solution has been compared to Monte Carlo simulations for a square well fluid, with good agreement.
4863
4864The true particle volume fraction, |phi|, is not equal to *h*, which appears in most of the reference. The two are
4865related in equation (24) of the reference. The reference also describes the relationship between this perturbation
4866solution and the original sticky hard sphere (or adhesive sphere) model by Baxter.
4867
4868NB: The calculation can go haywire for certain combinations of the input parameters, producing unphysical solutions - in
4869this case errors are reported to the command window and the *S(q)* is set to -1 (so it will disappear on a log-log
4870plot). Use tight bounds to keep the parameters to values that you know are physical (test them) and keep nudging them
4871until the optimization does not hit the constraints.
4872
[93b6fcc]4873For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4874
[7f42aad]4875.. image:: img/image040.gif
[1c03e14]4876
4877==============  ========  =============
4878Parameter name  Units     Default value
4879==============  ========  =============
4880effect_radius   |Ang|     50
4881perturb         None      0.05
4882volfraction     None      0.1
4883stickiness      K         0.2
4884==============  ========  =============
4885
[7f42aad]4886.. image:: img/image230.jpg
[1c03e14]4887
4888*Figure. 1D plot using the default values (in linear scale).*
4889
4890REFERENCE
[bf8c07b]4891
[93b6fcc]4892S V G Menon, C Manohar, and K S Rao, *J. Chem. Phys.*, 95(12) (1991) 9186-9190
[1c03e14]4893
4894
4895
48962.4 Customised Functions
4897------------------------------
4898
4899
4900Customized model functions can be redefined or added to by users (See SansView tutorial for details).
4901
4902.. _testmodel:
4903
4904**2.4.1. testmodel**
4905
4906This function, as an example of a user defined function, calculates
4907
4908*I(q)* = *A* + *B* cos(2\ *q*\ ) + *C* sin(2\ *q*\ )
4909
4910
4911
4912.. _testmodel_2:
4913
4914**2.4.2. testmodel_2**
4915
4916This function, as an example of a user defined function, calculates
4917
4918*I(q)* = *scale* * sin(*f*\ )/*f*
4919
4920where
4921
4922*f* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5`
4923
4924
4925
4926.. _sum_p1_p2:
4927
4928**2.4.3. sum_p1_p2**
4929
4930This function, as an example of a user defined function, calculates
4931
4932*I(q)* = *scale_factor* \* (CylinderModel + PolymerExclVolumeModel)
4933
4934To make your own (*p1 + p2*) model, select 'Easy Custom Sum' from the Fitting menu, or modify and compile the file
4935named 'sum_p1_p2.py' from 'Edit Custom Model' in the 'Fitting' menu.
4936
4937NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc).
4938
4939
4940
4941.. _sum_Ap1_1_Ap2:
4942
4943**2.4.4. sum_Ap1_1_Ap2**
4944
4945This function, as an example of a user defined function, calculates
4946
4947*I(q)* = (*scale_factor* \* CylinderModel + (1 - *scale_factor*\ ) \* PolymerExclVolume model)
4948
4949To make your own (*A*\ * *p1* + (1-*A*) \* *p2*) model, modify and compile the file named 'sum_Ap1_1_Ap2.py' from
4950'Edit Custom Model' in the 'Fitting' menu.
4951
4952NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc).
4953
4954
4955
4956.. _polynomial5:
4957
4958**2.4.5. polynomial5**
4959
4960This function, as an example of a user defined function, calculates
4961
4962*I(q)* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5`
4963
4964This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
4965
4966
4967
4968.. _sph_bessel_jn:
4969
4970**2.4.6. sph_bessel_jn**
4971
4972This function, as an example of a user defined function, calculates
4973
4974*I(q)* = *C* \* *sph_jn(Ax+B)+D*
4975
4976where *sph_jn* is a spherical Bessel function of order *n*.
4977
4978This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
Note: See TracBrowser for help on using the repository browser.