[230f479] | 1 | /* CylinderFit.c |
---|
| 2 | |
---|
| 3 | A simplified project designed to act as a template for your curve fitting function. |
---|
| 4 | The fitting function is a Cylinder form factor. No resolution effects are included (yet) |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers |
---|
| 8 | #include "GaussWeights.h" |
---|
| 9 | #include "libCylinder.h" |
---|
| 10 | |
---|
| 11 | /////////functions for WRC implementation of flexible cylinders |
---|
| 12 | static double |
---|
| 13 | gammaln(double xx) |
---|
| 14 | { |
---|
| 15 | double x,y,tmp,ser; |
---|
| 16 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
| 17 | 24.01409824083091,-1.231739572450155, |
---|
| 18 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
| 19 | int j; |
---|
| 20 | |
---|
| 21 | y=x=xx; |
---|
| 22 | tmp=x+5.5; |
---|
| 23 | tmp -= (x+0.5)*log(tmp); |
---|
| 24 | ser=1.000000000190015; |
---|
| 25 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
| 26 | return -tmp+log(2.5066282746310005*ser/x); |
---|
| 27 | } |
---|
| 28 | /////////functions for WRC implementation of flexible cylinders |
---|
| 29 | |
---|
| 30 | // |
---|
| 31 | static double |
---|
| 32 | AlphaSquare(double x) |
---|
| 33 | { |
---|
| 34 | double yy; |
---|
| 35 | yy = pow( (1.0 + (x/3.12)*(x/3.12) + (x/8.67)*(x/8.67)*(x/8.67)),(0.176/3.0) ); |
---|
| 36 | |
---|
| 37 | return (yy); |
---|
| 38 | } |
---|
| 39 | |
---|
| 40 | // |
---|
| 41 | static double |
---|
| 42 | Rgsquarezero(double q, double L, double b) |
---|
| 43 | { |
---|
| 44 | double yy; |
---|
| 45 | yy = (L*b/6.0) * (1.0 - 1.5*(b/L) + 1.5*pow((b/L),2) - 0.75*pow((b/L),3)*(1.0 - exp(-2.0*(L/b)))); |
---|
| 46 | |
---|
| 47 | return (yy); |
---|
| 48 | } |
---|
| 49 | |
---|
| 50 | // |
---|
| 51 | static double |
---|
| 52 | Rgsquareshort(double q, double L, double b) |
---|
| 53 | { |
---|
| 54 | double yy; |
---|
| 55 | yy = AlphaSquare(L/b) * Rgsquarezero(q,L,b); |
---|
| 56 | |
---|
| 57 | return (yy); |
---|
| 58 | } |
---|
| 59 | |
---|
| 60 | // |
---|
| 61 | static double |
---|
| 62 | Rgsquare(double q, double L, double b) |
---|
| 63 | { |
---|
| 64 | double yy; |
---|
| 65 | yy = AlphaSquare(L/b)*L*b/6.0; |
---|
| 66 | |
---|
| 67 | return (yy); |
---|
| 68 | } |
---|
| 69 | |
---|
| 70 | // ?? funciton is not used - but should the log actually be log10??? |
---|
| 71 | /* |
---|
| 72 | static double |
---|
| 73 | miu(double x) |
---|
| 74 | { |
---|
| 75 | double yy; |
---|
| 76 | yy = (1.0/8.0)*(9.0*x - 2.0 + 2.0*log(1.0 + x)/x)*exp(1.0/2.565*(1.0/x + (1.0 - 1.0/(x*x))*log(1.0 + x))); |
---|
| 77 | |
---|
| 78 | return (yy); |
---|
| 79 | } |
---|
| 80 | */ |
---|
| 81 | |
---|
| 82 | //WR named this w (too generic) |
---|
| 83 | static double |
---|
| 84 | w_WR(double x) |
---|
| 85 | { |
---|
| 86 | double yy; |
---|
| 87 | yy = 0.5*(1 + tanh((x - 1.523)/0.1477)); |
---|
| 88 | |
---|
| 89 | return (yy); |
---|
| 90 | } |
---|
| 91 | |
---|
| 92 | // |
---|
| 93 | static double |
---|
| 94 | u1(double q, double L, double b) |
---|
| 95 | { |
---|
| 96 | double yy; |
---|
| 97 | |
---|
| 98 | yy = Rgsquareshort(q,L,b)*q*q; |
---|
| 99 | |
---|
| 100 | return (yy); |
---|
| 101 | } |
---|
| 102 | |
---|
| 103 | // was named u |
---|
| 104 | static double |
---|
| 105 | u_WR(double q, double L, double b) |
---|
| 106 | { |
---|
| 107 | double yy; |
---|
| 108 | yy = Rgsquare(q,L,b)*q*q; |
---|
| 109 | return (yy); |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | // |
---|
| 114 | static double |
---|
| 115 | Sdebye1(double q, double L, double b) |
---|
| 116 | { |
---|
| 117 | double yy; |
---|
| 118 | yy = 2.0*(exp(-u1(q,L,b)) + u1(q,L,b) -1.0)/( pow((u1(q,L,b)),2.0) ); |
---|
| 119 | |
---|
| 120 | return (yy); |
---|
| 121 | } |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | // |
---|
| 125 | static double |
---|
| 126 | Sdebye(double q, double L, double b) |
---|
| 127 | { |
---|
| 128 | double yy; |
---|
| 129 | yy = 2.0*(exp(-u_WR(q,L,b)) + u_WR(q,L,b) -1.0)/(pow((u_WR(q,L,b)),2)); |
---|
| 130 | |
---|
| 131 | return (yy); |
---|
| 132 | } |
---|
| 133 | |
---|
| 134 | // |
---|
| 135 | static double |
---|
| 136 | Sexv(double q, double L, double b) |
---|
| 137 | { |
---|
| 138 | double yy,C1,C2,C3,miu,Rg2; |
---|
| 139 | C1=1.22; |
---|
| 140 | C2=0.4288; |
---|
| 141 | C3=-1.651; |
---|
| 142 | miu = 0.585; |
---|
| 143 | |
---|
| 144 | Rg2 = Rgsquare(q,L,b); |
---|
| 145 | |
---|
| 146 | yy = (1.0 - w_WR(q*sqrt(Rg2)))*Sdebye(q,L,b) + w_WR(q*sqrt(Rg2))*(C1*pow((q*sqrt(Rg2)),(-1.0/miu)) + C2*pow((q*sqrt(Rg2)),(-2.0/miu)) + C3*pow((q*sqrt(Rg2)),(-3.0/miu))); |
---|
| 147 | |
---|
| 148 | return (yy); |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | // this must be WR modified version |
---|
| 152 | static double |
---|
| 153 | Sexvnew(double q, double L, double b) |
---|
| 154 | { |
---|
| 155 | double yy,C1,C2,C3,miu; |
---|
| 156 | double del=1.05,C_star2,Rg2; |
---|
| 157 | |
---|
| 158 | C1=1.22; |
---|
| 159 | C2=0.4288; |
---|
| 160 | C3=-1.651; |
---|
| 161 | miu = 0.585; |
---|
| 162 | |
---|
| 163 | //calculating the derivative to decide on the corection (cutoff) term? |
---|
| 164 | // I have modified this from WRs original code |
---|
| 165 | |
---|
| 166 | if( (Sexv(q*del,L,b)-Sexv(q,L,b))/(q*del - q) >= 0.0 ) { |
---|
| 167 | C_star2 = 0.0; |
---|
| 168 | } else { |
---|
| 169 | C_star2 = 1.0; |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | Rg2 = Rgsquare(q,L,b); |
---|
| 173 | |
---|
| 174 | yy = (1.0 - w_WR(q*sqrt(Rg2)))*Sdebye(q,L,b) + C_star2*w_WR(q*sqrt(Rg2))*(C1*pow((q*sqrt(Rg2)),(-1.0/miu)) + C2*pow((q*sqrt(Rg2)),(-2.0/miu)) + C3*pow((q*sqrt(Rg2)),(-3.0/miu))); |
---|
| 175 | |
---|
| 176 | return (yy); |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | // these are the messy ones |
---|
| 180 | static double |
---|
| 181 | a2short(double q, double L, double b, double p1short, double p2short, double q0) |
---|
| 182 | { |
---|
| 183 | double yy,Rg2_sh; |
---|
| 184 | double t1,E,Rg2_sh2,Et1,Emt1,q02,q0p; |
---|
| 185 | double pi; |
---|
| 186 | |
---|
| 187 | E = 2.718281828459045091; |
---|
| 188 | pi = 4.0*atan(1.0); |
---|
| 189 | Rg2_sh = Rgsquareshort(q,L,b); |
---|
| 190 | Rg2_sh2 = Rg2_sh*Rg2_sh; |
---|
| 191 | t1 = ((q0*q0*Rg2_sh)/(b*b)); |
---|
| 192 | Et1 = pow(E,t1); |
---|
| 193 | Emt1 =pow(E,-t1); |
---|
| 194 | q02 = q0*q0; |
---|
| 195 | q0p = pow(q0,(-4.0 + p2short) ); |
---|
| 196 | |
---|
| 197 | //E is the number e |
---|
| 198 | yy = ((-(1.0/(L*((p1short - p2short))*Rg2_sh2)*((b*Emt1*q0p*((8.0*b*b*b*L - 8.0*b*b*b*Et1*L - 2.0*b*b*b*L*p1short + 2.0*b*b*b*Et1*L*p1short + 4.0*b*L*q02*Rg2_sh + 4.0*b*Et1*L*q02*Rg2_sh - 2.0*b*Et1*L*p1short*q02*Rg2_sh - Et1*pi*q02*q0*Rg2_sh2 + Et1*p1short*pi*q02*q0*Rg2_sh2))))))); |
---|
| 199 | |
---|
| 200 | return (yy); |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | // |
---|
| 204 | static double |
---|
| 205 | a1short(double q, double L, double b, double p1short, double p2short, double q0) |
---|
| 206 | { |
---|
| 207 | double yy,Rg2_sh; |
---|
| 208 | double t1,E,Rg2_sh2,Et1,Emt1,q02,q0p,b3; |
---|
| 209 | double pi; |
---|
| 210 | |
---|
| 211 | E = 2.718281828459045091; |
---|
| 212 | pi = 4.0*atan(1.0); |
---|
| 213 | Rg2_sh = Rgsquareshort(q,L,b); |
---|
| 214 | Rg2_sh2 = Rg2_sh*Rg2_sh; |
---|
| 215 | b3 = b*b*b; |
---|
| 216 | t1 = ((q0*q0*Rg2_sh)/(b*b)); |
---|
| 217 | Et1 = pow(E,t1); |
---|
| 218 | Emt1 =pow(E,-t1); |
---|
| 219 | q02 = q0*q0; |
---|
| 220 | q0p = pow(q0,(-4.0 + p1short) ); |
---|
| 221 | |
---|
| 222 | yy = ((1.0/(L*((p1short - p2short))*Rg2_sh2)*((b*Emt1*q0p*((8.0*b3*L - 8.0*b3*Et1*L - 2.0*b3*L*p2short + 2.0*b3*Et1*L*p2short + 4.0*b*L*q02*Rg2_sh + 4.0*b*Et1*L*q02*Rg2_sh - 2.0*b*Et1*L*p2short*q02*Rg2_sh - Et1*pi*q02*q0*Rg2_sh2 + Et1*p2short*pi*q02*q0*Rg2_sh2)))))); |
---|
| 223 | |
---|
| 224 | return(yy); |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | |
---|
| 228 | //need to define this on my own |
---|
| 229 | static double |
---|
| 230 | sech_WR(double x) |
---|
| 231 | { |
---|
| 232 | return(1/cosh(x)); |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | // this one will be lots of trouble |
---|
| 236 | static double |
---|
| 237 | a2long(double q, double L, double b, double p1, double p2, double q0) |
---|
| 238 | { |
---|
| 239 | double yy,C1,C2,C3,C4,C5,miu,C,Rg2; |
---|
| 240 | double t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,pi; |
---|
| 241 | double E,b2,b3,b4,q02,q03,q04,q05,Rg22; |
---|
| 242 | |
---|
| 243 | pi = 4.0*atan(1.0); |
---|
| 244 | E = 2.718281828459045091; |
---|
| 245 | if( L/b > 10.0) { |
---|
| 246 | C = 3.06/pow((L/b),0.44); |
---|
| 247 | } else { |
---|
| 248 | C = 1.0; |
---|
| 249 | } |
---|
| 250 | |
---|
| 251 | C1 = 1.22; |
---|
| 252 | C2 = 0.4288; |
---|
| 253 | C3 = -1.651; |
---|
| 254 | C4 = 1.523; |
---|
| 255 | C5 = 0.1477; |
---|
| 256 | miu = 0.585; |
---|
| 257 | |
---|
| 258 | Rg2 = Rgsquare(q,L,b); |
---|
| 259 | Rg22 = Rg2*Rg2; |
---|
| 260 | b2 = b*b; |
---|
| 261 | b3 = b*b*b; |
---|
| 262 | b4 = b3*b; |
---|
| 263 | q02 = q0*q0; |
---|
| 264 | q03 = q0*q0*q0; |
---|
| 265 | q04 = q03*q0; |
---|
| 266 | q05 = q04*q0; |
---|
| 267 | |
---|
| 268 | t1 = (1.0/(b* p1*pow(q0,((-1.0) - p1 - p2)) - b*p2*pow(q0,((-1.0) - p1 - p2)) )); |
---|
| 269 | |
---|
| 270 | t2 = (b*C*(((-1.0*((14.0*b3)/(15.0*q03*Rg2))) + (14.0*b3*pow(E,(-((q02*Rg2)/b2))))/(15.0*q03*Rg2) + (2.0*pow(E,(-((q02*Rg2)/b2)))*q0*((11.0/15.0 + (7*b2)/(15.0*q02*Rg2)))*Rg2)/b)))/L; |
---|
| 271 | |
---|
| 272 | t3 = (sqrt(Rg2)*((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu))))*pow(sech_WR(((-C4) + (sqrt(Rg2)*q0)/b)/C5),2.0))/(2.0*C5); |
---|
| 273 | |
---|
| 274 | t4 = (b4*sqrt(Rg2)*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*pow(sech_WR(((-C4) + (sqrt(Rg2)*q0)/b)/C5),2))/(C5*q04*Rg22); |
---|
| 275 | |
---|
| 276 | t5 = (2.0*b4*(((2.0*q0*Rg2)/b - (2.0*pow(E,(-((q02*Rg2)/b2)))*q0*Rg2)/b))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))))))/(q04*Rg22); |
---|
| 277 | |
---|
| 278 | t6 = (8.0*b4*b*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))))))/(q05*Rg22); |
---|
| 279 | |
---|
| 280 | t7 = (((-((3.0*C3*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 3.0/miu)))/miu)) - (2.0*C2*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 2.0/miu)))/miu - (C1*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 1.0/miu)))/miu)); |
---|
| 281 | |
---|
| 282 | t8 = ((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))); |
---|
| 283 | |
---|
| 284 | t9 = (b*C*((4.0/15.0 - pow(E,(-((q02*Rg2)/b2)))*((11.0/15.0 + (7.0*b2)/(15*q02*Rg2))) + (7.0*b2)/(15.0*q02*Rg2))))/L; |
---|
| 285 | |
---|
| 286 | t10 = (2.0*b4*(((-1) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))))))/(q04*Rg22); |
---|
| 287 | |
---|
| 288 | |
---|
| 289 | yy = ((-1.0*(t1* ((-pow(q0,-p1)*(((b2*pi)/(L*q02) + t2 + t3 - t4 + t5 - t6 + 1.0/2.0*t7*t8)) - b*p1*pow(q0,((-1.0) - p1))*(((-((b*pi)/(L*q0))) + t9 + t10 + 1.0/2.0*((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu))))*((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))))))); |
---|
| 290 | |
---|
| 291 | return (yy); |
---|
| 292 | } |
---|
| 293 | // |
---|
| 294 | static double |
---|
| 295 | a1long(double q, double L, double b, double p1, double p2, double q0) |
---|
| 296 | { |
---|
| 297 | double yy,C,C1,C2,C3,C4,C5,miu,Rg2; |
---|
| 298 | double t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15; |
---|
| 299 | double E,pi; |
---|
| 300 | double b2,b3,b4,q02,q03,q04,q05,Rg22; |
---|
| 301 | |
---|
| 302 | pi = 4.0*atan(1.0); |
---|
| 303 | E = 2.718281828459045091; |
---|
| 304 | |
---|
| 305 | if( L/b > 10.0) { |
---|
| 306 | C = 3.06/pow((L/b),0.44); |
---|
| 307 | } else { |
---|
| 308 | C = 1.0; |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | C1 = 1.22; |
---|
| 312 | C2 = 0.4288; |
---|
| 313 | C3 = -1.651; |
---|
| 314 | C4 = 1.523; |
---|
| 315 | C5 = 0.1477; |
---|
| 316 | miu = 0.585; |
---|
| 317 | |
---|
| 318 | Rg2 = Rgsquare(q,L,b); |
---|
| 319 | Rg22 = Rg2*Rg2; |
---|
| 320 | b2 = b*b; |
---|
| 321 | b3 = b*b*b; |
---|
| 322 | b4 = b3*b; |
---|
| 323 | q02 = q0*q0; |
---|
| 324 | q03 = q0*q0*q0; |
---|
| 325 | q04 = q03*q0; |
---|
| 326 | q05 = q04*q0; |
---|
| 327 | |
---|
| 328 | t1 = (b*C*((4.0/15.0 - pow(E,(-((q02*Rg2)/b2)))*((11.0/15.0 + (7.0*b2)/(15.0*q02*Rg2))) + (7.0*b2)/(15.0*q02*Rg2)))); |
---|
| 329 | |
---|
| 330 | t2 = (2.0*b4*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))); |
---|
| 331 | |
---|
| 332 | t3 = ((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu)))); |
---|
| 333 | |
---|
| 334 | t4 = ((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))); |
---|
| 335 | |
---|
| 336 | t5 = (1.0/(b*p1*pow(q0,((-1.0) - p1 - p2)) - b*p2*pow(q0,((-1.0) - p1 - p2)))); |
---|
| 337 | |
---|
| 338 | t6 = (b*C*(((-((14.0*b3)/(15.0*q03*Rg2))) + (14.0*b3*pow(E,(-((q02*Rg2)/b2))))/(15.0*q03*Rg2) + (2.0*pow(E,(-((q02*Rg2)/b2)))*q0*((11.0/15.0 + (7.0*b2)/(15.0*q02*Rg2)))*Rg2)/b))); |
---|
| 339 | |
---|
| 340 | t7 = (sqrt(Rg2)*((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu))))*pow(sech_WR(((-C4) + (sqrt(Rg2)*q0)/b)/C5),2)); |
---|
| 341 | |
---|
| 342 | t8 = (b4*sqrt(Rg2)*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*pow(sech_WR(((-C4) + (sqrt(Rg2)*q0)/b)/C5),2)); |
---|
| 343 | |
---|
| 344 | t9 = (2.0*b4*(((2.0*q0*Rg2)/b - (2.0*pow(E,(-((q02*Rg2)/b2)))*q0*Rg2)/b))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))); |
---|
| 345 | |
---|
| 346 | t10 = (8.0*b4*b*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))); |
---|
| 347 | |
---|
| 348 | t11 = (((-((3.0*C3*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 3.0/miu)))/miu)) - (2.0*C2*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 2.0/miu)))/miu - (C1*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 1.0/miu)))/miu)); |
---|
| 349 | |
---|
| 350 | t12 = ((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))); |
---|
| 351 | |
---|
| 352 | t13 = (b*C*((4.0/15.0 - pow(E,(-((q02*Rg2)/b2)))*((11.0/15.0 + (7.0*b2)/(15.0*q02* Rg2))) + (7.0*b2)/(15.0*q02*Rg2)))); |
---|
| 353 | |
---|
| 354 | t14 = (2.0*b4*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))); |
---|
| 355 | |
---|
| 356 | t15 = ((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu)))); |
---|
| 357 | |
---|
| 358 | |
---|
| 359 | yy = (pow(q0,p1)*(((-((b*pi)/(L*q0))) +t1/L +t2/(q04*Rg22) + 1.0/2.0*t3*t4)) + (t5*((pow(q0,(p1 - p2))*(((-pow(q0,(-p1)))*(((b2*pi)/(L*q02) +t6/L +t7/(2.0*C5) -t8/(C5*q04*Rg22) +t9/(q04*Rg22) -t10/(q05*Rg22) + 1.0/2.0*t11*t12)) - b*p1*pow(q0,((-1.0) - p1))*(((-((b*pi)/(L*q0))) +t13/L +t14/(q04*Rg22) + 1.0/2.0*t15*((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))))))))))); |
---|
| 360 | |
---|
| 361 | return (yy); |
---|
| 362 | } |
---|
| 363 | |
---|
| 364 | |
---|
| 365 | static double |
---|
| 366 | Sk_WR(double q, double L, double b) |
---|
| 367 | { |
---|
| 368 | // |
---|
| 369 | double p1,p2,p1short,p2short,q0; |
---|
| 370 | double C,ans,q0short,Sexvmodify,pi; |
---|
| 371 | |
---|
| 372 | pi = 4.0*atan(1.0); |
---|
| 373 | |
---|
| 374 | p1 = 4.12; |
---|
| 375 | p2 = 4.42; |
---|
| 376 | p1short = 5.36; |
---|
| 377 | p2short = 5.62; |
---|
| 378 | q0 = 3.1; |
---|
| 379 | // |
---|
| 380 | q0short = fmax(1.9/sqrt(Rgsquareshort(q,L,b)),3.0); |
---|
| 381 | |
---|
| 382 | // |
---|
| 383 | if(L/b > 10.0) { |
---|
| 384 | C = 3.06/pow((L/b),0.44); |
---|
| 385 | } else { |
---|
| 386 | C = 1.0; |
---|
| 387 | } |
---|
| 388 | // |
---|
| 389 | |
---|
| 390 | if( L > 4*b ) { // Longer Chains |
---|
| 391 | if (q*b <= 3.1) { //Modified by Yun on Oct. 15, |
---|
| 392 | Sexvmodify = Sexvnew(q, L, b); |
---|
| 393 | ans = Sexvmodify + C * (4.0/15.0 + 7.0/(15.0*u_WR(q,L,b)) - (11.0/15.0 + 7.0/(15.0*u_WR(q,L,b)))*exp(-u_WR(q,L,b)))*(b/L); |
---|
| 394 | } else { //q(i)*b > 3.1 |
---|
| 395 | ans = a1long(q, L, b, p1, p2, q0)/(pow((q*b),p1)) + a2long(q, L, b, p1, p2, q0)/(pow((q*b),p2)) + pi/(q*L); |
---|
| 396 | } |
---|
| 397 | } else { //L <= 4*b Shorter Chains |
---|
| 398 | if (q*b <= fmax(1.9/sqrt(Rgsquareshort(q,L,b)),3.0) ) { |
---|
| 399 | if (q*b<=0.01) { |
---|
| 400 | ans = 1.0 - Rgsquareshort(q,L,b)*(q*q)/3.0; |
---|
| 401 | } else { |
---|
| 402 | ans = Sdebye1(q,L,b); |
---|
| 403 | } |
---|
| 404 | } else { //q*b > max(1.9/sqrt(Rgsquareshort(q(i),L,b)),3) |
---|
| 405 | ans = a1short(q,L,b,p1short,p2short,q0short)/(pow((q*b),p1short)) + a2short(q,L,b,p1short,p2short,q0short)/(pow((q*b),p2short)) + pi/(q*L); |
---|
| 406 | } |
---|
| 407 | } |
---|
| 408 | |
---|
| 409 | return(ans); |
---|
| 410 | //return(a2long(q, L, b, p1, p2, q0)); |
---|
| 411 | } |
---|
| 412 | |
---|
| 413 | /* CylinderForm : calculates the form factor of a cylinder at the give x-value p->x |
---|
| 414 | |
---|
| 415 | Warning: |
---|
| 416 | The call to WaveData() below returns a pointer to the middle |
---|
| 417 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 418 | calculations could cause memory to move, you should copy the coefficient |
---|
| 419 | values to local variables or an array before such operations. |
---|
| 420 | */ |
---|
| 421 | double |
---|
| 422 | CylinderForm(double dp[], double q) |
---|
| 423 | { |
---|
| 424 | |
---|
| 425 | int i; |
---|
| 426 | double Pi; |
---|
| 427 | double scale,radius,length,delrho,bkg,halfheight,sldCyl,sldSolv; //local variables of coefficient wave |
---|
| 428 | int nord=76; //order of integration |
---|
| 429 | double uplim,lolim; //upper and lower integration limits |
---|
| 430 | double summ,zi,yyy,answer,vcyl; //running tally of integration |
---|
| 431 | |
---|
| 432 | Pi = 4.0*atan(1.0); |
---|
| 433 | lolim = 0.0; |
---|
| 434 | uplim = Pi/2.0; |
---|
| 435 | |
---|
| 436 | summ = 0.0; //initialize intergral |
---|
| 437 | |
---|
| 438 | scale = dp[0]; //make local copies in case memory moves |
---|
| 439 | radius = dp[1]; |
---|
| 440 | length = dp[2]; |
---|
| 441 | sldCyl = dp[3]; |
---|
| 442 | sldSolv = dp[4]; |
---|
| 443 | bkg = dp[5]; |
---|
| 444 | |
---|
| 445 | delrho = sldCyl-sldSolv; |
---|
| 446 | halfheight = length/2.0; |
---|
| 447 | for(i=0;i<nord;i++) { |
---|
| 448 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 449 | yyy = Gauss76Wt[i] * CylKernel(q, radius, halfheight, zi); |
---|
| 450 | summ += yyy; |
---|
| 451 | } |
---|
| 452 | |
---|
| 453 | answer = (uplim-lolim)/2.0*summ; |
---|
| 454 | // Multiply by contrast^2 |
---|
| 455 | answer *= delrho*delrho; |
---|
| 456 | //normalize by cylinder volume |
---|
| 457 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 458 | vcyl=Pi*radius*radius*length; |
---|
| 459 | answer *= vcyl; |
---|
| 460 | //convert to [cm-1] |
---|
| 461 | answer *= 1.0e8; |
---|
| 462 | //Scale |
---|
| 463 | answer *= scale; |
---|
| 464 | // add in the background |
---|
| 465 | answer += bkg; |
---|
| 466 | |
---|
| 467 | return answer; |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | /* EllipCyl76X : calculates the form factor of a elliptical cylinder at the given x-value p->x |
---|
| 471 | |
---|
| 472 | Uses 76 pt Gaussian quadrature for both integrals |
---|
| 473 | |
---|
| 474 | Warning: |
---|
| 475 | The call to WaveData() below returns a pointer to the middle |
---|
| 476 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 477 | calculations could cause memory to move, you should copy the coefficient |
---|
| 478 | values to local variables or an array before such operations. |
---|
| 479 | */ |
---|
| 480 | double |
---|
| 481 | EllipCyl76(double dp[], double q) |
---|
| 482 | { |
---|
| 483 | int i,j; |
---|
| 484 | double Pi,slde,sld; |
---|
| 485 | double scale,ra,nu,length,delrho,bkg; //local variables of coefficient wave |
---|
| 486 | int nord=76; //order of integration |
---|
| 487 | double va,vb; //upper and lower integration limits |
---|
| 488 | double summ,zi,yyy,answer,vell; //running tally of integration |
---|
| 489 | double summj,vaj,vbj,zij,arg, si; //for the inner integration |
---|
| 490 | |
---|
| 491 | Pi = 4.0*atan(1.0); |
---|
| 492 | va = 0.0; |
---|
| 493 | vb = 1.0; //orintational average, outer integral |
---|
| 494 | vaj=0.0; |
---|
| 495 | vbj=Pi; //endpoints of inner integral |
---|
| 496 | |
---|
| 497 | summ = 0.0; //initialize intergral |
---|
| 498 | |
---|
| 499 | scale = dp[0]; //make local copies in case memory moves |
---|
| 500 | ra = dp[1]; |
---|
| 501 | nu = dp[2]; |
---|
| 502 | length = dp[3]; |
---|
| 503 | slde = dp[4]; |
---|
| 504 | sld = dp[5]; |
---|
| 505 | delrho = slde - sld; |
---|
| 506 | bkg = dp[6]; |
---|
| 507 | |
---|
| 508 | for(i=0;i<nord;i++) { |
---|
| 509 | //setup inner integral over the ellipsoidal cross-section |
---|
| 510 | summj=0; |
---|
| 511 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "x" dummy |
---|
| 512 | arg = ra*sqrt(1.0-zi*zi); |
---|
| 513 | for(j=0;j<nord;j++) { |
---|
| 514 | //76 gauss points for the inner integral as well |
---|
| 515 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "y" dummy |
---|
| 516 | yyy = Gauss76Wt[j] * EllipCylKernel(q,arg,nu,zij); |
---|
| 517 | summj += yyy; |
---|
| 518 | } |
---|
| 519 | //now calculate the value of the inner integral |
---|
| 520 | answer = (vbj-vaj)/2.0*summj; |
---|
| 521 | //divide integral by Pi |
---|
| 522 | answer /=Pi; |
---|
| 523 | |
---|
| 524 | //now calculate outer integral |
---|
| 525 | arg = q*length*zi/2.0; |
---|
| 526 | if (arg == 0.0){ |
---|
| 527 | si = 1.0; |
---|
| 528 | }else{ |
---|
| 529 | si = sin(arg) * sin(arg) / arg / arg; |
---|
| 530 | } |
---|
| 531 | yyy = Gauss76Wt[i] * answer * si; |
---|
| 532 | summ += yyy; |
---|
| 533 | } |
---|
| 534 | answer = (vb-va)/2.0*summ; |
---|
| 535 | // Multiply by contrast^2 |
---|
| 536 | answer *= delrho*delrho; |
---|
| 537 | //normalize by cylinder volume |
---|
| 538 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 539 | vell = Pi*ra*(nu*ra)*length; |
---|
| 540 | answer *= vell; |
---|
| 541 | //convert to [cm-1] |
---|
| 542 | answer *= 1.0e8; |
---|
| 543 | //Scale |
---|
| 544 | answer *= scale; |
---|
| 545 | // add in the background |
---|
| 546 | answer += bkg; |
---|
| 547 | |
---|
| 548 | return answer; |
---|
| 549 | } |
---|
| 550 | |
---|
| 551 | /* EllipCyl20X : calculates the form factor of a elliptical cylinder at the given x-value p->x |
---|
| 552 | |
---|
| 553 | Uses 76 pt Gaussian quadrature for orientational integral |
---|
| 554 | Uses 20 pt quadrature for the inner integral over the elliptical cross-section |
---|
| 555 | |
---|
| 556 | Warning: |
---|
| 557 | The call to WaveData() below returns a pointer to the middle |
---|
| 558 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 559 | calculations could cause memory to move, you should copy the coefficient |
---|
| 560 | values to local variables or an array before such operations. |
---|
| 561 | */ |
---|
| 562 | double |
---|
| 563 | EllipCyl20(double dp[], double q) |
---|
| 564 | { |
---|
| 565 | int i,j; |
---|
| 566 | double Pi,slde,sld; |
---|
| 567 | double scale,ra,nu,length,delrho,bkg; //local variables of coefficient wave |
---|
| 568 | int nordi=76; //order of integration |
---|
| 569 | int nordj=20; |
---|
| 570 | double va,vb; //upper and lower integration limits |
---|
| 571 | double summ,zi,yyy,answer,vell; //running tally of integration |
---|
| 572 | double summj,vaj,vbj,zij,arg,si; //for the inner integration |
---|
| 573 | |
---|
| 574 | Pi = 4.0*atan(1.0); |
---|
| 575 | va = 0.0; |
---|
| 576 | vb = 1.0; //orintational average, outer integral |
---|
| 577 | vaj=0.0; |
---|
| 578 | vbj=Pi; //endpoints of inner integral |
---|
| 579 | |
---|
| 580 | summ = 0.0; //initialize intergral |
---|
| 581 | |
---|
| 582 | scale = dp[0]; //make local copies in case memory moves |
---|
| 583 | ra = dp[1]; |
---|
| 584 | nu = dp[2]; |
---|
| 585 | length = dp[3]; |
---|
| 586 | slde = dp[4]; |
---|
| 587 | sld = dp[5]; |
---|
| 588 | delrho = slde - sld; |
---|
| 589 | bkg = dp[6]; |
---|
| 590 | |
---|
| 591 | for(i=0;i<nordi;i++) { |
---|
| 592 | //setup inner integral over the ellipsoidal cross-section |
---|
| 593 | summj=0; |
---|
| 594 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "x" dummy |
---|
| 595 | arg = ra*sqrt(1.0-zi*zi); |
---|
| 596 | for(j=0;j<nordj;j++) { |
---|
| 597 | //20 gauss points for the inner integral |
---|
| 598 | zij = ( Gauss20Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "y" dummy |
---|
| 599 | yyy = Gauss20Wt[j] * EllipCylKernel(q,arg,nu,zij); |
---|
| 600 | summj += yyy; |
---|
| 601 | } |
---|
| 602 | //now calculate the value of the inner integral |
---|
| 603 | answer = (vbj-vaj)/2.0*summj; |
---|
| 604 | //divide integral by Pi |
---|
| 605 | answer /=Pi; |
---|
| 606 | |
---|
| 607 | //now calculate outer integral |
---|
| 608 | arg = q*length*zi/2.0; |
---|
| 609 | if (arg == 0.0){ |
---|
| 610 | si = 1.0; |
---|
| 611 | }else{ |
---|
| 612 | si = sin(arg) * sin(arg) / arg / arg; |
---|
| 613 | } |
---|
| 614 | yyy = Gauss76Wt[i] * answer * si; |
---|
| 615 | summ += yyy; |
---|
| 616 | } |
---|
| 617 | |
---|
| 618 | answer = (vb-va)/2.0*summ; |
---|
| 619 | // Multiply by contrast^2 |
---|
| 620 | answer *= delrho*delrho; |
---|
| 621 | //normalize by cylinder volume |
---|
| 622 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 623 | vell = Pi*ra*(nu*ra)*length; |
---|
| 624 | answer *= vell; |
---|
| 625 | //convert to [cm-1] |
---|
| 626 | answer *= 1.0e8; |
---|
| 627 | //Scale |
---|
| 628 | answer *= scale; |
---|
| 629 | // add in the background |
---|
| 630 | answer += bkg; |
---|
| 631 | |
---|
| 632 | return answer; |
---|
| 633 | } |
---|
| 634 | |
---|
| 635 | /* TriaxialEllipsoidX : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
| 636 | |
---|
| 637 | Uses 76 pt Gaussian quadrature for both integrals |
---|
| 638 | |
---|
| 639 | Warning: |
---|
| 640 | The call to WaveData() below returns a pointer to the middle |
---|
| 641 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 642 | calculations could cause memory to move, you should copy the coefficient |
---|
| 643 | values to local variables or an array before such operations. |
---|
| 644 | */ |
---|
| 645 | double |
---|
| 646 | TriaxialEllipsoid(double dp[], double q) |
---|
| 647 | { |
---|
| 648 | int i,j; |
---|
| 649 | double Pi; |
---|
| 650 | double scale,aa,bb,cc,delrho,bkg; //local variables of coefficient wave |
---|
| 651 | int nordi=76; //order of integration |
---|
| 652 | int nordj=76; |
---|
| 653 | double va,vb; //upper and lower integration limits |
---|
| 654 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 655 | double summj,vaj,vbj,zij,slde,sld; //for the inner integration |
---|
| 656 | |
---|
| 657 | Pi = 4.0*atan(1.0); |
---|
| 658 | va = 0.0; |
---|
| 659 | vb = 1.0; //orintational average, outer integral |
---|
| 660 | vaj = 0.0; |
---|
| 661 | vbj = 1.0; //endpoints of inner integral |
---|
| 662 | |
---|
| 663 | summ = 0.0; //initialize intergral |
---|
| 664 | |
---|
| 665 | scale = dp[0]; //make local copies in case memory moves |
---|
| 666 | aa = dp[1]; |
---|
| 667 | bb = dp[2]; |
---|
| 668 | cc = dp[3]; |
---|
| 669 | slde = dp[4]; |
---|
| 670 | sld = dp[5]; |
---|
| 671 | delrho = slde - sld; |
---|
| 672 | bkg = dp[6]; |
---|
| 673 | for(i=0;i<nordi;i++) { |
---|
| 674 | //setup inner integral over the ellipsoidal cross-section |
---|
| 675 | summj=0.0; |
---|
| 676 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "x" dummy |
---|
| 677 | for(j=0;j<nordj;j++) { |
---|
| 678 | //20 gauss points for the inner integral |
---|
| 679 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "y" dummy |
---|
| 680 | yyy = Gauss76Wt[j] * TriaxialKernel(q,aa,bb,cc,zi,zij); |
---|
| 681 | summj += yyy; |
---|
| 682 | } |
---|
| 683 | //now calculate the value of the inner integral |
---|
| 684 | answer = (vbj-vaj)/2.0*summj; |
---|
| 685 | |
---|
| 686 | //now calculate outer integral |
---|
| 687 | yyy = Gauss76Wt[i] * answer; |
---|
| 688 | summ += yyy; |
---|
| 689 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 690 | |
---|
| 691 | answer = (vb-va)/2.0*summ; |
---|
| 692 | // Multiply by contrast^2 |
---|
| 693 | answer *= delrho*delrho; |
---|
| 694 | //normalize by ellipsoid volume |
---|
| 695 | answer *= 4.0*Pi/3.0*aa*bb*cc; |
---|
| 696 | //convert to [cm-1] |
---|
| 697 | answer *= 1.0e8; |
---|
| 698 | //Scale |
---|
| 699 | answer *= scale; |
---|
| 700 | // add in the background |
---|
| 701 | answer += bkg; |
---|
| 702 | |
---|
| 703 | return answer; |
---|
| 704 | } |
---|
| 705 | |
---|
| 706 | /* ParallelepipedX : calculates the form factor of a Parallelepiped (a rectangular solid) |
---|
| 707 | at the given x-value p->x |
---|
| 708 | |
---|
| 709 | Uses 76 pt Gaussian quadrature for both integrals |
---|
| 710 | |
---|
| 711 | Warning: |
---|
| 712 | The call to WaveData() below returns a pointer to the middle |
---|
| 713 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 714 | calculations could cause memory to move, you should copy the coefficient |
---|
| 715 | values to local variables or an array before such operations. |
---|
| 716 | */ |
---|
| 717 | double |
---|
| 718 | Parallelepiped(double dp[], double q) |
---|
| 719 | { |
---|
| 720 | int i,j; |
---|
| 721 | double scale,aa,bb,cc,delrho,bkg; //local variables of coefficient wave |
---|
| 722 | int nordi=76; //order of integration |
---|
| 723 | int nordj=76; |
---|
| 724 | double va,vb; //upper and lower integration limits |
---|
| 725 | double summ,yyy,answer; //running tally of integration |
---|
| 726 | double summj,vaj,vbj; //for the inner integration |
---|
| 727 | double mu,mudum,arg,sigma,uu,vol,sldp,sld; |
---|
| 728 | |
---|
| 729 | |
---|
| 730 | // Pi = 4.0*atan(1.0); |
---|
| 731 | va = 0.0; |
---|
| 732 | vb = 1.0; //orintational average, outer integral |
---|
| 733 | vaj = 0.0; |
---|
| 734 | vbj = 1.0; //endpoints of inner integral |
---|
| 735 | |
---|
| 736 | summ = 0.0; //initialize intergral |
---|
| 737 | |
---|
| 738 | scale = dp[0]; //make local copies in case memory moves |
---|
| 739 | aa = dp[1]; |
---|
| 740 | bb = dp[2]; |
---|
| 741 | cc = dp[3]; |
---|
| 742 | sldp = dp[4]; |
---|
| 743 | sld = dp[5]; |
---|
| 744 | delrho = sldp - sld; |
---|
| 745 | bkg = dp[6]; |
---|
| 746 | |
---|
| 747 | mu = q*bb; |
---|
| 748 | vol = aa*bb*cc; |
---|
| 749 | // normalize all WRT bb |
---|
| 750 | aa = aa/bb; |
---|
| 751 | cc = cc/bb; |
---|
| 752 | |
---|
| 753 | for(i=0;i<nordi;i++) { |
---|
| 754 | //setup inner integral over the ellipsoidal cross-section |
---|
| 755 | summj=0.0; |
---|
| 756 | sigma = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy |
---|
| 757 | |
---|
| 758 | for(j=0;j<nordj;j++) { |
---|
| 759 | //76 gauss points for the inner integral |
---|
| 760 | uu = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy |
---|
| 761 | mudum = mu*sqrt(1.0-sigma*sigma); |
---|
| 762 | yyy = Gauss76Wt[j] * PPKernel(aa,mudum,uu); |
---|
| 763 | summj += yyy; |
---|
| 764 | } |
---|
| 765 | //now calculate the value of the inner integral |
---|
| 766 | answer = (vbj-vaj)/2.0*summj; |
---|
| 767 | |
---|
| 768 | arg = mu*cc*sigma/2.0; |
---|
| 769 | if ( arg == 0.0 ) { |
---|
| 770 | answer *= 1.0; |
---|
| 771 | } else { |
---|
| 772 | answer *= sin(arg)*sin(arg)/arg/arg; |
---|
| 773 | } |
---|
| 774 | |
---|
| 775 | //now sum up the outer integral |
---|
| 776 | yyy = Gauss76Wt[i] * answer; |
---|
| 777 | summ += yyy; |
---|
| 778 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 779 | |
---|
| 780 | answer = (vb-va)/2.0*summ; |
---|
| 781 | // Multiply by contrast^2 |
---|
| 782 | answer *= delrho*delrho; |
---|
| 783 | //normalize by volume |
---|
| 784 | answer *= vol; |
---|
| 785 | //convert to [cm-1] |
---|
| 786 | answer *= 1.0e8; |
---|
| 787 | //Scale |
---|
| 788 | answer *= scale; |
---|
| 789 | // add in the background |
---|
| 790 | answer += bkg; |
---|
| 791 | |
---|
| 792 | return answer; |
---|
| 793 | } |
---|
| 794 | |
---|
| 795 | /* HollowCylinderX : calculates the form factor of a Hollow Cylinder |
---|
| 796 | at the given x-value p->x |
---|
| 797 | |
---|
| 798 | Uses 76 pt Gaussian quadrature for the single integral |
---|
| 799 | |
---|
| 800 | Warning: |
---|
| 801 | The call to WaveData() below returns a pointer to the middle |
---|
| 802 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 803 | calculations could cause memory to move, you should copy the coefficient |
---|
| 804 | values to local variables or an array before such operations. |
---|
| 805 | */ |
---|
| 806 | double |
---|
| 807 | HollowCylinder(double dp[], double q) |
---|
| 808 | { |
---|
| 809 | int i; |
---|
| 810 | double scale,rcore,rshell,length,delrho,bkg; //local variables of coefficient wave |
---|
| 811 | int nord=76; //order of integration |
---|
| 812 | double va,vb,zi; //upper and lower integration limits |
---|
| 813 | double summ,answer,pi,sldc,sld; //running tally of integration |
---|
| 814 | |
---|
| 815 | pi = 4.0*atan(1.0); |
---|
| 816 | va = 0.0; |
---|
| 817 | vb = 1.0; //limits of numerical integral |
---|
| 818 | |
---|
| 819 | summ = 0.0; //initialize intergral |
---|
| 820 | |
---|
| 821 | scale = dp[0]; //make local copies in case memory moves |
---|
| 822 | rcore = dp[1]; |
---|
| 823 | rshell = dp[2]; |
---|
| 824 | length = dp[3]; |
---|
| 825 | sldc = dp[4]; |
---|
| 826 | sld = dp[5]; |
---|
| 827 | delrho = sldc - sld; |
---|
| 828 | bkg = dp[6]; |
---|
| 829 | |
---|
| 830 | for(i=0;i<nord;i++) { |
---|
| 831 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; |
---|
| 832 | summ += Gauss76Wt[i] * HolCylKernel(q, rcore, rshell, length, zi); |
---|
| 833 | } |
---|
| 834 | |
---|
| 835 | answer = (vb-va)/2.0*summ; |
---|
| 836 | // Multiply by contrast^2 |
---|
| 837 | answer *= delrho*delrho; |
---|
| 838 | //normalize by volume |
---|
| 839 | answer *= pi*(rshell*rshell-rcore*rcore)*length; |
---|
| 840 | //convert to [cm-1] |
---|
| 841 | answer *= 1.0e8; |
---|
| 842 | //Scale |
---|
| 843 | answer *= scale; |
---|
| 844 | // add in the background |
---|
| 845 | answer += bkg; |
---|
| 846 | |
---|
| 847 | return answer; |
---|
| 848 | } |
---|
| 849 | |
---|
| 850 | /* EllipsoidFormX : calculates the form factor of an ellipsoid of revolution with semiaxes a:a:nua |
---|
| 851 | at the given x-value p->x |
---|
| 852 | |
---|
| 853 | Uses 76 pt Gaussian quadrature for the single integral |
---|
| 854 | |
---|
| 855 | Warning: |
---|
| 856 | The call to WaveData() below returns a pointer to the middle |
---|
| 857 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 858 | calculations could cause memory to move, you should copy the coefficient |
---|
| 859 | values to local variables or an array before such operations. |
---|
| 860 | */ |
---|
| 861 | double |
---|
| 862 | EllipsoidForm(double dp[], double q) |
---|
| 863 | { |
---|
| 864 | int i; |
---|
| 865 | double scale,a,nua,delrho,bkg; //local variables of coefficient wave |
---|
| 866 | int nord=76; //order of integration |
---|
| 867 | double va,vb,zi; //upper and lower integration limits |
---|
| 868 | double summ,answer,pi,slde,sld; //running tally of integration |
---|
| 869 | |
---|
| 870 | pi = 4.0*atan(1.0); |
---|
| 871 | va = 0.0; |
---|
| 872 | vb = 1.0; //limits of numerical integral |
---|
| 873 | |
---|
| 874 | summ = 0.0; //initialize intergral |
---|
| 875 | |
---|
| 876 | scale = dp[0]; //make local copies in case memory moves |
---|
| 877 | nua = dp[1]; |
---|
| 878 | a = dp[2]; |
---|
| 879 | slde = dp[3]; |
---|
| 880 | sld = dp[4]; |
---|
| 881 | delrho = slde - sld; |
---|
| 882 | bkg = dp[5]; |
---|
| 883 | |
---|
| 884 | for(i=0;i<nord;i++) { |
---|
| 885 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; |
---|
| 886 | summ += Gauss76Wt[i] * EllipsoidKernel(q, a, nua, zi); |
---|
| 887 | } |
---|
| 888 | |
---|
| 889 | answer = (vb-va)/2.0*summ; |
---|
| 890 | // Multiply by contrast^2 |
---|
| 891 | answer *= delrho*delrho; |
---|
| 892 | //normalize by volume |
---|
| 893 | answer *= 4.0*pi/3.0*a*a*nua; |
---|
| 894 | //convert to [cm-1] |
---|
| 895 | answer *= 1.0e8; |
---|
| 896 | //Scale |
---|
| 897 | answer *= scale; |
---|
| 898 | // add in the background |
---|
| 899 | answer += bkg; |
---|
| 900 | |
---|
| 901 | return answer; |
---|
| 902 | } |
---|
| 903 | |
---|
| 904 | |
---|
| 905 | /* Cyl_PolyRadiusX : calculates the form factor of a cylinder at the given x-value p->x |
---|
| 906 | the cylinder has a polydisperse cross section |
---|
| 907 | |
---|
| 908 | */ |
---|
| 909 | double |
---|
| 910 | Cyl_PolyRadius(double dp[], double q) |
---|
| 911 | { |
---|
| 912 | int i; |
---|
| 913 | double scale,radius,length,pd,delrho,bkg; //local variables of coefficient wave |
---|
| 914 | int nord=20; //order of integration |
---|
| 915 | double uplim,lolim; //upper and lower integration limits |
---|
| 916 | double summ,zi,yyy,answer,Vpoly; //running tally of integration |
---|
| 917 | double range,zz,Pi,sldc,sld; |
---|
| 918 | |
---|
| 919 | Pi = 4.0*atan(1.0); |
---|
| 920 | range = 3.4; |
---|
| 921 | |
---|
| 922 | summ = 0.0; //initialize intergral |
---|
| 923 | |
---|
| 924 | scale = dp[0]; //make local copies in case memory moves |
---|
| 925 | radius = dp[1]; |
---|
| 926 | length = dp[2]; |
---|
| 927 | pd = dp[3]; |
---|
| 928 | sldc = dp[4]; |
---|
| 929 | sld = dp[5]; |
---|
| 930 | delrho = sldc - sld; |
---|
| 931 | bkg = dp[6]; |
---|
| 932 | |
---|
| 933 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
| 934 | |
---|
| 935 | lolim = radius*(1.0-range*pd); //set the upper/lower limits to cover the distribution |
---|
| 936 | if(lolim<0.0) { |
---|
| 937 | lolim = 0.0; |
---|
| 938 | } |
---|
| 939 | if(pd>0.3) { |
---|
| 940 | range = 3.4 + (pd-0.3)*18.0; |
---|
| 941 | } |
---|
| 942 | uplim = radius*(1.0+range*pd); |
---|
| 943 | |
---|
| 944 | for(i=0;i<nord;i++) { |
---|
| 945 | zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 946 | yyy = Gauss20Wt[i] * Cyl_PolyRadKernel(q, radius, length, zz, delrho, zi); |
---|
| 947 | summ += yyy; |
---|
| 948 | } |
---|
| 949 | |
---|
| 950 | answer = (uplim-lolim)/2.0*summ; |
---|
| 951 | //normalize by average cylinder volume |
---|
| 952 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 953 | Vpoly=Pi*radius*radius*length*(zz+2.0)/(zz+1.0); |
---|
| 954 | answer /= Vpoly; |
---|
| 955 | //convert to [cm-1] |
---|
| 956 | answer *= 1.0e8; |
---|
| 957 | //Scale |
---|
| 958 | answer *= scale; |
---|
| 959 | // add in the background |
---|
| 960 | answer += bkg; |
---|
| 961 | |
---|
| 962 | return answer; |
---|
| 963 | } |
---|
| 964 | |
---|
| 965 | /* Cyl_PolyLengthX : calculates the form factor of a cylinder at the given x-value p->x |
---|
| 966 | the cylinder has a polydisperse Length |
---|
| 967 | |
---|
| 968 | */ |
---|
| 969 | double |
---|
| 970 | Cyl_PolyLength(double dp[], double q) |
---|
| 971 | { |
---|
| 972 | int i; |
---|
| 973 | double scale,radius,length,pd,delrho,bkg; //local variables of coefficient wave |
---|
| 974 | int nord=20; //order of integration |
---|
| 975 | double uplim,lolim; //upper and lower integration limits |
---|
| 976 | double summ,zi,yyy,answer,Vpoly; //running tally of integration |
---|
| 977 | double range,zz,Pi,sldc,sld; |
---|
| 978 | |
---|
| 979 | |
---|
| 980 | Pi = 4.0*atan(1.0); |
---|
| 981 | range = 3.4; |
---|
| 982 | |
---|
| 983 | summ = 0.0; //initialize intergral |
---|
| 984 | |
---|
| 985 | scale = dp[0]; //make local copies in case memory moves |
---|
| 986 | radius = dp[1]; |
---|
| 987 | length = dp[2]; |
---|
| 988 | pd = dp[3]; |
---|
| 989 | sldc = dp[4]; |
---|
| 990 | sld = dp[5]; |
---|
| 991 | delrho = sldc - sld; |
---|
| 992 | bkg = dp[6]; |
---|
| 993 | |
---|
| 994 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
| 995 | |
---|
| 996 | lolim = length*(1.0-range*pd); //set the upper/lower limits to cover the distribution |
---|
| 997 | if(lolim<0.0) { |
---|
| 998 | lolim = 0.0; |
---|
| 999 | } |
---|
| 1000 | if(pd>0.3) { |
---|
| 1001 | range = 3.4 + (pd-0.3)*18.0; |
---|
| 1002 | } |
---|
| 1003 | uplim = length*(1.0+range*pd); |
---|
| 1004 | |
---|
| 1005 | for(i=0;i<nord;i++) { |
---|
| 1006 | zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1007 | yyy = Gauss20Wt[i] * Cyl_PolyLenKernel(q, radius, length, zz, delrho, zi); |
---|
| 1008 | summ += yyy; |
---|
| 1009 | } |
---|
| 1010 | |
---|
| 1011 | answer = (uplim-lolim)/2.0*summ; |
---|
| 1012 | //normalize by average cylinder volume (first moment) |
---|
| 1013 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 1014 | Vpoly=Pi*radius*radius*length; |
---|
| 1015 | answer /= Vpoly; |
---|
| 1016 | //convert to [cm-1] |
---|
| 1017 | answer *= 1.0e8; |
---|
| 1018 | //Scale |
---|
| 1019 | answer *= scale; |
---|
| 1020 | // add in the background |
---|
| 1021 | answer += bkg; |
---|
| 1022 | |
---|
| 1023 | return answer; |
---|
| 1024 | } |
---|
| 1025 | |
---|
| 1026 | /* CoreShellCylinderX : calculates the form factor of a cylinder at the given x-value p->x |
---|
| 1027 | the cylinder has a core-shell structure |
---|
| 1028 | |
---|
| 1029 | */ |
---|
| 1030 | double |
---|
| 1031 | CoreShellCylinder(double dp[], double q) |
---|
| 1032 | { |
---|
| 1033 | int i; |
---|
| 1034 | double scale,rcore,length,bkg; //local variables of coefficient wave |
---|
| 1035 | double thick,rhoc,rhos,rhosolv; |
---|
| 1036 | int nord=76; //order of integration |
---|
| 1037 | double uplim,lolim,halfheight; //upper and lower integration limits |
---|
| 1038 | double summ,zi,yyy,answer,Vcyl; //running tally of integration |
---|
| 1039 | double Pi; |
---|
| 1040 | |
---|
| 1041 | Pi = 4.0*atan(1.0); |
---|
| 1042 | |
---|
| 1043 | lolim = 0.0; |
---|
| 1044 | uplim = Pi/2.0; |
---|
| 1045 | |
---|
| 1046 | summ = 0.0; //initialize intergral |
---|
| 1047 | |
---|
| 1048 | scale = dp[0]; //make local copies in case memory moves |
---|
| 1049 | rcore = dp[1]; |
---|
| 1050 | thick = dp[2]; |
---|
| 1051 | length = dp[3]; |
---|
| 1052 | rhoc = dp[4]; |
---|
| 1053 | rhos = dp[5]; |
---|
| 1054 | rhosolv = dp[6]; |
---|
| 1055 | bkg = dp[7]; |
---|
| 1056 | |
---|
| 1057 | halfheight = length/2.0; |
---|
| 1058 | |
---|
| 1059 | for(i=0;i<nord;i++) { |
---|
| 1060 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1061 | yyy = Gauss76Wt[i] * CoreShellCylKernel(q, rcore, thick, rhoc,rhos,rhosolv, halfheight, zi); |
---|
| 1062 | summ += yyy; |
---|
| 1063 | } |
---|
| 1064 | |
---|
| 1065 | answer = (uplim-lolim)/2.0*summ; |
---|
| 1066 | // length is the total core length |
---|
| 1067 | Vcyl=Pi*(rcore+thick)*(rcore+thick)*(length+2.0*thick); |
---|
| 1068 | answer /= Vcyl; |
---|
| 1069 | //convert to [cm-1] |
---|
| 1070 | answer *= 1.0e8; |
---|
| 1071 | //Scale |
---|
| 1072 | answer *= scale; |
---|
| 1073 | // add in the background |
---|
| 1074 | answer += bkg; |
---|
| 1075 | |
---|
| 1076 | return answer; |
---|
| 1077 | } |
---|
| 1078 | |
---|
| 1079 | |
---|
| 1080 | /* PolyCoShCylinderX : calculates the form factor of a core-shell cylinder at the given x-value p->x |
---|
| 1081 | the cylinder has a polydisperse CORE radius |
---|
| 1082 | |
---|
| 1083 | */ |
---|
| 1084 | double |
---|
| 1085 | PolyCoShCylinder(double dp[], double q) |
---|
| 1086 | { |
---|
| 1087 | int i; |
---|
| 1088 | double scale,radius,length,sigma,bkg; //local variables of coefficient wave |
---|
| 1089 | double rad,radthick,facthick,rhoc,rhos,rhosolv; |
---|
| 1090 | int nord=20; //order of integration |
---|
| 1091 | double uplim,lolim; //upper and lower integration limits |
---|
| 1092 | double summ,yyy,answer,Vpoly; //running tally of integration |
---|
| 1093 | double Pi,AR,Rsqrsumm,Rsqryyy,Rsqr; |
---|
| 1094 | |
---|
| 1095 | Pi = 4.0*atan(1.0); |
---|
| 1096 | |
---|
| 1097 | summ = 0.0; //initialize intergral |
---|
| 1098 | Rsqrsumm = 0.0; |
---|
| 1099 | |
---|
| 1100 | scale = dp[0]; |
---|
| 1101 | radius = dp[1]; |
---|
| 1102 | sigma = dp[2]; //sigma is the standard mean deviation |
---|
| 1103 | length = dp[3]; |
---|
| 1104 | radthick = dp[4]; |
---|
| 1105 | facthick= dp[5]; |
---|
| 1106 | rhoc = dp[6]; |
---|
| 1107 | rhos = dp[7]; |
---|
| 1108 | rhosolv = dp[8]; |
---|
| 1109 | bkg = dp[9]; |
---|
| 1110 | |
---|
| 1111 | lolim = exp(log(radius)-(4.*sigma)); |
---|
| 1112 | if (lolim<0.0) { |
---|
| 1113 | lolim=0.0; //to avoid numerical error when va<0 (-ve r value) |
---|
| 1114 | } |
---|
| 1115 | uplim = exp(log(radius)+(4.*sigma)); |
---|
| 1116 | |
---|
| 1117 | for(i=0;i<nord;i++) { |
---|
| 1118 | rad = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1119 | AR=(1.0/(rad*sigma*sqrt(2.0*Pi)))*exp(-(0.5*((log(radius/rad))/sigma)*((log(radius/rad))/sigma))); |
---|
| 1120 | yyy = AR* Gauss20Wt[i] * CSCylIntegration(q,rad,radthick,facthick,rhoc,rhos,rhosolv,length); |
---|
| 1121 | Rsqryyy= Gauss20Wt[i] * AR * (rad+radthick)*(rad+radthick); //SRK normalize to total dimensions |
---|
| 1122 | summ += yyy; |
---|
| 1123 | Rsqrsumm += Rsqryyy; |
---|
| 1124 | } |
---|
| 1125 | |
---|
| 1126 | answer = (uplim-lolim)/2.0*summ; |
---|
| 1127 | Rsqr = (uplim-lolim)/2.0*Rsqrsumm; |
---|
| 1128 | //normalize by average cylinder volume |
---|
| 1129 | Vpoly = Pi*Rsqr*(length+2*facthick); |
---|
| 1130 | answer /= Vpoly; |
---|
| 1131 | //convert to [cm-1] |
---|
| 1132 | answer *= 1.0e8; |
---|
| 1133 | //Scale |
---|
| 1134 | answer *= scale; |
---|
| 1135 | // add in the background |
---|
| 1136 | answer += bkg; |
---|
| 1137 | |
---|
| 1138 | return answer; |
---|
| 1139 | } |
---|
| 1140 | |
---|
| 1141 | /* OblateFormX : calculates the form factor of a core-shell Oblate ellipsoid at the given x-value p->x |
---|
| 1142 | the ellipsoid has a core-shell structure |
---|
| 1143 | |
---|
| 1144 | */ |
---|
| 1145 | double |
---|
| 1146 | OblateForm(double dp[], double q) |
---|
| 1147 | { |
---|
| 1148 | int i; |
---|
| 1149 | double scale,crmaj,crmin,trmaj,trmin,delpc,delps,bkg; |
---|
| 1150 | int nord=76; //order of integration |
---|
| 1151 | double uplim,lolim; //upper and lower integration limits |
---|
| 1152 | double summ,zi,yyy,answer,oblatevol; //running tally of integration |
---|
| 1153 | double Pi,sldc,slds,sld; |
---|
| 1154 | |
---|
| 1155 | Pi = 4.0*atan(1.0); |
---|
| 1156 | |
---|
| 1157 | lolim = 0.0; |
---|
| 1158 | uplim = 1.0; |
---|
| 1159 | |
---|
| 1160 | summ = 0.0; //initialize intergral |
---|
| 1161 | |
---|
| 1162 | |
---|
| 1163 | scale = dp[0]; //make local copies in case memory moves |
---|
| 1164 | crmaj = dp[1]; |
---|
| 1165 | crmin = dp[2]; |
---|
| 1166 | trmaj = dp[3]; |
---|
| 1167 | trmin = dp[4]; |
---|
| 1168 | sldc = dp[5]; |
---|
| 1169 | slds = dp[6]; |
---|
| 1170 | sld = dp[7]; |
---|
| 1171 | delpc = sldc - slds; //core - shell |
---|
| 1172 | delps = slds - sld; //shell - solvent |
---|
| 1173 | bkg = dp[8]; |
---|
| 1174 | |
---|
| 1175 | for(i=0;i<nord;i++) { |
---|
| 1176 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1177 | yyy = Gauss76Wt[i] * gfn4(zi,crmaj,crmin,trmaj,trmin,delpc,delps,q); |
---|
| 1178 | summ += yyy; |
---|
| 1179 | } |
---|
| 1180 | |
---|
| 1181 | answer = (uplim-lolim)/2.0*summ; |
---|
| 1182 | // normalize by particle volume |
---|
| 1183 | oblatevol = 4.0*Pi/3.0*trmaj*trmaj*trmin; |
---|
| 1184 | answer /= oblatevol; |
---|
| 1185 | |
---|
| 1186 | //convert to [cm-1] |
---|
| 1187 | answer *= 1.0e8; |
---|
| 1188 | //Scale |
---|
| 1189 | answer *= scale; |
---|
| 1190 | // add in the background |
---|
| 1191 | answer += bkg; |
---|
| 1192 | |
---|
| 1193 | return answer; |
---|
| 1194 | } |
---|
| 1195 | |
---|
| 1196 | /* ProlateFormX : calculates the form factor of a core-shell Prolate ellipsoid at the given x-value p->x |
---|
| 1197 | the ellipsoid has a core-shell structure |
---|
| 1198 | |
---|
| 1199 | */ |
---|
| 1200 | double |
---|
| 1201 | ProlateForm(double dp[], double q) |
---|
| 1202 | { |
---|
| 1203 | int i; |
---|
| 1204 | double scale,crmaj,crmin,trmaj,trmin,delpc,delps,bkg; |
---|
| 1205 | int nord=76; //order of integration |
---|
| 1206 | double uplim,lolim; //upper and lower integration limits |
---|
| 1207 | double summ,zi,yyy,answer,prolatevol; //running tally of integration |
---|
| 1208 | double Pi,sldc,slds,sld; |
---|
| 1209 | |
---|
| 1210 | Pi = 4.0*atan(1.0); |
---|
| 1211 | |
---|
| 1212 | lolim = 0.0; |
---|
| 1213 | uplim = 1.0; |
---|
| 1214 | |
---|
| 1215 | summ = 0.0; //initialize intergral |
---|
| 1216 | |
---|
| 1217 | scale = dp[0]; //make local copies in case memory moves |
---|
| 1218 | crmaj = dp[1]; |
---|
| 1219 | crmin = dp[2]; |
---|
| 1220 | trmaj = dp[3]; |
---|
| 1221 | trmin = dp[4]; |
---|
| 1222 | sldc = dp[5]; |
---|
| 1223 | slds = dp[6]; |
---|
| 1224 | sld = dp[7]; |
---|
| 1225 | delpc = sldc - slds; //core - shell |
---|
| 1226 | delps = slds - sld; //shell - sovent |
---|
| 1227 | bkg = dp[8]; |
---|
| 1228 | |
---|
| 1229 | for(i=0;i<nord;i++) { |
---|
| 1230 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1231 | yyy = Gauss76Wt[i] * gfn2(zi,crmaj,crmin,trmaj,trmin,delpc,delps,q); |
---|
| 1232 | summ += yyy; |
---|
| 1233 | } |
---|
| 1234 | |
---|
| 1235 | answer = (uplim-lolim)/2.0*summ; |
---|
| 1236 | // normalize by particle volume |
---|
| 1237 | prolatevol = 4.0*Pi/3.0*trmaj*trmin*trmin; |
---|
| 1238 | answer /= prolatevol; |
---|
| 1239 | |
---|
| 1240 | //convert to [cm-1] |
---|
| 1241 | answer *= 1.0e8; |
---|
| 1242 | //Scale |
---|
| 1243 | answer *= scale; |
---|
| 1244 | // add in the background |
---|
| 1245 | answer += bkg; |
---|
| 1246 | |
---|
| 1247 | return answer; |
---|
| 1248 | } |
---|
| 1249 | |
---|
| 1250 | |
---|
| 1251 | /* StackedDiscsX : calculates the form factor of a stacked "tactoid" of core shell disks |
---|
| 1252 | like clay platelets that are not exfoliated |
---|
| 1253 | |
---|
| 1254 | */ |
---|
| 1255 | double |
---|
| 1256 | StackedDiscs(double dp[], double q) |
---|
| 1257 | { |
---|
| 1258 | int i; |
---|
| 1259 | double scale,length,bkg,rcore,thick,rhoc,rhol,rhosolv,N,gsd; //local variables of coefficient wave |
---|
| 1260 | double va,vb,vcyl,summ,yyy,zi,halfheight,d,answer; |
---|
| 1261 | int nord=76; //order of integration |
---|
| 1262 | double Pi; |
---|
| 1263 | |
---|
| 1264 | |
---|
| 1265 | Pi = 4.0*atan(1.0); |
---|
| 1266 | |
---|
| 1267 | va = 0.0; |
---|
| 1268 | vb = Pi/2.0; |
---|
| 1269 | |
---|
| 1270 | summ = 0.0; //initialize intergral |
---|
| 1271 | |
---|
| 1272 | scale = dp[0]; |
---|
| 1273 | rcore = dp[1]; |
---|
| 1274 | length = dp[2]; |
---|
| 1275 | thick = dp[3]; |
---|
| 1276 | rhoc = dp[4]; |
---|
| 1277 | rhol = dp[5]; |
---|
| 1278 | rhosolv = dp[6]; |
---|
| 1279 | N = dp[7]; |
---|
| 1280 | gsd = dp[8]; |
---|
| 1281 | bkg = dp[9]; |
---|
| 1282 | |
---|
| 1283 | d=2.0*thick+length; |
---|
| 1284 | halfheight = length/2.0; |
---|
| 1285 | |
---|
| 1286 | for(i=0;i<nord;i++) { |
---|
| 1287 | zi = ( Gauss76Z[i]*(vb-va) + vb + va )/2.0; |
---|
| 1288 | yyy = Gauss76Wt[i] * Stackdisc_kern(q, rcore, rhoc,rhol,rhosolv, halfheight,thick,zi,gsd,d,N); |
---|
| 1289 | summ += yyy; |
---|
| 1290 | } |
---|
| 1291 | |
---|
| 1292 | answer = (vb-va)/2.0*summ; |
---|
| 1293 | // length is the total core length |
---|
| 1294 | vcyl=Pi*rcore*rcore*(2.0*thick+length)*N; |
---|
| 1295 | answer /= vcyl; |
---|
| 1296 | //Convert to [cm-1] |
---|
| 1297 | answer *= 1.0e8; |
---|
| 1298 | //Scale |
---|
| 1299 | answer *= scale; |
---|
| 1300 | // add in the background |
---|
| 1301 | answer += bkg; |
---|
| 1302 | |
---|
| 1303 | return answer; |
---|
| 1304 | } |
---|
| 1305 | |
---|
| 1306 | |
---|
| 1307 | /* LamellarFFX : calculates the form factor of a lamellar structure - no S(q) effects included |
---|
| 1308 | |
---|
| 1309 | */ |
---|
| 1310 | double |
---|
| 1311 | LamellarFF(double dp[], double q) |
---|
| 1312 | { |
---|
| 1313 | double scale,del,sig,contr,bkg; //local variables of coefficient wave |
---|
| 1314 | double inten, qval,Pq; |
---|
| 1315 | double Pi,sldb,sld; |
---|
| 1316 | |
---|
| 1317 | |
---|
| 1318 | Pi = 4.0*atan(1.0); |
---|
| 1319 | scale = dp[0]; |
---|
| 1320 | del = dp[1]; |
---|
| 1321 | sig = dp[2]*del; |
---|
| 1322 | sldb = dp[3]; |
---|
| 1323 | sld = dp[4]; |
---|
| 1324 | contr = sldb - sld; |
---|
| 1325 | bkg = dp[5]; |
---|
| 1326 | qval=q; |
---|
| 1327 | |
---|
| 1328 | Pq = 2.0*contr*contr/qval/qval*(1.0-cos(qval*del)*exp(-0.5*qval*qval*sig*sig)); |
---|
| 1329 | |
---|
| 1330 | inten = 2.0*Pi*scale*Pq/(qval*qval); //this is now dimensionless... |
---|
| 1331 | |
---|
| 1332 | inten /= del; //normalize by the thickness (in A) |
---|
| 1333 | |
---|
| 1334 | inten *= 1.0e8; // 1/A to 1/cm |
---|
| 1335 | |
---|
| 1336 | return(inten+bkg); |
---|
| 1337 | } |
---|
| 1338 | |
---|
| 1339 | /* LamellarPSX : calculates the form factor of a lamellar structure - with S(q) effects included |
---|
| 1340 | --- now the proper resolution effects are used - the "default" resolution is turned off (= 0) and the |
---|
| 1341 | model is smeared just like any other function |
---|
| 1342 | */ |
---|
| 1343 | double |
---|
| 1344 | LamellarPS(double dp[], double q) |
---|
| 1345 | { |
---|
| 1346 | double scale,dd,del,sig,contr,NN,Cp,bkg; //local variables of coefficient wave |
---|
| 1347 | double inten,qval,Pq,Sq,alpha,temp,t1,t2,t3,dQ; |
---|
| 1348 | double Pi,Euler,dQDefault,fii,sldb,sld; |
---|
| 1349 | int ii,NNint; |
---|
| 1350 | // char buf[256]; |
---|
| 1351 | |
---|
| 1352 | |
---|
| 1353 | Euler = 0.5772156649; // Euler's constant |
---|
| 1354 | // dQDefault = 0.0025; //[=] 1/A, q-resolution, default value |
---|
| 1355 | dQDefault = 0.0; |
---|
| 1356 | dQ = dQDefault; |
---|
| 1357 | |
---|
| 1358 | Pi = 4.0*atan(1.0); |
---|
| 1359 | qval = q; |
---|
| 1360 | |
---|
| 1361 | scale = dp[0]; |
---|
| 1362 | dd = dp[1]; |
---|
| 1363 | del = dp[2]; |
---|
| 1364 | sig = dp[3]*del; |
---|
| 1365 | sldb = dp[4]; |
---|
| 1366 | sld = dp[5]; |
---|
| 1367 | contr = sldb - sld; |
---|
| 1368 | NN = trunc(dp[6]); //be sure that NN is an integer |
---|
| 1369 | Cp = dp[7]; |
---|
| 1370 | bkg = dp[8]; |
---|
| 1371 | |
---|
| 1372 | Pq = 2.0*contr*contr/qval/qval*(1.0-cos(qval*del)*exp(-0.5*qval*qval*sig*sig)); |
---|
| 1373 | |
---|
| 1374 | NNint = (int)NN; //cast to an integer for the loop |
---|
| 1375 | |
---|
| 1376 | // sprintf(buf, "qval = %g\r", qval); |
---|
| 1377 | // XOPNotice(buf); |
---|
| 1378 | |
---|
| 1379 | ii=0; |
---|
| 1380 | Sq = 0.0; |
---|
[8d302cd] | 1381 | for(ii=1;ii<=(NNint-1);ii+=1) { |
---|
[230f479] | 1382 | |
---|
| 1383 | fii = (double)ii; //do I really need to do this? |
---|
| 1384 | |
---|
| 1385 | temp = 0.0; |
---|
| 1386 | alpha = Cp/4.0/Pi/Pi*(log(Pi*fii) + Euler); |
---|
| 1387 | t1 = 2.0*dQ*dQ*dd*dd*alpha; |
---|
| 1388 | t2 = 2.0*qval*qval*dd*dd*alpha; |
---|
| 1389 | t3 = dQ*dQ*dd*dd*fii*fii; |
---|
| 1390 | |
---|
| 1391 | temp = 1.0-fii/NN; |
---|
| 1392 | temp *= cos(dd*qval*fii/(1.0+t1)); |
---|
| 1393 | temp *= exp(-1.0*(t2 + t3)/(2.0*(1.0+t1)) ); |
---|
| 1394 | temp /= sqrt(1.0+t1); |
---|
| 1395 | |
---|
| 1396 | Sq += temp; |
---|
| 1397 | } |
---|
| 1398 | |
---|
| 1399 | Sq *= 2.0; |
---|
| 1400 | Sq += 1.0; |
---|
| 1401 | |
---|
| 1402 | inten = 2.0*Pi*scale*Pq*Sq/(dd*qval*qval); |
---|
| 1403 | |
---|
| 1404 | inten *= 1.0e8; // 1/A to 1/cm |
---|
| 1405 | |
---|
| 1406 | return(inten+bkg); |
---|
| 1407 | } |
---|
| 1408 | |
---|
| 1409 | |
---|
| 1410 | /* LamellarPS_HGX : calculates the form factor of a lamellar structure - with S(q) effects included |
---|
| 1411 | --- now the proper resolution effects are used - the "default" resolution is turned off (= 0) and the |
---|
| 1412 | model is smeared just like any other function |
---|
| 1413 | */ |
---|
| 1414 | double |
---|
| 1415 | LamellarPS_HG(double dp[], double q) |
---|
| 1416 | { |
---|
| 1417 | double scale,dd,delT,delH,SLD_T,SLD_H,SLD_S,NN,Cp,bkg; //local variables of coefficient wave |
---|
| 1418 | double inten,qval,Pq,Sq,alpha,temp,t1,t2,t3,dQ,drh,drt; |
---|
| 1419 | double Pi,Euler,dQDefault,fii; |
---|
| 1420 | int ii,NNint; |
---|
| 1421 | |
---|
| 1422 | |
---|
| 1423 | Euler = 0.5772156649; // Euler's constant |
---|
| 1424 | // dQDefault = 0.0025; //[=] 1/A, q-resolution, default value |
---|
| 1425 | dQDefault = 0.0; |
---|
| 1426 | dQ = dQDefault; |
---|
| 1427 | |
---|
| 1428 | Pi = 4.0*atan(1.0); |
---|
| 1429 | qval= q; |
---|
| 1430 | |
---|
| 1431 | scale = dp[0]; |
---|
| 1432 | dd = dp[1]; |
---|
| 1433 | delT = dp[2]; |
---|
| 1434 | delH = dp[3]; |
---|
| 1435 | SLD_T = dp[4]; |
---|
| 1436 | SLD_H = dp[5]; |
---|
| 1437 | SLD_S = dp[6]; |
---|
| 1438 | NN = trunc(dp[7]); //be sure that NN is an integer |
---|
| 1439 | Cp = dp[8]; |
---|
| 1440 | bkg = dp[9]; |
---|
| 1441 | |
---|
| 1442 | |
---|
| 1443 | drh = SLD_H - SLD_S; |
---|
| 1444 | drt = SLD_T - SLD_S; //correction 13FEB06 by L.Porcar |
---|
| 1445 | |
---|
| 1446 | Pq = drh*(sin(qval*(delH+delT))-sin(qval*delT)) + drt*sin(qval*delT); |
---|
| 1447 | Pq *= Pq; |
---|
| 1448 | Pq *= 4.0/(qval*qval); |
---|
| 1449 | |
---|
| 1450 | NNint = (int)NN; //cast to an integer for the loop |
---|
| 1451 | ii=0; |
---|
| 1452 | Sq = 0.0; |
---|
[8d302cd] | 1453 | for(ii=1;ii<=(NNint-1);ii+=1) { |
---|
[230f479] | 1454 | |
---|
| 1455 | fii = (double)ii; //do I really need to do this? |
---|
| 1456 | |
---|
| 1457 | temp = 0.0; |
---|
| 1458 | alpha = Cp/4.0/Pi/Pi*(log(Pi*ii) + Euler); |
---|
| 1459 | t1 = 2.0*dQ*dQ*dd*dd*alpha; |
---|
| 1460 | t2 = 2.0*qval*qval*dd*dd*alpha; |
---|
| 1461 | t3 = dQ*dQ*dd*dd*ii*ii; |
---|
| 1462 | |
---|
| 1463 | temp = 1.0-ii/NN; |
---|
| 1464 | temp *= cos(dd*qval*ii/(1.0+t1)); |
---|
| 1465 | temp *= exp(-1.0*(t2 + t3)/(2.0*(1.0+t1)) ); |
---|
| 1466 | temp /= sqrt(1.0+t1); |
---|
| 1467 | |
---|
| 1468 | Sq += temp; |
---|
| 1469 | } |
---|
| 1470 | |
---|
| 1471 | Sq *= 2.0; |
---|
| 1472 | Sq += 1.0; |
---|
| 1473 | |
---|
| 1474 | inten = 2.0*Pi*scale*Pq*Sq/(dd*qval*qval); |
---|
| 1475 | |
---|
| 1476 | inten *= 1.0e8; // 1/A to 1/cm |
---|
| 1477 | |
---|
| 1478 | return(inten+bkg); |
---|
| 1479 | } |
---|
| 1480 | |
---|
| 1481 | /* LamellarFF_HGX : calculates the form factor of a lamellar structure - no S(q) effects included |
---|
| 1482 | but extra SLD for head groups is included |
---|
| 1483 | |
---|
| 1484 | */ |
---|
| 1485 | double |
---|
| 1486 | LamellarFF_HG(double dp[], double q) |
---|
| 1487 | { |
---|
| 1488 | double scale,delT,delH,slds,sldh,sldt,bkg; //local variables of coefficient wave |
---|
| 1489 | double inten, qval,Pq,drh,drt; |
---|
| 1490 | double Pi; |
---|
| 1491 | |
---|
| 1492 | |
---|
| 1493 | Pi = 4.0*atan(1.0); |
---|
| 1494 | qval= q; |
---|
| 1495 | scale = dp[0]; |
---|
| 1496 | delT = dp[1]; |
---|
| 1497 | delH = dp[2]; |
---|
| 1498 | sldt = dp[3]; |
---|
| 1499 | sldh = dp[4]; |
---|
| 1500 | slds = dp[5]; |
---|
| 1501 | bkg = dp[6]; |
---|
| 1502 | |
---|
| 1503 | |
---|
| 1504 | drh = sldh - slds; |
---|
| 1505 | drt = sldt - slds; //correction 13FEB06 by L.Porcar |
---|
| 1506 | |
---|
| 1507 | Pq = drh*(sin(qval*(delH+delT))-sin(qval*delT)) + drt*sin(qval*delT); |
---|
| 1508 | Pq *= Pq; |
---|
| 1509 | Pq *= 4.0/(qval*qval); |
---|
| 1510 | |
---|
| 1511 | inten = 2.0*Pi*scale*Pq/(qval*qval); //dimensionless... |
---|
| 1512 | |
---|
| 1513 | inten /= 2.0*(delT+delH); //normalize by the bilayer thickness |
---|
| 1514 | |
---|
| 1515 | inten *= 1.0e8; // 1/A to 1/cm |
---|
| 1516 | |
---|
| 1517 | return(inten+bkg); |
---|
| 1518 | } |
---|
| 1519 | |
---|
| 1520 | /* FlexExclVolCylX : calculates the form factor of a flexible cylinder with a circular cross section |
---|
| 1521 | -- incorporates Wei-Ren Chen's fixes - 2006 |
---|
| 1522 | |
---|
| 1523 | */ |
---|
| 1524 | double |
---|
| 1525 | FlexExclVolCyl(double dp[], double q) |
---|
| 1526 | { |
---|
| 1527 | double scale,L,B,bkg,rad,qr,cont,sldc,slds; |
---|
| 1528 | double Pi,flex,crossSect,answer; |
---|
| 1529 | |
---|
| 1530 | |
---|
| 1531 | Pi = 4.0*atan(1.0); |
---|
| 1532 | |
---|
| 1533 | scale = dp[0]; //make local copies in case memory moves |
---|
| 1534 | L = dp[1]; |
---|
| 1535 | B = dp[2]; |
---|
| 1536 | rad = dp[3]; |
---|
| 1537 | sldc = dp[4]; |
---|
| 1538 | slds = dp[5]; |
---|
| 1539 | cont = sldc-slds; |
---|
| 1540 | bkg = dp[6]; |
---|
| 1541 | |
---|
| 1542 | |
---|
| 1543 | qr = q*rad; |
---|
| 1544 | |
---|
| 1545 | flex = Sk_WR(q,L,B); |
---|
| 1546 | |
---|
| 1547 | crossSect = (2.0*NR_BessJ1(qr)/qr)*(2.0*NR_BessJ1(qr)/qr); |
---|
| 1548 | flex *= crossSect; |
---|
| 1549 | flex *= Pi*rad*rad*L; |
---|
| 1550 | flex *= cont*cont; |
---|
| 1551 | flex *= 1.0e8; |
---|
| 1552 | answer = scale*flex + bkg; |
---|
| 1553 | |
---|
| 1554 | return answer; |
---|
| 1555 | } |
---|
| 1556 | |
---|
| 1557 | /* FlexCyl_EllipX : calculates the form factor of a flexible cylinder with an elliptical cross section |
---|
| 1558 | -- incorporates Wei-Ren Chen's fixes - 2006 |
---|
| 1559 | |
---|
| 1560 | */ |
---|
| 1561 | double |
---|
| 1562 | FlexCyl_Ellip(double dp[], double q) |
---|
| 1563 | { |
---|
| 1564 | double scale,L,B,bkg,rad,qr,cont,ellRatio,slds,sldc; |
---|
| 1565 | double Pi,flex,crossSect,answer; |
---|
| 1566 | |
---|
| 1567 | |
---|
| 1568 | Pi = 4.0*atan(1.0); |
---|
| 1569 | scale = dp[0]; //make local copies in case memory moves |
---|
| 1570 | L = dp[1]; |
---|
| 1571 | B = dp[2]; |
---|
| 1572 | rad = dp[3]; |
---|
| 1573 | ellRatio = dp[4]; |
---|
| 1574 | sldc = dp[5]; |
---|
| 1575 | slds = dp[6]; |
---|
| 1576 | bkg = dp[7]; |
---|
| 1577 | |
---|
| 1578 | cont = sldc - slds; |
---|
| 1579 | qr = q*rad; |
---|
| 1580 | |
---|
| 1581 | flex = Sk_WR(q,L,B); |
---|
| 1582 | |
---|
| 1583 | crossSect = EllipticalCross_fn(q,rad,(rad*ellRatio)); |
---|
| 1584 | flex *= crossSect; |
---|
| 1585 | flex *= Pi*rad*rad*ellRatio*L; |
---|
| 1586 | flex *= cont*cont; |
---|
| 1587 | flex *= 1.0e8; |
---|
| 1588 | answer = scale*flex + bkg; |
---|
| 1589 | |
---|
| 1590 | return answer; |
---|
| 1591 | } |
---|
| 1592 | |
---|
| 1593 | double |
---|
| 1594 | EllipticalCross_fn(double qq, double a, double b) |
---|
| 1595 | { |
---|
| 1596 | double uplim,lolim,Pi,summ,arg,zi,yyy,answer; |
---|
| 1597 | int i,nord=76; |
---|
| 1598 | |
---|
| 1599 | Pi = 4.0*atan(1.0); |
---|
| 1600 | lolim=0.0; |
---|
| 1601 | uplim=Pi/2.0; |
---|
| 1602 | summ=0.0; |
---|
| 1603 | |
---|
| 1604 | for(i=0;i<nord;i++) { |
---|
| 1605 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1606 | arg = qq*sqrt(a*a*sin(zi)*sin(zi)+b*b*cos(zi)*cos(zi)); |
---|
| 1607 | yyy = pow((2.0 * NR_BessJ1(arg) / arg),2); |
---|
| 1608 | yyy *= Gauss76Wt[i]; |
---|
| 1609 | summ += yyy; |
---|
| 1610 | } |
---|
| 1611 | answer = (uplim-lolim)/2.0*summ; |
---|
| 1612 | answer *= 2.0/Pi; |
---|
| 1613 | return(answer); |
---|
| 1614 | |
---|
| 1615 | } |
---|
| 1616 | /* FlexCyl_PolyLenX : calculates the form factor of a flecible cylinder at the given x-value p->x |
---|
| 1617 | the cylinder has a polydisperse Length |
---|
| 1618 | |
---|
| 1619 | */ |
---|
| 1620 | double |
---|
| 1621 | FlexCyl_PolyLen(double dp[], double q) |
---|
| 1622 | { |
---|
| 1623 | int i; |
---|
| 1624 | double scale,radius,length,pd,bkg,lb,delrho,sldc,slds; //local variables of coefficient wave |
---|
| 1625 | int nord=20; //order of integration |
---|
| 1626 | double uplim,lolim; //upper and lower integration limits |
---|
| 1627 | double summ,zi,yyy,answer,Vpoly; //running tally of integration |
---|
| 1628 | double range,zz,Pi; |
---|
| 1629 | |
---|
| 1630 | Pi = 4.0*atan(1.0); |
---|
| 1631 | range = 3.4; |
---|
| 1632 | |
---|
| 1633 | summ = 0.0; //initialize intergral |
---|
| 1634 | scale = dp[0]; //make local copies in case memory moves |
---|
| 1635 | length = dp[1]; //radius |
---|
| 1636 | pd = dp[2]; // average length |
---|
| 1637 | lb = dp[3]; |
---|
| 1638 | radius = dp[4]; |
---|
| 1639 | sldc = dp[5]; |
---|
| 1640 | slds = dp[6]; |
---|
| 1641 | bkg = dp[7]; |
---|
| 1642 | |
---|
| 1643 | delrho = sldc - slds; |
---|
| 1644 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
| 1645 | |
---|
| 1646 | lolim = length*(1.0-range*pd); //set the upper/lower limits to cover the distribution |
---|
| 1647 | if(lolim<0.0) { |
---|
| 1648 | lolim = 0.0; |
---|
| 1649 | } |
---|
| 1650 | if(pd>0.3) { |
---|
| 1651 | range = 3.4 + (pd-0.3)*18.0; |
---|
| 1652 | } |
---|
| 1653 | uplim = length*(1.0+range*pd); |
---|
| 1654 | |
---|
| 1655 | for(i=0;i<nord;i++) { |
---|
| 1656 | zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1657 | yyy = Gauss20Wt[i] * FlePolyLen_kernel(q,radius,length,lb,zz,delrho,zi); |
---|
| 1658 | summ += yyy; |
---|
| 1659 | } |
---|
| 1660 | |
---|
| 1661 | answer = (uplim-lolim)/2.0*summ; |
---|
| 1662 | //normalize by average cylinder volume (first moment), using the average length |
---|
| 1663 | Vpoly=Pi*radius*radius*length; |
---|
| 1664 | answer /= Vpoly; |
---|
| 1665 | |
---|
| 1666 | answer *=delrho*delrho; |
---|
| 1667 | |
---|
| 1668 | //convert to [cm-1] |
---|
| 1669 | answer *= 1.0e8; |
---|
| 1670 | //Scale |
---|
| 1671 | answer *= scale; |
---|
| 1672 | // add in the background |
---|
| 1673 | answer += bkg; |
---|
| 1674 | |
---|
| 1675 | return answer; |
---|
| 1676 | } |
---|
| 1677 | |
---|
| 1678 | /* FlexCyl_PolyLenX : calculates the form factor of a flexible cylinder at the given x-value p->x |
---|
| 1679 | the cylinder has a polydisperse cross sectional radius |
---|
| 1680 | |
---|
| 1681 | */ |
---|
| 1682 | double |
---|
| 1683 | FlexCyl_PolyRad(double dp[], double q) |
---|
| 1684 | { |
---|
| 1685 | int i; |
---|
| 1686 | double scale,radius,length,pd,delrho,bkg,lb,sldc,slds; //local variables of coefficient wave |
---|
| 1687 | int nord=76; //order of integration |
---|
| 1688 | double uplim,lolim; //upper and lower integration limits |
---|
| 1689 | double summ,zi,yyy,answer,Vpoly; //running tally of integration |
---|
| 1690 | double range,zz,Pi; |
---|
| 1691 | |
---|
| 1692 | |
---|
| 1693 | Pi = 4.0*atan(1.0); |
---|
| 1694 | range = 3.4; |
---|
| 1695 | |
---|
| 1696 | summ = 0.0; //initialize intergral |
---|
| 1697 | |
---|
| 1698 | scale = dp[0]; //make local copies in case memory moves |
---|
| 1699 | length = dp[1]; //radius |
---|
| 1700 | lb = dp[2]; // average length |
---|
| 1701 | radius = dp[3]; |
---|
| 1702 | pd = dp[4]; |
---|
| 1703 | sldc = dp[5]; |
---|
| 1704 | slds = dp[6]; |
---|
| 1705 | bkg = dp[7]; |
---|
| 1706 | |
---|
| 1707 | delrho = sldc-slds; |
---|
| 1708 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
| 1709 | |
---|
| 1710 | lolim = radius*(1.0-range*pd); //set the upper/lower limits to cover the distribution |
---|
| 1711 | if(lolim<0.0) { |
---|
| 1712 | lolim = 0.0; |
---|
| 1713 | } |
---|
| 1714 | if(pd>0.3) { |
---|
| 1715 | range = 3.4 + (pd-0.3)*18.0; |
---|
| 1716 | } |
---|
| 1717 | uplim = radius*(1.0+range*pd); |
---|
| 1718 | |
---|
| 1719 | for(i=0;i<nord;i++) { |
---|
| 1720 | //zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1721 | //yyy = Gauss20Wt[i] * FlePolyRad_kernel(q,radius,length,lb,zz,delrho,zi); |
---|
| 1722 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1723 | yyy = Gauss76Wt[i] * FlePolyRad_kernel(q,radius,length,lb,zz,delrho,zi); |
---|
| 1724 | summ += yyy; |
---|
| 1725 | } |
---|
| 1726 | |
---|
| 1727 | answer = (uplim-lolim)/2.0*summ; |
---|
| 1728 | //normalize by average cylinder volume (second moment), using the average radius |
---|
| 1729 | Vpoly = Pi*radius*radius*length*(zz+2.0)/(zz+1.0); |
---|
| 1730 | answer /= Vpoly; |
---|
| 1731 | |
---|
| 1732 | answer *=delrho*delrho; |
---|
| 1733 | |
---|
| 1734 | //convert to [cm-1] |
---|
| 1735 | answer *= 1.0e8; |
---|
| 1736 | //Scale |
---|
| 1737 | answer *= scale; |
---|
| 1738 | // add in the background |
---|
| 1739 | answer += bkg; |
---|
| 1740 | |
---|
| 1741 | return answer; |
---|
| 1742 | } |
---|
| 1743 | |
---|
| 1744 | |
---|
| 1745 | |
---|
| 1746 | /////////////// |
---|
| 1747 | |
---|
| 1748 | // |
---|
| 1749 | // FUNCTION gfn2: CONTAINS F(Q,A,B,mu)**2 AS GIVEN |
---|
| 1750 | // BY (53) AND (56,57) IN CHEN AND |
---|
| 1751 | // KOTLARCHYK REFERENCE |
---|
| 1752 | // |
---|
| 1753 | // <PROLATE ELLIPSOIDS> |
---|
| 1754 | // |
---|
| 1755 | double |
---|
| 1756 | gfn2(double xx, double crmaj, double crmin, double trmaj, double trmin, double delpc, double delps, double qq) |
---|
| 1757 | { |
---|
| 1758 | // local variables |
---|
| 1759 | double aa,bb,u2,ut2,uq,ut,vc,vt,siq,sit,gfnc,gfnt,gfn2,pi43,gfn,Pi; |
---|
| 1760 | |
---|
| 1761 | Pi = 4.0*atan(1.0); |
---|
| 1762 | |
---|
| 1763 | pi43=4.0/3.0*Pi; |
---|
| 1764 | aa = crmaj; |
---|
| 1765 | bb = crmin; |
---|
| 1766 | u2 = (aa*aa*xx*xx + bb*bb*(1.0-xx*xx)); |
---|
| 1767 | ut2 = (trmaj*trmaj*xx*xx + trmin*trmin*(1.0-xx*xx)); |
---|
| 1768 | uq = sqrt(u2)*qq; |
---|
| 1769 | ut= sqrt(ut2)*qq; |
---|
| 1770 | vc = pi43*aa*bb*bb; |
---|
| 1771 | vt = pi43*trmaj*trmin*trmin; |
---|
| 1772 | if (uq == 0.0){ |
---|
| 1773 | siq = 1.0/3.0; |
---|
| 1774 | }else{ |
---|
| 1775 | siq = (sin(uq)/uq/uq - cos(uq)/uq)/uq; |
---|
| 1776 | } |
---|
| 1777 | if (ut == 0.0){ |
---|
| 1778 | sit = 1.0/3.0; |
---|
| 1779 | }else{ |
---|
| 1780 | sit = (sin(ut)/ut/ut - cos(ut)/ut)/ut; |
---|
| 1781 | } |
---|
| 1782 | gfnc = 3.0*siq*vc*delpc; |
---|
| 1783 | gfnt = 3.0*sit*vt*delps; |
---|
| 1784 | gfn = gfnc+gfnt; |
---|
| 1785 | gfn2 = gfn*gfn; |
---|
| 1786 | |
---|
| 1787 | return (gfn2); |
---|
| 1788 | } |
---|
| 1789 | |
---|
| 1790 | // |
---|
| 1791 | // FUNCTION gfn4: CONTAINS F(Q,A,B,MU)**2 AS GIVEN |
---|
| 1792 | // BY (53) & (58-59) IN CHEN AND |
---|
| 1793 | // KOTLARCHYK REFERENCE |
---|
| 1794 | // |
---|
| 1795 | // <OBLATE ELLIPSOID> |
---|
| 1796 | // function gfn4 for oblate ellipsoids |
---|
| 1797 | double |
---|
| 1798 | gfn4(double xx, double crmaj, double crmin, double trmaj, double trmin, double delpc, double delps, double qq) |
---|
| 1799 | { |
---|
| 1800 | // local variables |
---|
| 1801 | double aa,bb,u2,ut2,uq,ut,vc,vt,siq,sit,gfnc,gfnt,tgfn,gfn4,pi43,Pi; |
---|
| 1802 | |
---|
| 1803 | Pi = 4.0*atan(1.0); |
---|
| 1804 | pi43=4.0/3.0*Pi; |
---|
| 1805 | aa = crmaj; |
---|
| 1806 | bb = crmin; |
---|
| 1807 | u2 = (bb*bb*xx*xx + aa*aa*(1.0-xx*xx)); |
---|
| 1808 | ut2 = (trmin*trmin*xx*xx + trmaj*trmaj*(1.0-xx*xx)); |
---|
| 1809 | uq = sqrt(u2)*qq; |
---|
| 1810 | ut= sqrt(ut2)*qq; |
---|
| 1811 | vc = pi43*aa*aa*bb; |
---|
| 1812 | vt = pi43*trmaj*trmaj*trmin; |
---|
| 1813 | if (uq == 0.0){ |
---|
| 1814 | siq = 1.0/3.0; |
---|
| 1815 | }else{ |
---|
| 1816 | siq = (sin(uq)/uq/uq - cos(uq)/uq)/uq; |
---|
| 1817 | } |
---|
| 1818 | if (ut == 0.0){ |
---|
| 1819 | sit = 1.0/3.0; |
---|
| 1820 | }else{ |
---|
| 1821 | sit = (sin(ut)/ut/ut - cos(ut)/ut)/ut; |
---|
| 1822 | } |
---|
| 1823 | gfnc = 3.0*siq*vc*delpc; |
---|
| 1824 | gfnt = 3.0*sit*vt*delps; |
---|
| 1825 | tgfn = gfnc+gfnt; |
---|
| 1826 | gfn4 = tgfn*tgfn; |
---|
| 1827 | |
---|
| 1828 | return (gfn4); |
---|
| 1829 | } |
---|
| 1830 | |
---|
| 1831 | double |
---|
| 1832 | FlePolyLen_kernel(double q, double radius, double length, double lb, double zz, double delrho, double zi) |
---|
| 1833 | { |
---|
| 1834 | double Pq,vcyl,dl; |
---|
| 1835 | double Pi,qr; |
---|
| 1836 | |
---|
| 1837 | Pi = 4.0*atan(1.0); |
---|
| 1838 | qr = q*radius; |
---|
| 1839 | |
---|
| 1840 | Pq = Sk_WR(q,zi,lb); //does not have cross section term |
---|
| 1841 | if (qr !=0){ |
---|
| 1842 | Pq *= (2.0*NR_BessJ1(qr)/qr)*(2.0*NR_BessJ1(qr)/qr); |
---|
| 1843 | } |
---|
| 1844 | vcyl=Pi*radius*radius*zi; |
---|
| 1845 | Pq *= vcyl*vcyl; |
---|
| 1846 | |
---|
| 1847 | dl = SchulzPoint_cpr(zi,length,zz); |
---|
| 1848 | return (Pq*dl); |
---|
| 1849 | |
---|
| 1850 | } |
---|
| 1851 | |
---|
| 1852 | double |
---|
| 1853 | FlePolyRad_kernel(double q, double ravg, double Lc, double Lb, double zz, double delrho, double zi) |
---|
| 1854 | { |
---|
| 1855 | double Pq,vcyl,dr; |
---|
| 1856 | double Pi,qr; |
---|
| 1857 | |
---|
| 1858 | Pi = 4.0*atan(1.0); |
---|
| 1859 | qr = q*zi; |
---|
| 1860 | |
---|
| 1861 | Pq = Sk_WR(q,Lc,Lb); //does not have cross section term |
---|
| 1862 | if (qr !=0){ |
---|
| 1863 | Pq *= (2.0*NR_BessJ1(qr)/qr)*(2.0*NR_BessJ1(qr)/qr); |
---|
| 1864 | } |
---|
| 1865 | |
---|
| 1866 | vcyl=Pi*zi*zi*Lc; |
---|
| 1867 | Pq *= vcyl*vcyl; |
---|
| 1868 | |
---|
| 1869 | dr = SchulzPoint_cpr(zi,ravg,zz); |
---|
| 1870 | return (Pq*dr); |
---|
| 1871 | |
---|
| 1872 | } |
---|
| 1873 | |
---|
| 1874 | double |
---|
| 1875 | CSCylIntegration(double qq, double rad, double radthick, double facthick, double rhoc, double rhos, double rhosolv, double length) |
---|
| 1876 | { |
---|
| 1877 | double answer,halfheight,Pi; |
---|
| 1878 | double lolim,uplim,summ,yyy,zi; |
---|
| 1879 | int nord,i; |
---|
| 1880 | |
---|
| 1881 | // set up the integration end points |
---|
| 1882 | Pi = 4.0*atan(1.0); |
---|
| 1883 | nord = 76; |
---|
| 1884 | lolim = 0.0; |
---|
| 1885 | uplim = Pi/2.0; |
---|
| 1886 | halfheight = length/2.0; |
---|
| 1887 | |
---|
| 1888 | summ = 0.0; // initialize integral |
---|
| 1889 | i=0; |
---|
| 1890 | for(i=0;i<nord;i++) { |
---|
| 1891 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 1892 | yyy = Gauss76Wt[i] * CScyl(qq, rad, radthick, facthick, rhoc,rhos,rhosolv, halfheight, zi); |
---|
| 1893 | summ += yyy; |
---|
| 1894 | } |
---|
| 1895 | |
---|
| 1896 | // calculate value of integral to return |
---|
| 1897 | answer = (uplim-lolim)/2.0*summ; |
---|
| 1898 | return (answer); |
---|
| 1899 | } |
---|
| 1900 | |
---|
| 1901 | double |
---|
| 1902 | CScyl(double qq, double rad, double radthick, double facthick, double rhoc, double rhos, double rhosolv, double length, double dum) |
---|
| 1903 | { |
---|
| 1904 | // qq is the q-value for the calculation (1/A) |
---|
| 1905 | // radius is the core radius of the cylinder (A) |
---|
| 1906 | // radthick and facthick are the radial and face layer thicknesses |
---|
| 1907 | // rho(n) are the respective SLD's |
---|
| 1908 | // length is the *Half* CORE-LENGTH of the cylinder |
---|
| 1909 | // dum is the dummy variable for the integration (theta) |
---|
| 1910 | |
---|
| 1911 | double dr1,dr2,besarg1,besarg2,vol1,vol2,sinarg1,sinarg2,si1,si2,be1,be2,t1,t2,retval; |
---|
| 1912 | double Pi; |
---|
| 1913 | |
---|
| 1914 | Pi = 4.0*atan(1.0); |
---|
| 1915 | |
---|
| 1916 | dr1 = rhoc-rhos; |
---|
| 1917 | dr2 = rhos-rhosolv; |
---|
| 1918 | vol1 = Pi*rad*rad*(2.0*length); |
---|
| 1919 | vol2 = Pi*(rad+radthick)*(rad+radthick)*(2.0*length+2.0*facthick); |
---|
| 1920 | |
---|
| 1921 | besarg1 = qq*rad*sin(dum); |
---|
| 1922 | besarg2 = qq*(rad+radthick)*sin(dum); |
---|
| 1923 | sinarg1 = qq*length*cos(dum); |
---|
| 1924 | sinarg2 = qq*(length+facthick)*cos(dum); |
---|
| 1925 | if (besarg1 == 0.0){ |
---|
| 1926 | be1 = 0.5; |
---|
| 1927 | }else{ |
---|
| 1928 | be1 = NR_BessJ1(besarg1)/besarg1; |
---|
| 1929 | } |
---|
| 1930 | if (besarg2 == 0.0){ |
---|
| 1931 | be2 = 0.5; |
---|
| 1932 | }else{ |
---|
| 1933 | be2 = NR_BessJ1(besarg2)/besarg2; |
---|
| 1934 | } |
---|
| 1935 | if (sinarg1 == 0.0){ |
---|
| 1936 | si1 = 1.0; |
---|
| 1937 | }else{ |
---|
| 1938 | si1 = sin(sinarg1)/sinarg1; |
---|
| 1939 | } |
---|
| 1940 | if (sinarg2 == 0.0){ |
---|
| 1941 | si2 = 1.0; |
---|
| 1942 | }else{ |
---|
| 1943 | si2 = sin(sinarg2)/sinarg2; |
---|
| 1944 | } |
---|
| 1945 | |
---|
| 1946 | t1 = 2.0*vol1*dr1*si1*be1; |
---|
| 1947 | t2 = 2.0*vol2*dr2*si2*be2; |
---|
| 1948 | |
---|
| 1949 | retval = ((t1+t2)*(t1+t2))*sin(dum); |
---|
| 1950 | return (retval); |
---|
| 1951 | |
---|
| 1952 | } |
---|
| 1953 | |
---|
| 1954 | |
---|
| 1955 | double |
---|
| 1956 | CoreShellCylKernel(double qq, double rcore, double thick, double rhoc, double rhos, double rhosolv, double length, double dum) |
---|
| 1957 | { |
---|
| 1958 | |
---|
| 1959 | double dr1,dr2,besarg1,besarg2,vol1,vol2,sinarg1,sinarg2,si1,si2,be1,be2,t1,t2,retval; |
---|
| 1960 | double Pi; |
---|
| 1961 | |
---|
| 1962 | Pi = 4.0*atan(1.0); |
---|
| 1963 | |
---|
| 1964 | dr1 = rhoc-rhos; |
---|
| 1965 | dr2 = rhos-rhosolv; |
---|
| 1966 | vol1 = Pi*rcore*rcore*(2.0*length); |
---|
| 1967 | vol2 = Pi*(rcore+thick)*(rcore+thick)*(2.0*length+2.0*thick); |
---|
| 1968 | |
---|
| 1969 | besarg1 = qq*rcore*sin(dum); |
---|
| 1970 | besarg2 = qq*(rcore+thick)*sin(dum); |
---|
| 1971 | sinarg1 = qq*length*cos(dum); |
---|
| 1972 | sinarg2 = qq*(length+thick)*cos(dum); |
---|
| 1973 | |
---|
| 1974 | if (besarg1 == 0.0){ |
---|
| 1975 | be1 = 0.5; |
---|
| 1976 | }else{ |
---|
| 1977 | be1 = NR_BessJ1(besarg1)/besarg1; |
---|
| 1978 | } |
---|
| 1979 | if (besarg2 == 0.0){ |
---|
| 1980 | be2 = 0.5; |
---|
| 1981 | }else{ |
---|
| 1982 | be2 = NR_BessJ1(besarg2)/besarg2; |
---|
| 1983 | } |
---|
| 1984 | if (sinarg1 == 0.0){ |
---|
| 1985 | si1 = 1.0; |
---|
| 1986 | }else{ |
---|
| 1987 | si1 = sin(sinarg1)/sinarg1; |
---|
| 1988 | } |
---|
| 1989 | if (sinarg2 == 0.0){ |
---|
| 1990 | si2 = 1.0; |
---|
| 1991 | }else{ |
---|
| 1992 | si2 = sin(sinarg2)/sinarg2; |
---|
| 1993 | } |
---|
| 1994 | |
---|
| 1995 | t1 = 2.0*vol1*dr1*si1*be1; |
---|
| 1996 | t2 = 2.0*vol2*dr2*si2*be2; |
---|
| 1997 | |
---|
| 1998 | retval = ((t1+t2)*(t1+t2))*sin(dum); |
---|
| 1999 | |
---|
| 2000 | return (retval); |
---|
| 2001 | } |
---|
| 2002 | |
---|
| 2003 | double |
---|
| 2004 | Cyl_PolyLenKernel(double q, double radius, double len_avg, double zz, double delrho, double dumLen) |
---|
| 2005 | { |
---|
| 2006 | |
---|
| 2007 | double halfheight,uplim,lolim,zi,summ,yyy,Pi; |
---|
| 2008 | double answer,dr,Vcyl; |
---|
| 2009 | int i,nord; |
---|
| 2010 | |
---|
| 2011 | Pi = 4.0*atan(1.0); |
---|
| 2012 | lolim = 0.0; |
---|
| 2013 | uplim = Pi/2.0; |
---|
| 2014 | halfheight = dumLen/2.0; |
---|
| 2015 | nord=20; |
---|
| 2016 | summ = 0.0; |
---|
| 2017 | |
---|
| 2018 | //do the cylinder orientational average |
---|
| 2019 | for(i=0;i<nord;i++) { |
---|
| 2020 | zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 2021 | yyy = Gauss20Wt[i] * CylKernel(q, radius, halfheight, zi); |
---|
| 2022 | summ += yyy; |
---|
| 2023 | } |
---|
| 2024 | answer = (uplim-lolim)/2.0*summ; |
---|
| 2025 | // Multiply by contrast^2 |
---|
| 2026 | answer *= delrho*delrho; |
---|
| 2027 | // don't do the normal scaling to volume here |
---|
| 2028 | // instead, multiply by VCyl^2 to get rid of the normalization for this radius of cylinder |
---|
| 2029 | Vcyl = Pi*radius*radius*dumLen; |
---|
| 2030 | answer *= Vcyl*Vcyl; |
---|
| 2031 | |
---|
| 2032 | dr = SchulzPoint_cpr(dumLen,len_avg,zz); |
---|
| 2033 | return(dr*answer); |
---|
| 2034 | } |
---|
| 2035 | |
---|
| 2036 | |
---|
| 2037 | double |
---|
| 2038 | Stackdisc_kern(double qq, double rcore, double rhoc, double rhol, double rhosolv, double length, double thick, double dum, double gsd, double d, double N) |
---|
| 2039 | { |
---|
| 2040 | // qq is the q-value for the calculation (1/A) |
---|
| 2041 | // rcore is the core radius of the cylinder (A) |
---|
| 2042 | // rho(n) are the respective SLD's |
---|
| 2043 | // length is the *Half* CORE-LENGTH of the cylinder = L (A) |
---|
| 2044 | // dum is the dummy variable for the integration (x in Feigin's notation) |
---|
| 2045 | |
---|
| 2046 | //Local variables |
---|
| 2047 | double totald,dr1,dr2,besarg1,besarg2,be1,be2,si1,si2,area,sinarg1,sinarg2,t1,t2,retval,sqq,dexpt; |
---|
| 2048 | double Pi; |
---|
| 2049 | int kk; |
---|
| 2050 | |
---|
| 2051 | Pi = 4.0*atan(1.0); |
---|
| 2052 | |
---|
| 2053 | dr1 = rhoc-rhosolv; |
---|
| 2054 | dr2 = rhol-rhosolv; |
---|
| 2055 | area = Pi*rcore*rcore; |
---|
| 2056 | totald=2.0*(thick+length); |
---|
| 2057 | |
---|
| 2058 | besarg1 = qq*rcore*sin(dum); |
---|
| 2059 | besarg2 = qq*rcore*sin(dum); |
---|
| 2060 | |
---|
| 2061 | sinarg1 = qq*length*cos(dum); |
---|
| 2062 | sinarg2 = qq*(length+thick)*cos(dum); |
---|
| 2063 | |
---|
| 2064 | if (besarg1 == 0.0){ |
---|
| 2065 | be1 = 0.5; |
---|
| 2066 | }else{ |
---|
| 2067 | be1 = NR_BessJ1(besarg1)/besarg1; |
---|
| 2068 | } |
---|
| 2069 | if (besarg2 == 0.0){ |
---|
| 2070 | be2 = 0.5; |
---|
| 2071 | }else{ |
---|
| 2072 | be2 = NR_BessJ1(besarg2)/besarg2; |
---|
| 2073 | } |
---|
| 2074 | if (sinarg1 == 0.0){ |
---|
| 2075 | si1 = 1.0; |
---|
| 2076 | }else{ |
---|
| 2077 | si1 = sin(sinarg1)/sinarg1; |
---|
| 2078 | } |
---|
| 2079 | if (sinarg2 == 0.0){ |
---|
| 2080 | si2 = 1.0; |
---|
| 2081 | }else{ |
---|
| 2082 | si2 = sin(sinarg2)/sinarg2; |
---|
| 2083 | } |
---|
| 2084 | |
---|
| 2085 | t1 = 2.0*area*(2.0*length)*dr1*(si1)*(be1); |
---|
| 2086 | t2 = 2.0*area*dr2*(totald*si2-2.0*length*si1)*(be2); |
---|
| 2087 | |
---|
| 2088 | retval =((t1+t2)*(t1+t2))*sin(dum); |
---|
| 2089 | |
---|
| 2090 | // loop for the structure facture S(q) |
---|
| 2091 | sqq=0.0; |
---|
| 2092 | for(kk=1;kk<N;kk+=1) { |
---|
| 2093 | dexpt=qq*cos(dum)*qq*cos(dum)*d*d*gsd*gsd*kk/2.0; |
---|
| 2094 | sqq=sqq+(N-kk)*cos(qq*cos(dum)*d*kk)*exp(-1.*dexpt); |
---|
| 2095 | } |
---|
| 2096 | |
---|
| 2097 | // end of loop for S(q) |
---|
| 2098 | sqq=1.0+2.0*sqq/N; |
---|
| 2099 | retval *= sqq; |
---|
| 2100 | |
---|
| 2101 | return(retval); |
---|
| 2102 | } |
---|
| 2103 | |
---|
| 2104 | |
---|
| 2105 | double |
---|
| 2106 | Cyl_PolyRadKernel(double q, double radius, double length, double zz, double delrho, double dumRad) |
---|
| 2107 | { |
---|
| 2108 | |
---|
| 2109 | double halfheight,uplim,lolim,zi,summ,yyy,Pi; |
---|
| 2110 | double answer,dr,Vcyl; |
---|
| 2111 | int i,nord; |
---|
| 2112 | |
---|
| 2113 | Pi = 4.0*atan(1.0); |
---|
| 2114 | lolim = 0.0; |
---|
| 2115 | uplim = Pi/2.0; |
---|
| 2116 | halfheight = length/2.0; |
---|
| 2117 | // nord=20; |
---|
| 2118 | nord=76; |
---|
| 2119 | summ = 0.0; |
---|
| 2120 | |
---|
| 2121 | //do the cylinder orientational average |
---|
| 2122 | // for(i=0;i<nord;i++) { |
---|
| 2123 | // zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 2124 | // yyy = Gauss20Wt[i] * CylKernel(q, dumRad, halfheight, zi); |
---|
| 2125 | // summ += yyy; |
---|
| 2126 | // } |
---|
| 2127 | for(i=0;i<nord;i++) { |
---|
| 2128 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 2129 | yyy = Gauss76Wt[i] * CylKernel(q, dumRad, halfheight, zi); |
---|
| 2130 | summ += yyy; |
---|
| 2131 | } |
---|
| 2132 | answer = (uplim-lolim)/2.0*summ; |
---|
| 2133 | // Multiply by contrast^2 |
---|
| 2134 | answer *= delrho*delrho; |
---|
| 2135 | // don't do the normal scaling to volume here |
---|
| 2136 | // instead, multiply by VCyl^2 to get rid of the normalization for this radius of cylinder |
---|
| 2137 | Vcyl = Pi*dumRad*dumRad*length; |
---|
| 2138 | answer *= Vcyl*Vcyl; |
---|
| 2139 | |
---|
| 2140 | dr = SchulzPoint_cpr(dumRad,radius,zz); |
---|
| 2141 | return(dr*answer); |
---|
| 2142 | } |
---|
| 2143 | |
---|
| 2144 | double |
---|
| 2145 | SchulzPoint_cpr(double dumRad, double radius, double zz) |
---|
| 2146 | { |
---|
| 2147 | double dr; |
---|
| 2148 | |
---|
| 2149 | dr = zz*log(dumRad) - gammaln(zz+1.0) + (zz+1.0)*log((zz+1.0)/radius)-(dumRad/radius*(zz+1.0)); |
---|
| 2150 | return(exp(dr)); |
---|
| 2151 | } |
---|
| 2152 | |
---|
| 2153 | |
---|
| 2154 | double |
---|
| 2155 | EllipsoidKernel(double qq, double a, double nua, double dum) |
---|
| 2156 | { |
---|
| 2157 | double arg,nu,retval; //local variables |
---|
| 2158 | |
---|
| 2159 | nu = nua/a; |
---|
| 2160 | arg = qq*a*sqrt(1.0+dum*dum*(nu*nu-1.0)); |
---|
| 2161 | if (arg == 0.0){ |
---|
| 2162 | retval =1.0/3.0; |
---|
| 2163 | }else{ |
---|
| 2164 | retval = (sin(arg)-arg*cos(arg))/(arg*arg*arg); |
---|
| 2165 | } |
---|
| 2166 | retval *= retval; |
---|
| 2167 | retval *= 9.0; |
---|
| 2168 | |
---|
| 2169 | return(retval); |
---|
| 2170 | }//Function EllipsoidKernel() |
---|
| 2171 | |
---|
| 2172 | double |
---|
| 2173 | HolCylKernel(double qq, double rcore, double rshell, double length, double dum) |
---|
| 2174 | { |
---|
| 2175 | double gamma,arg1,arg2,lam1,lam2,psi,sinarg,t2,retval; //local variables |
---|
| 2176 | |
---|
| 2177 | gamma = rcore/rshell; |
---|
| 2178 | arg1 = qq*rshell*sqrt(1.0-dum*dum); //1=shell (outer radius) |
---|
| 2179 | arg2 = qq*rcore*sqrt(1.0-dum*dum); //2=core (inner radius) |
---|
| 2180 | if (arg1 == 0.0){ |
---|
| 2181 | lam1 = 1.0; |
---|
| 2182 | }else{ |
---|
| 2183 | lam1 = 2.0*NR_BessJ1(arg1)/arg1; |
---|
| 2184 | } |
---|
| 2185 | if (arg2 == 0.0){ |
---|
| 2186 | lam2 = 1.0; |
---|
| 2187 | }else{ |
---|
| 2188 | lam2 = 2.0*NR_BessJ1(arg2)/arg2; |
---|
| 2189 | } |
---|
| 2190 | //Todo: Need to check psi behavior as gamma goes to 1. |
---|
| 2191 | psi = 1.0/(1.0-gamma*gamma)*(lam1 - gamma*gamma*lam2); //SRK 10/19/00 |
---|
| 2192 | sinarg = qq*length*dum/2.0; |
---|
| 2193 | if (sinarg == 0.0){ |
---|
| 2194 | t2 = 1.0; |
---|
| 2195 | }else{ |
---|
| 2196 | t2 = sin(sinarg)/sinarg; |
---|
| 2197 | } |
---|
| 2198 | |
---|
| 2199 | retval = psi*psi*t2*t2; |
---|
| 2200 | |
---|
| 2201 | return(retval); |
---|
| 2202 | }//Function HolCylKernel() |
---|
| 2203 | |
---|
| 2204 | double |
---|
| 2205 | PPKernel(double aa, double mu, double uu) |
---|
| 2206 | { |
---|
| 2207 | // mu passed in is really mu*sqrt(1-sig^2) |
---|
| 2208 | double arg1,arg2,Pi,tmp1,tmp2; //local variables |
---|
| 2209 | |
---|
| 2210 | Pi = 4.0*atan(1.0); |
---|
| 2211 | |
---|
| 2212 | //handle arg=0 separately, as sin(t)/t -> 1 as t->0 |
---|
| 2213 | arg1 = (mu/2.0)*cos(Pi*uu/2.0); |
---|
| 2214 | arg2 = (mu*aa/2.0)*sin(Pi*uu/2.0); |
---|
| 2215 | if(arg1==0.0) { |
---|
| 2216 | tmp1 = 1.0; |
---|
| 2217 | } else { |
---|
| 2218 | tmp1 = sin(arg1)*sin(arg1)/arg1/arg1; |
---|
| 2219 | } |
---|
| 2220 | |
---|
| 2221 | if (arg2==0.0) { |
---|
| 2222 | tmp2 = 1.0; |
---|
| 2223 | } else { |
---|
| 2224 | tmp2 = sin(arg2)*sin(arg2)/arg2/arg2; |
---|
| 2225 | } |
---|
| 2226 | |
---|
| 2227 | return (tmp1*tmp2); |
---|
| 2228 | |
---|
| 2229 | }//Function PPKernel() |
---|
| 2230 | |
---|
| 2231 | |
---|
| 2232 | double |
---|
| 2233 | TriaxialKernel(double q, double aa, double bb, double cc, double dx, double dy) |
---|
| 2234 | { |
---|
| 2235 | |
---|
| 2236 | double arg,val,pi; //local variables |
---|
| 2237 | |
---|
| 2238 | pi = 4.0*atan(1.0); |
---|
| 2239 | |
---|
| 2240 | arg = aa*aa*cos(pi*dx/2)*cos(pi*dx/2); |
---|
| 2241 | arg += bb*bb*sin(pi*dx/2)*sin(pi*dx/2)*(1-dy*dy); |
---|
| 2242 | arg += cc*cc*dy*dy; |
---|
| 2243 | arg = q*sqrt(arg); |
---|
| 2244 | if (arg == 0.0){ |
---|
| 2245 | val = 1.0; // as arg --> 0, val should go to 1.0 |
---|
| 2246 | }else{ |
---|
| 2247 | val = 9.0 * ( (sin(arg) - arg*cos(arg))/(arg*arg*arg) ) * ( (sin(arg) - arg*cos(arg))/(arg*arg*arg) ); |
---|
| 2248 | } |
---|
| 2249 | return (val); |
---|
| 2250 | |
---|
| 2251 | }//Function TriaxialKernel() |
---|
| 2252 | |
---|
| 2253 | |
---|
| 2254 | double |
---|
| 2255 | CylKernel(double qq, double rr,double h, double theta) |
---|
| 2256 | { |
---|
| 2257 | |
---|
| 2258 | // qq is the q-value for the calculation (1/A) |
---|
| 2259 | // rr is the radius of the cylinder (A) |
---|
| 2260 | // h is the HALF-LENGTH of the cylinder = L/2 (A) |
---|
| 2261 | |
---|
| 2262 | double besarg,bj,retval,d1,t1,b1,t2,b2,siarg,be,si; //Local variables |
---|
| 2263 | |
---|
| 2264 | |
---|
| 2265 | besarg = qq*rr*sin(theta); |
---|
| 2266 | siarg = qq * h * cos(theta); |
---|
| 2267 | bj =NR_BessJ1(besarg); |
---|
| 2268 | |
---|
| 2269 | //* Computing 2nd power */ |
---|
| 2270 | d1 = sin(siarg); |
---|
| 2271 | t1 = d1 * d1; |
---|
| 2272 | //* Computing 2nd power */ |
---|
| 2273 | d1 = bj; |
---|
| 2274 | t2 = d1 * d1 * 4.0 * sin(theta); |
---|
| 2275 | //* Computing 2nd power */ |
---|
| 2276 | d1 = siarg; |
---|
| 2277 | b1 = d1 * d1; |
---|
| 2278 | //* Computing 2nd power */ |
---|
| 2279 | d1 = qq * rr * sin(theta); |
---|
| 2280 | b2 = d1 * d1; |
---|
| 2281 | if (besarg == 0.0){ |
---|
| 2282 | be = sin(theta); |
---|
| 2283 | }else{ |
---|
| 2284 | be = t2 / b2; |
---|
| 2285 | } |
---|
| 2286 | if (siarg == 0.0){ |
---|
| 2287 | si = 1.0; |
---|
| 2288 | }else{ |
---|
| 2289 | si = t1 / b1; |
---|
| 2290 | } |
---|
| 2291 | retval = be * si; |
---|
| 2292 | |
---|
| 2293 | return (retval); |
---|
| 2294 | |
---|
| 2295 | }//Function CylKernel() |
---|
| 2296 | |
---|
| 2297 | double |
---|
| 2298 | EllipCylKernel(double qq, double ra,double nu, double theta) |
---|
| 2299 | { |
---|
| 2300 | //this is the function LAMBDA1^2 in Feigin's notation |
---|
| 2301 | // qq is the q-value for the calculation (1/A) |
---|
| 2302 | // ra is the transformed radius"a" in Feigin's notation |
---|
| 2303 | // nu is the ratio (major radius)/(minor radius) of the Ellipsoid [=] --- |
---|
| 2304 | // theta is the dummy variable of the integration |
---|
| 2305 | |
---|
| 2306 | double retval,arg; //Local variables |
---|
| 2307 | |
---|
| 2308 | arg = qq*ra*sqrt((1.0+nu*nu)/2+(1.0-nu*nu)*cos(theta)/2); |
---|
| 2309 | if (arg == 0.0){ |
---|
| 2310 | retval = 1.0; |
---|
| 2311 | }else{ |
---|
| 2312 | retval = 2.0*NR_BessJ1(arg)/arg; |
---|
| 2313 | } |
---|
| 2314 | |
---|
| 2315 | //square it |
---|
| 2316 | retval *= retval; |
---|
| 2317 | |
---|
| 2318 | return(retval); |
---|
| 2319 | |
---|
| 2320 | }//Function EllipCylKernel() |
---|
| 2321 | |
---|
| 2322 | double NR_BessJ1(double x) |
---|
| 2323 | { |
---|
| 2324 | double ax,z; |
---|
| 2325 | double xx,y,ans,ans1,ans2; |
---|
| 2326 | |
---|
| 2327 | if ((ax=fabs(x)) < 8.0) { |
---|
| 2328 | y=x*x; |
---|
| 2329 | ans1=x*(72362614232.0+y*(-7895059235.0+y*(242396853.1 |
---|
| 2330 | +y*(-2972611.439+y*(15704.48260+y*(-30.16036606)))))); |
---|
| 2331 | ans2=144725228442.0+y*(2300535178.0+y*(18583304.74 |
---|
| 2332 | +y*(99447.43394+y*(376.9991397+y*1.0)))); |
---|
| 2333 | ans=ans1/ans2; |
---|
| 2334 | } else { |
---|
| 2335 | z=8.0/ax; |
---|
| 2336 | y=z*z; |
---|
| 2337 | xx=ax-2.356194491; |
---|
| 2338 | ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4 |
---|
| 2339 | +y*(0.2457520174e-5+y*(-0.240337019e-6)))); |
---|
| 2340 | ans2=0.04687499995+y*(-0.2002690873e-3 |
---|
| 2341 | +y*(0.8449199096e-5+y*(-0.88228987e-6 |
---|
| 2342 | +y*0.105787412e-6))); |
---|
| 2343 | ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-z*sin(xx)*ans2); |
---|
| 2344 | if (x < 0.0) ans = -ans; |
---|
| 2345 | } |
---|
| 2346 | |
---|
| 2347 | return(ans); |
---|
| 2348 | } |
---|
| 2349 | |
---|
| 2350 | /* Lamellar_ParaCrystal - Pedersen's model |
---|
| 2351 | |
---|
| 2352 | */ |
---|
| 2353 | double |
---|
| 2354 | Lamellar_ParaCrystal(double w[], double q) |
---|
| 2355 | { |
---|
| 2356 | // Input (fitting) variables are: |
---|
| 2357 | //[0] scale factor |
---|
| 2358 | //[1] thickness |
---|
| 2359 | //[2] number of layers |
---|
| 2360 | //[3] spacing between layers |
---|
| 2361 | //[4] polydispersity of spacing |
---|
| 2362 | //[5] SLD lamellar |
---|
| 2363 | //[6] SLD solvent |
---|
| 2364 | //[7] incoherent background |
---|
| 2365 | // give them nice names |
---|
| 2366 | double inten,qval,scale,th,nl,davg,pd,contr,bkg,xn; |
---|
| 2367 | double xi,ww,Pbil,Znq,Snq,an,sldLayer,sldSolvent,pi; |
---|
| 2368 | long n1,n2; |
---|
| 2369 | |
---|
| 2370 | pi = 4.0*atan(1.0); |
---|
| 2371 | scale = w[0]; |
---|
| 2372 | th = w[1]; |
---|
| 2373 | nl = w[2]; |
---|
| 2374 | davg = w[3]; |
---|
| 2375 | pd = w[4]; |
---|
| 2376 | sldLayer = w[5]; |
---|
| 2377 | sldSolvent = w[6]; |
---|
| 2378 | bkg = w[7]; |
---|
| 2379 | |
---|
| 2380 | contr = w[5] - w[6]; |
---|
| 2381 | qval = q; |
---|
| 2382 | |
---|
| 2383 | //get the fractional part of nl, to determine the "mixing" of N's |
---|
| 2384 | |
---|
| 2385 | n1 = trunc(nl); //rounds towards zero |
---|
| 2386 | n2 = n1 + 1; |
---|
| 2387 | xn = (double)n2 - nl; //fractional contribution of n1 |
---|
| 2388 | |
---|
| 2389 | ww = exp(-qval*qval*pd*pd*davg*davg/2.0); |
---|
| 2390 | |
---|
| 2391 | //calculate the n1 contribution |
---|
| 2392 | an = paraCryst_an(ww,qval,davg,n1); |
---|
| 2393 | Snq = paraCryst_sn(ww,qval,davg,n1,an); |
---|
| 2394 | |
---|
| 2395 | Znq = xn*Snq; |
---|
| 2396 | |
---|
| 2397 | //calculate the n2 contribution |
---|
| 2398 | an = paraCryst_an(ww,qval,davg,n2); |
---|
| 2399 | Snq = paraCryst_sn(ww,qval,davg,n2,an); |
---|
| 2400 | |
---|
| 2401 | Znq += (1.0-xn)*Snq; |
---|
| 2402 | |
---|
| 2403 | //and the independent contribution |
---|
| 2404 | Znq += (1.0-ww*ww)/(1.0+ww*ww-2.0*ww*cos(qval*davg)); |
---|
| 2405 | |
---|
| 2406 | //the limit when NL approaches infinity |
---|
| 2407 | // Zq = (1-ww^2)/(1+ww^2-2*ww*cos(qval*davg)) |
---|
| 2408 | |
---|
| 2409 | xi = th/2.0; //use 1/2 the bilayer thickness |
---|
| 2410 | Pbil = (sin(qval*xi)/(qval*xi))*(sin(qval*xi)/(qval*xi)); |
---|
| 2411 | |
---|
| 2412 | inten = 2.0*pi*contr*contr*Pbil*Znq/(qval*qval); |
---|
| 2413 | inten *= 1.0e8; |
---|
| 2414 | |
---|
| 2415 | return(scale*inten+bkg); |
---|
| 2416 | } |
---|
| 2417 | |
---|
| 2418 | // functions for the lamellar paracrystal model |
---|
| 2419 | double |
---|
| 2420 | paraCryst_sn(double ww, double qval, double davg, long nl, double an) { |
---|
| 2421 | |
---|
| 2422 | double Snq; |
---|
| 2423 | |
---|
| 2424 | Snq = an/( (double)nl*pow((1.0+ww*ww-2.0*ww*cos(qval*davg)),2) ); |
---|
| 2425 | |
---|
| 2426 | return(Snq); |
---|
| 2427 | } |
---|
| 2428 | |
---|
| 2429 | |
---|
| 2430 | double |
---|
| 2431 | paraCryst_an(double ww, double qval, double davg, long nl) { |
---|
| 2432 | |
---|
| 2433 | double an; |
---|
| 2434 | |
---|
| 2435 | an = 4.0*ww*ww - 2.0*(ww*ww*ww+ww)*cos(qval*davg); |
---|
| 2436 | an -= 4.0*pow(ww,(nl+2))*cos((double)nl*qval*davg); |
---|
| 2437 | an += 2.0*pow(ww,(nl+3))*cos((double)(nl-1)*qval*davg); |
---|
| 2438 | an += 2.0*pow(ww,(nl+1))*cos((double)(nl+1)*qval*davg); |
---|
| 2439 | |
---|
| 2440 | return(an); |
---|
| 2441 | } |
---|
| 2442 | |
---|
| 2443 | |
---|
| 2444 | /* Spherocylinder : |
---|
| 2445 | |
---|
| 2446 | Uses 76 pt Gaussian quadrature for both integrals |
---|
| 2447 | */ |
---|
| 2448 | double |
---|
| 2449 | Spherocylinder(double w[], double x) |
---|
| 2450 | { |
---|
| 2451 | int i,j; |
---|
| 2452 | double Pi; |
---|
| 2453 | double scale,contr,bkg,sldc,slds; |
---|
| 2454 | double len,rad,hDist,endRad; |
---|
| 2455 | int nordi=76; //order of integration |
---|
| 2456 | int nordj=76; |
---|
| 2457 | double va,vb; //upper and lower integration limits |
---|
| 2458 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 2459 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 2460 | double SphCyl_tmp[7],arg1,arg2,inner,be; |
---|
| 2461 | |
---|
| 2462 | |
---|
| 2463 | scale = w[0]; |
---|
| 2464 | rad = w[1]; |
---|
| 2465 | len = w[2]; |
---|
| 2466 | sldc = w[3]; |
---|
| 2467 | slds = w[4]; |
---|
| 2468 | bkg = w[5]; |
---|
| 2469 | |
---|
| 2470 | SphCyl_tmp[0] = w[0]; |
---|
| 2471 | SphCyl_tmp[1] = w[1]; |
---|
| 2472 | SphCyl_tmp[2] = w[2]; |
---|
| 2473 | SphCyl_tmp[3] = w[1]; //end radius is same as cylinder radius |
---|
| 2474 | SphCyl_tmp[4] = w[3]; |
---|
| 2475 | SphCyl_tmp[5] = w[4]; |
---|
| 2476 | SphCyl_tmp[6] = w[5]; |
---|
| 2477 | |
---|
| 2478 | hDist = 0; //by definition for this model |
---|
| 2479 | endRad = rad; |
---|
| 2480 | |
---|
| 2481 | contr = sldc-slds; |
---|
| 2482 | |
---|
| 2483 | Pi = 4.0*atan(1.0); |
---|
| 2484 | va = 0.0; |
---|
| 2485 | vb = Pi/2.0; //orintational average, outer integral |
---|
| 2486 | vaj = -1.0*hDist/endRad; |
---|
| 2487 | vbj = 1.0; //endpoints of inner integral |
---|
| 2488 | |
---|
| 2489 | summ = 0.0; //initialize intergral |
---|
| 2490 | |
---|
| 2491 | for(i=0;i<nordi;i++) { |
---|
| 2492 | //setup inner integral over the ellipsoidal cross-section |
---|
| 2493 | summj=0.0; |
---|
| 2494 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
| 2495 | |
---|
| 2496 | for(j=0;j<nordj;j++) { |
---|
| 2497 | //20 gauss points for the inner integral |
---|
| 2498 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
| 2499 | yyy = Gauss76Wt[j] * SphCyl_kernel(SphCyl_tmp,x,zij,zi); |
---|
| 2500 | summj += yyy; |
---|
| 2501 | } |
---|
| 2502 | //now calculate the value of the inner integral |
---|
| 2503 | inner = (vbj-vaj)/2.0*summj; |
---|
| 2504 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
| 2505 | |
---|
| 2506 | //now calculate outer integrand |
---|
| 2507 | arg1 = x*len/2.0*cos(zi); |
---|
| 2508 | arg2 = x*rad*sin(zi); |
---|
| 2509 | yyy = inner; |
---|
| 2510 | |
---|
| 2511 | if(arg2 == 0) { |
---|
| 2512 | be = 0.5; |
---|
| 2513 | } else { |
---|
| 2514 | be = NR_BessJ1(arg2)/arg2; |
---|
| 2515 | } |
---|
| 2516 | |
---|
| 2517 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
| 2518 | yyy += Pi*rad*rad*len*2.0*be; |
---|
| 2519 | } else { |
---|
| 2520 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
| 2521 | } |
---|
| 2522 | yyy *= yyy; |
---|
| 2523 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
| 2524 | yyy *= Gauss76Wt[i]; |
---|
| 2525 | summ += yyy; |
---|
| 2526 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 2527 | |
---|
| 2528 | answer = (vb-va)/2.0*summ; |
---|
| 2529 | |
---|
| 2530 | answer /= Pi*rad*rad*len + Pi*4.0*endRad*endRad*endRad/3.0; //divide by volume |
---|
| 2531 | answer *= 1.0e8; //convert to cm^-1 |
---|
| 2532 | answer *= contr*contr; |
---|
| 2533 | answer *= scale; |
---|
| 2534 | answer += bkg; |
---|
| 2535 | |
---|
| 2536 | return answer; |
---|
| 2537 | } |
---|
| 2538 | |
---|
| 2539 | |
---|
| 2540 | // inner integral of the sphereocylinder model, special case of hDist = 0 |
---|
| 2541 | // |
---|
| 2542 | double |
---|
| 2543 | SphCyl_kernel(double w[], double x, double tt, double theta) { |
---|
| 2544 | |
---|
| 2545 | double val,arg1,arg2; |
---|
| 2546 | double scale,bkg,sldc,slds; |
---|
| 2547 | double len,rad,hDist,endRad,be; |
---|
| 2548 | scale = w[0]; |
---|
| 2549 | rad = w[1]; |
---|
| 2550 | len = w[2]; |
---|
| 2551 | endRad = w[3]; |
---|
| 2552 | sldc = w[4]; |
---|
| 2553 | slds = w[5]; |
---|
| 2554 | bkg = w[6]; |
---|
| 2555 | |
---|
| 2556 | hDist = 0.0; |
---|
| 2557 | |
---|
| 2558 | arg1 = x*cos(theta)*(endRad*tt+hDist+len/2.0); |
---|
| 2559 | arg2 = x*endRad*sin(theta)*sqrt(1.0-tt*tt); |
---|
| 2560 | |
---|
| 2561 | if(arg2 == 0) { |
---|
| 2562 | be = 0.5; |
---|
| 2563 | } else { |
---|
| 2564 | be = NR_BessJ1(arg2)/arg2; |
---|
| 2565 | } |
---|
| 2566 | val = cos(arg1)*(1.0-tt*tt)*be; |
---|
| 2567 | |
---|
| 2568 | return(val); |
---|
| 2569 | } |
---|
| 2570 | |
---|
| 2571 | |
---|
| 2572 | /* Convex Lens : special case where L ~ 0 and hDist < 0 |
---|
| 2573 | |
---|
| 2574 | Uses 76 pt Gaussian quadrature for both integrals |
---|
| 2575 | */ |
---|
| 2576 | double |
---|
| 2577 | ConvexLens(double w[], double x) |
---|
| 2578 | { |
---|
| 2579 | int i,j; |
---|
| 2580 | double Pi; |
---|
| 2581 | double scale,contr,bkg,sldc,slds; |
---|
| 2582 | double len,rad,hDist,endRad; |
---|
| 2583 | int nordi=76; //order of integration |
---|
| 2584 | int nordj=76; |
---|
| 2585 | double va,vb; //upper and lower integration limits |
---|
| 2586 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 2587 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 2588 | double CLens_tmp[7],arg1,arg2,inner,hh,be; |
---|
| 2589 | |
---|
| 2590 | |
---|
| 2591 | scale = w[0]; |
---|
| 2592 | rad = w[1]; |
---|
| 2593 | // len = w[2] |
---|
| 2594 | endRad = w[2]; |
---|
| 2595 | sldc = w[3]; |
---|
| 2596 | slds = w[4]; |
---|
| 2597 | bkg = w[5]; |
---|
| 2598 | |
---|
| 2599 | len = 0.01; |
---|
| 2600 | |
---|
| 2601 | CLens_tmp[0] = w[0]; |
---|
| 2602 | CLens_tmp[1] = w[1]; |
---|
| 2603 | CLens_tmp[2] = len; //length is some small number, essentially zero |
---|
| 2604 | CLens_tmp[3] = w[2]; |
---|
| 2605 | CLens_tmp[4] = w[3]; |
---|
| 2606 | CLens_tmp[5] = w[4]; |
---|
| 2607 | CLens_tmp[6] = w[5]; |
---|
| 2608 | |
---|
| 2609 | hDist = -1.0*sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
| 2610 | |
---|
| 2611 | contr = sldc-slds; |
---|
| 2612 | |
---|
| 2613 | Pi = 4.0*atan(1.0); |
---|
| 2614 | va = 0.0; |
---|
| 2615 | vb = Pi/2.0; //orintational average, outer integral |
---|
| 2616 | vaj = -1.0*hDist/endRad; |
---|
| 2617 | vbj = 1.0; //endpoints of inner integral |
---|
| 2618 | |
---|
| 2619 | summ = 0.0; //initialize intergral |
---|
| 2620 | |
---|
| 2621 | for(i=0;i<nordi;i++) { |
---|
| 2622 | //setup inner integral over the ellipsoidal cross-section |
---|
| 2623 | summj=0.0; |
---|
| 2624 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
| 2625 | |
---|
| 2626 | for(j=0;j<nordj;j++) { |
---|
| 2627 | //20 gauss points for the inner integral |
---|
| 2628 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
| 2629 | yyy = Gauss76Wt[j] * ConvLens_kernel(CLens_tmp,x,zij,zi); |
---|
| 2630 | summj += yyy; |
---|
| 2631 | } |
---|
| 2632 | //now calculate the value of the inner integral |
---|
| 2633 | inner = (vbj-vaj)/2.0*summj; |
---|
| 2634 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
| 2635 | |
---|
| 2636 | //now calculate outer integrand |
---|
| 2637 | arg1 = x*len/2.0*cos(zi); |
---|
| 2638 | arg2 = x*rad*sin(zi); |
---|
| 2639 | yyy = inner; |
---|
| 2640 | |
---|
| 2641 | if(arg2 == 0) { |
---|
| 2642 | be = 0.5; |
---|
| 2643 | } else { |
---|
| 2644 | be = NR_BessJ1(arg2)/arg2; |
---|
| 2645 | } |
---|
| 2646 | |
---|
| 2647 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
| 2648 | yyy += Pi*rad*rad*len*2.0*be; |
---|
| 2649 | } else { |
---|
| 2650 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
| 2651 | } |
---|
| 2652 | yyy *= yyy; |
---|
| 2653 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
| 2654 | yyy *= Gauss76Wt[i]; |
---|
| 2655 | summ += yyy; |
---|
| 2656 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 2657 | |
---|
| 2658 | answer = (vb-va)/2.0*summ; |
---|
| 2659 | |
---|
| 2660 | hh = fabs(hDist); //need positive value for spherical cap volume |
---|
| 2661 | answer /= 2.0*(1.0/3.0*Pi*(endRad-hh)*(endRad-hh)*(2.0*endRad+hh)); //divide by volume |
---|
| 2662 | answer *= 1.0e8; //convert to cm^-1 |
---|
| 2663 | answer *= contr*contr; |
---|
| 2664 | answer *= scale; |
---|
| 2665 | answer += bkg; |
---|
| 2666 | |
---|
| 2667 | return answer; |
---|
| 2668 | } |
---|
| 2669 | |
---|
| 2670 | /* Capped Cylinder : special case where L is nonzero and hDist < 0 |
---|
| 2671 | |
---|
| 2672 | -- uses the same Kernel as the Convex Lens |
---|
| 2673 | |
---|
| 2674 | Uses 76 pt Gaussian quadrature for both integrals |
---|
| 2675 | */ |
---|
| 2676 | double |
---|
| 2677 | CappedCylinder(double w[], double x) |
---|
| 2678 | { |
---|
| 2679 | int i,j; |
---|
| 2680 | double Pi; |
---|
| 2681 | double scale,contr,bkg,sldc,slds; |
---|
| 2682 | double len,rad,hDist,endRad; |
---|
| 2683 | int nordi=76; //order of integration |
---|
| 2684 | int nordj=76; |
---|
| 2685 | double va,vb; //upper and lower integration limits |
---|
| 2686 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 2687 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 2688 | double arg1,arg2,inner,hh,be; |
---|
| 2689 | |
---|
| 2690 | |
---|
| 2691 | scale = w[0]; |
---|
| 2692 | rad = w[1]; |
---|
| 2693 | len = w[2]; |
---|
| 2694 | endRad = w[3]; |
---|
| 2695 | sldc = w[4]; |
---|
| 2696 | slds = w[5]; |
---|
| 2697 | bkg = w[6]; |
---|
| 2698 | |
---|
| 2699 | hDist = -1.0*sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
| 2700 | |
---|
| 2701 | contr = sldc-slds; |
---|
| 2702 | |
---|
| 2703 | Pi = 4.0*atan(1.0); |
---|
| 2704 | va = 0.0; |
---|
| 2705 | vb = Pi/2.0; //orintational average, outer integral |
---|
| 2706 | vaj = -1.0*hDist/endRad; |
---|
| 2707 | vbj = 1.0; //endpoints of inner integral |
---|
| 2708 | |
---|
| 2709 | summ = 0.0; //initialize intergral |
---|
| 2710 | |
---|
| 2711 | for(i=0;i<nordi;i++) { |
---|
| 2712 | //setup inner integral over the ellipsoidal cross-section |
---|
| 2713 | summj=0.0; |
---|
| 2714 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
| 2715 | |
---|
| 2716 | for(j=0;j<nordj;j++) { |
---|
| 2717 | //20 gauss points for the inner integral |
---|
| 2718 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
| 2719 | yyy = Gauss76Wt[j] * ConvLens_kernel(w,x,zij,zi); //uses the same kernel as ConvexLens, except here L != 0 |
---|
| 2720 | summj += yyy; |
---|
| 2721 | } |
---|
| 2722 | //now calculate the value of the inner integral |
---|
| 2723 | inner = (vbj-vaj)/2.0*summj; |
---|
| 2724 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
| 2725 | |
---|
| 2726 | //now calculate outer integrand |
---|
| 2727 | arg1 = x*len/2.0*cos(zi); |
---|
| 2728 | arg2 = x*rad*sin(zi); |
---|
| 2729 | yyy = inner; |
---|
| 2730 | |
---|
| 2731 | if(arg2 == 0) { |
---|
| 2732 | be = 0.5; |
---|
| 2733 | } else { |
---|
| 2734 | be = NR_BessJ1(arg2)/arg2; |
---|
| 2735 | } |
---|
| 2736 | |
---|
| 2737 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
| 2738 | yyy += Pi*rad*rad*len*2.0*be; |
---|
| 2739 | } else { |
---|
| 2740 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
| 2741 | } |
---|
| 2742 | |
---|
| 2743 | |
---|
| 2744 | |
---|
| 2745 | yyy *= yyy; |
---|
| 2746 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
| 2747 | yyy *= Gauss76Wt[i]; |
---|
| 2748 | summ += yyy; |
---|
| 2749 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 2750 | |
---|
| 2751 | answer = (vb-va)/2.0*summ; |
---|
| 2752 | |
---|
| 2753 | hh = fabs(hDist); //need positive value for spherical cap volume |
---|
| 2754 | answer /= Pi*rad*rad*len + 2.0*(1.0/3.0*Pi*(endRad-hh)*(endRad-hh)*(2.0*endRad+hh)); //divide by volume |
---|
| 2755 | answer *= 1.0e8; //convert to cm^-1 |
---|
| 2756 | answer *= contr*contr; |
---|
| 2757 | answer *= scale; |
---|
| 2758 | answer += bkg; |
---|
| 2759 | |
---|
| 2760 | return answer; |
---|
| 2761 | } |
---|
| 2762 | |
---|
| 2763 | |
---|
| 2764 | |
---|
| 2765 | // inner integral of the ConvexLens model, special case where L ~ 0 and hDist < 0 |
---|
| 2766 | // |
---|
| 2767 | double |
---|
| 2768 | ConvLens_kernel(double w[], double x, double tt, double theta) { |
---|
| 2769 | |
---|
| 2770 | double val,arg1,arg2; |
---|
| 2771 | double scale,bkg,sldc,slds; |
---|
| 2772 | double len,rad,hDist,endRad,be; |
---|
| 2773 | scale = w[0]; |
---|
| 2774 | rad = w[1]; |
---|
| 2775 | len = w[2]; |
---|
| 2776 | endRad = w[3]; |
---|
| 2777 | sldc = w[4]; |
---|
| 2778 | slds = w[5]; |
---|
| 2779 | bkg = w[6]; |
---|
| 2780 | |
---|
| 2781 | hDist = -1.0*sqrt(fabs(endRad*endRad-rad*rad)); |
---|
| 2782 | |
---|
| 2783 | arg1 = x*cos(theta)*(endRad*tt+hDist+len/2.0); |
---|
| 2784 | arg2 = x*endRad*sin(theta)*sqrt(1.0-tt*tt); |
---|
| 2785 | |
---|
| 2786 | if(arg2 == 0) { |
---|
| 2787 | be = 0.5; |
---|
| 2788 | } else { |
---|
| 2789 | be = NR_BessJ1(arg2)/arg2; |
---|
| 2790 | } |
---|
| 2791 | |
---|
| 2792 | val = cos(arg1)*(1.0-tt*tt)*be; |
---|
| 2793 | |
---|
| 2794 | return(val); |
---|
| 2795 | } |
---|
| 2796 | |
---|
| 2797 | |
---|
| 2798 | /* Dumbbell : special case where L ~ 0 and hDist > 0 |
---|
| 2799 | |
---|
| 2800 | Uses 76 pt Gaussian quadrature for both integrals |
---|
| 2801 | */ |
---|
| 2802 | double |
---|
| 2803 | Dumbbell(double w[], double x) |
---|
| 2804 | { |
---|
| 2805 | int i,j; |
---|
| 2806 | double Pi; |
---|
| 2807 | double scale,contr,bkg,sldc,slds; |
---|
| 2808 | double len,rad,hDist,endRad; |
---|
| 2809 | int nordi=76; //order of integration |
---|
| 2810 | int nordj=76; |
---|
| 2811 | double va,vb; //upper and lower integration limits |
---|
| 2812 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 2813 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 2814 | double Dumb_tmp[7],arg1,arg2,inner,be; |
---|
| 2815 | |
---|
| 2816 | |
---|
| 2817 | scale = w[0]; |
---|
| 2818 | rad = w[1]; |
---|
| 2819 | // len = w[2] |
---|
| 2820 | endRad = w[2]; |
---|
| 2821 | sldc = w[3]; |
---|
| 2822 | slds = w[4]; |
---|
| 2823 | bkg = w[5]; |
---|
| 2824 | |
---|
| 2825 | len = 0.01; |
---|
| 2826 | |
---|
| 2827 | Dumb_tmp[0] = w[0]; |
---|
| 2828 | Dumb_tmp[1] = w[1]; |
---|
| 2829 | Dumb_tmp[2] = len; //length is some small number, essentially zero |
---|
| 2830 | Dumb_tmp[3] = w[2]; |
---|
| 2831 | Dumb_tmp[4] = w[3]; |
---|
| 2832 | Dumb_tmp[5] = w[4]; |
---|
| 2833 | Dumb_tmp[6] = w[5]; |
---|
| 2834 | |
---|
| 2835 | hDist = sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
| 2836 | |
---|
| 2837 | contr = sldc-slds; |
---|
| 2838 | |
---|
| 2839 | Pi = 4.0*atan(1.0); |
---|
| 2840 | va = 0.0; |
---|
| 2841 | vb = Pi/2.0; //orintational average, outer integral |
---|
| 2842 | vaj = -1.0*hDist/endRad; |
---|
| 2843 | vbj = 1.0; //endpoints of inner integral |
---|
| 2844 | |
---|
| 2845 | summ = 0.0; //initialize intergral |
---|
| 2846 | |
---|
| 2847 | for(i=0;i<nordi;i++) { |
---|
| 2848 | //setup inner integral over the ellipsoidal cross-section |
---|
| 2849 | summj=0.0; |
---|
| 2850 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
| 2851 | |
---|
| 2852 | for(j=0;j<nordj;j++) { |
---|
| 2853 | //20 gauss points for the inner integral |
---|
| 2854 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
| 2855 | yyy = Gauss76Wt[j] * Dumb_kernel(Dumb_tmp,x,zij,zi); |
---|
| 2856 | summj += yyy; |
---|
| 2857 | } |
---|
| 2858 | //now calculate the value of the inner integral |
---|
| 2859 | inner = (vbj-vaj)/2.0*summj; |
---|
| 2860 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
| 2861 | |
---|
| 2862 | //now calculate outer integrand |
---|
| 2863 | arg1 = x*len/2.0*cos(zi); |
---|
| 2864 | arg2 = x*rad*sin(zi); |
---|
| 2865 | yyy = inner; |
---|
| 2866 | |
---|
| 2867 | if(arg2 == 0) { |
---|
| 2868 | be = 0.5; |
---|
| 2869 | } else { |
---|
| 2870 | be = NR_BessJ1(arg2)/arg2; |
---|
| 2871 | } |
---|
| 2872 | |
---|
| 2873 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
| 2874 | yyy += Pi*rad*rad*len*2.0*be; |
---|
| 2875 | } else { |
---|
| 2876 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
| 2877 | } |
---|
| 2878 | yyy *= yyy; |
---|
| 2879 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
| 2880 | yyy *= Gauss76Wt[i]; |
---|
| 2881 | summ += yyy; |
---|
| 2882 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 2883 | |
---|
| 2884 | answer = (vb-va)/2.0*summ; |
---|
| 2885 | |
---|
| 2886 | answer /= 2.0*Pi*(2.0*endRad*endRad*endRad/3.0+endRad*endRad*hDist-hDist*hDist*hDist/3.0); //divide by volume |
---|
| 2887 | answer *= 1.0e8; //convert to cm^-1 |
---|
| 2888 | answer *= contr*contr; |
---|
| 2889 | answer *= scale; |
---|
| 2890 | answer += bkg; |
---|
| 2891 | |
---|
| 2892 | return answer; |
---|
| 2893 | } |
---|
| 2894 | |
---|
| 2895 | |
---|
| 2896 | /* Barbell : "normal" case where L is nonzero 0 and hDist > 0 |
---|
| 2897 | |
---|
| 2898 | -- uses the same kernel as the Dumbbell case |
---|
| 2899 | |
---|
| 2900 | Uses 76 pt Gaussian quadrature for both integrals |
---|
| 2901 | */ |
---|
| 2902 | double |
---|
| 2903 | Barbell(double w[], double x) |
---|
| 2904 | { |
---|
| 2905 | int i,j; |
---|
| 2906 | double Pi; |
---|
| 2907 | double scale,contr,bkg,sldc,slds; |
---|
| 2908 | double len,rad,hDist,endRad; |
---|
| 2909 | int nordi=76; //order of integration |
---|
| 2910 | int nordj=76; |
---|
| 2911 | double va,vb; //upper and lower integration limits |
---|
| 2912 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 2913 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 2914 | double arg1,arg2,inner,be; |
---|
| 2915 | |
---|
| 2916 | |
---|
| 2917 | scale = w[0]; |
---|
| 2918 | rad = w[1]; |
---|
| 2919 | len = w[2]; |
---|
| 2920 | endRad = w[3]; |
---|
| 2921 | sldc = w[4]; |
---|
| 2922 | slds = w[5]; |
---|
| 2923 | bkg = w[6]; |
---|
| 2924 | |
---|
| 2925 | hDist = sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
| 2926 | |
---|
| 2927 | contr = sldc-slds; |
---|
| 2928 | |
---|
| 2929 | Pi = 4.0*atan(1.0); |
---|
| 2930 | va = 0.0; |
---|
| 2931 | vb = Pi/2.0; //orintational average, outer integral |
---|
| 2932 | vaj = -1.0*hDist/endRad; |
---|
| 2933 | vbj = 1.0; //endpoints of inner integral |
---|
| 2934 | |
---|
| 2935 | summ = 0.0; //initialize intergral |
---|
| 2936 | |
---|
| 2937 | for(i=0;i<nordi;i++) { |
---|
| 2938 | //setup inner integral over the ellipsoidal cross-section |
---|
| 2939 | summj=0.0; |
---|
| 2940 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
| 2941 | |
---|
| 2942 | for(j=0;j<nordj;j++) { |
---|
| 2943 | //20 gauss points for the inner integral |
---|
| 2944 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
| 2945 | yyy = Gauss76Wt[j] * Dumb_kernel(w,x,zij,zi); //uses the same Kernel as the Dumbbell, here L>0 |
---|
| 2946 | summj += yyy; |
---|
| 2947 | } |
---|
| 2948 | //now calculate the value of the inner integral |
---|
| 2949 | inner = (vbj-vaj)/2.0*summj; |
---|
| 2950 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
| 2951 | |
---|
| 2952 | //now calculate outer integrand |
---|
| 2953 | arg1 = x*len/2.0*cos(zi); |
---|
| 2954 | arg2 = x*rad*sin(zi); |
---|
| 2955 | yyy = inner; |
---|
| 2956 | |
---|
| 2957 | if(arg2 == 0) { |
---|
| 2958 | be = 0.5; |
---|
| 2959 | } else { |
---|
| 2960 | be = NR_BessJ1(arg2)/arg2; |
---|
| 2961 | } |
---|
| 2962 | |
---|
| 2963 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
| 2964 | yyy += Pi*rad*rad*len*2.0*be; |
---|
| 2965 | } else { |
---|
| 2966 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
| 2967 | } |
---|
| 2968 | yyy *= yyy; |
---|
| 2969 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
| 2970 | yyy *= Gauss76Wt[i]; |
---|
| 2971 | summ += yyy; |
---|
| 2972 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 2973 | |
---|
| 2974 | answer = (vb-va)/2.0*summ; |
---|
| 2975 | |
---|
| 2976 | answer /= Pi*rad*rad*len + 2.0*Pi*(2.0*endRad*endRad*endRad/3.0+endRad*endRad*hDist-hDist*hDist*hDist/3.0); //divide by volume |
---|
| 2977 | answer *= 1.0e8; //convert to cm^-1 |
---|
| 2978 | answer *= contr*contr; |
---|
| 2979 | answer *= scale; |
---|
| 2980 | answer += bkg; |
---|
| 2981 | |
---|
| 2982 | return answer; |
---|
| 2983 | } |
---|
| 2984 | |
---|
| 2985 | |
---|
| 2986 | |
---|
| 2987 | // inner integral of the Dumbbell model, special case where L ~ 0 and hDist > 0 |
---|
| 2988 | // |
---|
| 2989 | // inner integral of the Barbell model if L is nonzero |
---|
| 2990 | // |
---|
| 2991 | double |
---|
| 2992 | Dumb_kernel(double w[], double x, double tt, double theta) { |
---|
| 2993 | |
---|
| 2994 | double val,arg1,arg2; |
---|
| 2995 | double scale,bkg,sldc,slds; |
---|
| 2996 | double len,rad,hDist,endRad,be; |
---|
| 2997 | scale = w[0]; |
---|
| 2998 | rad = w[1]; |
---|
| 2999 | len = w[2]; |
---|
| 3000 | endRad = w[3]; |
---|
| 3001 | sldc = w[4]; |
---|
| 3002 | slds = w[5]; |
---|
| 3003 | bkg = w[6]; |
---|
| 3004 | |
---|
| 3005 | hDist = sqrt(fabs(endRad*endRad-rad*rad)); |
---|
| 3006 | |
---|
| 3007 | arg1 = x*cos(theta)*(endRad*tt+hDist+len/2.0); |
---|
| 3008 | arg2 = x*endRad*sin(theta)*sqrt(1.0-tt*tt); |
---|
| 3009 | |
---|
| 3010 | if(arg2 == 0) { |
---|
| 3011 | be = 0.5; |
---|
| 3012 | } else { |
---|
| 3013 | be = NR_BessJ1(arg2)/arg2; |
---|
| 3014 | } |
---|
| 3015 | val = cos(arg1)*(1.0-tt*tt)*be; |
---|
| 3016 | |
---|
| 3017 | return(val); |
---|
| 3018 | } |
---|
| 3019 | |
---|
| 3020 | double PolyCoreBicelle(double dp[], double q) |
---|
| 3021 | { |
---|
| 3022 | int i; |
---|
| 3023 | int nord = 20; |
---|
| 3024 | double scale, length, sigma, bkg, radius, radthick, facthick; |
---|
| 3025 | double rhoc, rhoh, rhor, rhosolv; |
---|
| 3026 | double answer, Vpoly; |
---|
| 3027 | double Pi,lolim,uplim,summ,yyy,rad,AR,Rsqr,Rsqrsumm,Rsqryyy; |
---|
| 3028 | |
---|
| 3029 | scale = dp[0]; |
---|
| 3030 | radius = dp[1]; |
---|
| 3031 | sigma = dp[2]; //sigma is the standard mean deviation |
---|
| 3032 | length = dp[3]; |
---|
| 3033 | radthick = dp[4]; |
---|
| 3034 | facthick= dp[5]; |
---|
| 3035 | rhoc = dp[6]; |
---|
| 3036 | rhoh = dp[7]; |
---|
| 3037 | rhor=dp[8]; |
---|
| 3038 | rhosolv = dp[9]; |
---|
| 3039 | bkg = dp[10]; |
---|
| 3040 | |
---|
| 3041 | Pi = 4.0*atan(1.0); |
---|
| 3042 | |
---|
| 3043 | lolim = exp(log(radius)-(4.*sigma)); |
---|
| 3044 | if (lolim<0.0) { |
---|
| 3045 | lolim=0.0; //to avoid numerical error when va<0 (-ve r value) |
---|
| 3046 | } |
---|
| 3047 | uplim = exp(log(radius)+(4.*sigma)); |
---|
| 3048 | |
---|
| 3049 | summ = 0.0; |
---|
| 3050 | Rsqrsumm = 0.0; |
---|
| 3051 | |
---|
| 3052 | for(i=0;i<nord;i++) { |
---|
| 3053 | rad = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 3054 | AR=(1.0/(rad*sigma*sqrt(2.0*Pi)))*exp(-(0.5*((log(radius/rad))/sigma)*((log(radius/rad))/sigma))); |
---|
| 3055 | yyy = AR* Gauss20Wt[i] * BicelleIntegration(q,rad,radthick,facthick,rhoc,rhoh,rhor,rhosolv,length); |
---|
| 3056 | Rsqryyy= Gauss20Wt[i] * AR * (rad+radthick)*(rad+radthick); //SRK normalize to total dimensions |
---|
| 3057 | summ += yyy; |
---|
| 3058 | Rsqrsumm += Rsqryyy; |
---|
| 3059 | } |
---|
| 3060 | |
---|
| 3061 | answer = (uplim-lolim)/2.0*summ; |
---|
| 3062 | Rsqr = (uplim-lolim)/2.0*Rsqrsumm; |
---|
| 3063 | //normalize by average cylinder volume |
---|
| 3064 | Vpoly = Pi*Rsqr*(length+2*facthick); |
---|
| 3065 | answer /= Vpoly; |
---|
| 3066 | //convert to [cm-1] |
---|
| 3067 | answer *= 1.0e8; |
---|
| 3068 | //Scale |
---|
| 3069 | answer *= scale; |
---|
| 3070 | // add in the background |
---|
| 3071 | answer += bkg; |
---|
| 3072 | |
---|
| 3073 | return answer; |
---|
| 3074 | |
---|
| 3075 | } |
---|
| 3076 | |
---|
| 3077 | double |
---|
| 3078 | BicelleIntegration(double qq, double rad, double radthick, double facthick, double rhoc, double rhoh, double rhor, double rhosolv, double length){ |
---|
| 3079 | |
---|
| 3080 | double answer,halfheight,Pi; |
---|
| 3081 | double lolim,uplim,summ,yyy,zi; |
---|
| 3082 | int nord,i; |
---|
| 3083 | |
---|
| 3084 | // set up the integration end points |
---|
| 3085 | Pi = 4.0*atan(1.0); |
---|
| 3086 | nord = 76; |
---|
| 3087 | lolim = 0.0; |
---|
| 3088 | uplim = Pi/2; |
---|
| 3089 | halfheight = length/2.0; |
---|
| 3090 | |
---|
| 3091 | summ = 0.0; // initialize integral |
---|
| 3092 | i=0; |
---|
| 3093 | for(i=0;i<nord;i++) { |
---|
| 3094 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
| 3095 | yyy = Gauss76Wt[i] * BicelleKernel(qq, rad, radthick, facthick, rhoc, rhoh, rhor,rhosolv, halfheight, zi); |
---|
| 3096 | summ += yyy; |
---|
| 3097 | } |
---|
| 3098 | |
---|
| 3099 | // calculate value of integral to return |
---|
| 3100 | answer = (uplim-lolim)/2.0*summ; |
---|
| 3101 | return(answer); |
---|
| 3102 | } |
---|
| 3103 | |
---|
| 3104 | double |
---|
| 3105 | BicelleKernel(double qq, double rad, double radthick, double facthick, double rhoc, double rhoh, double rhor, double rhosolv, double length, double dum) |
---|
| 3106 | { |
---|
| 3107 | double dr1,dr2,dr3; |
---|
| 3108 | double besarg1,besarg2; |
---|
| 3109 | double vol1,vol2,vol3; |
---|
| 3110 | double sinarg1,sinarg2; |
---|
| 3111 | double t1,t2,t3; |
---|
| 3112 | double retval,si1,si2,be1,be2; |
---|
| 3113 | |
---|
| 3114 | double Pi = 4.0*atan(1.0); |
---|
| 3115 | |
---|
| 3116 | dr1 = rhoc-rhoh; |
---|
| 3117 | dr2 = rhor-rhosolv; |
---|
| 3118 | dr3= rhoh-rhor; |
---|
| 3119 | vol1 = Pi*rad*rad*(2.0*length); |
---|
| 3120 | vol2 = Pi*(rad+radthick)*(rad+radthick)*(2.0*length+2.0*facthick); |
---|
| 3121 | vol3= Pi*(rad)*(rad)*(2.0*length+2.0*facthick); |
---|
| 3122 | besarg1 = qq*rad*sin(dum); |
---|
| 3123 | besarg2 = qq*(rad+radthick)*sin(dum); |
---|
| 3124 | sinarg1 = qq*length*cos(dum); |
---|
| 3125 | sinarg2 = qq*(length+facthick)*cos(dum); |
---|
| 3126 | |
---|
| 3127 | if(besarg1 == 0) { |
---|
| 3128 | be1 = 0.5; |
---|
| 3129 | } else { |
---|
| 3130 | be1 = NR_BessJ1(besarg1)/besarg1; |
---|
| 3131 | } |
---|
| 3132 | if(besarg2 == 0) { |
---|
| 3133 | be2 = 0.5; |
---|
| 3134 | } else { |
---|
| 3135 | be2 = NR_BessJ1(besarg2)/besarg2; |
---|
| 3136 | } |
---|
| 3137 | if(sinarg1 == 0) { |
---|
| 3138 | si1 = 1.0; |
---|
| 3139 | } else { |
---|
| 3140 | si1 = sin(sinarg1)/sinarg1; |
---|
| 3141 | } |
---|
| 3142 | if(sinarg2 == 0) { |
---|
| 3143 | si2 = 1.0; |
---|
| 3144 | } else { |
---|
| 3145 | si2 = sin(sinarg2)/sinarg2; |
---|
| 3146 | } |
---|
| 3147 | t1 = 2.0*vol1*dr1*si1*be1; |
---|
| 3148 | t2 = 2.0*vol2*dr2*si2*be2; |
---|
| 3149 | t3 = 2.0*vol3*dr3*si2*be1; |
---|
| 3150 | |
---|
| 3151 | retval = ((t1+t2+t3)*(t1+t2+t3))*sin(dum); |
---|
| 3152 | return(retval); |
---|
| 3153 | |
---|
| 3154 | } |
---|
| 3155 | |
---|
| 3156 | |
---|
| 3157 | double |
---|
| 3158 | CSPPKernel(double dp[], double mu, double uu) |
---|
| 3159 | { |
---|
| 3160 | double aa,bb,cc, ta,tb,tc; |
---|
| 3161 | double Vin,Vot,V1,V2; |
---|
| 3162 | double rhoA,rhoB,rhoC, rhoP, rhosolv; |
---|
| 3163 | double dr0, drA,drB, drC; |
---|
| 3164 | double arg1,arg2,arg3,arg4,t1,t2, t3, t4; |
---|
| 3165 | double Pi,retVal; |
---|
| 3166 | |
---|
| 3167 | aa = dp[1]; |
---|
| 3168 | bb = dp[2]; |
---|
| 3169 | cc = dp[3]; |
---|
| 3170 | ta = dp[4]; |
---|
| 3171 | tb = dp[5]; |
---|
| 3172 | tc = dp[6]; |
---|
| 3173 | rhoA=dp[7]; |
---|
| 3174 | rhoB=dp[8]; |
---|
| 3175 | rhoC=dp[9]; |
---|
| 3176 | rhoP=dp[10]; |
---|
| 3177 | rhosolv=dp[11]; |
---|
| 3178 | dr0=rhoP-rhosolv; |
---|
| 3179 | drA=rhoA-rhosolv; |
---|
| 3180 | drB=rhoB-rhosolv; |
---|
| 3181 | drC=rhoC-rhosolv; |
---|
| 3182 | Vin=(aa*bb*cc); |
---|
| 3183 | Vot=(aa*bb*cc+2.0*ta*bb*cc+2.0*aa*tb*cc+2.0*aa*bb*tc); |
---|
| 3184 | V1=(2.0*ta*bb*cc); // incorrect V1 (aa*bb*cc+2*ta*bb*cc) |
---|
| 3185 | V2=(2.0*aa*tb*cc); // incorrect V2(aa*bb*cc+2*aa*tb*cc) |
---|
| 3186 | aa = aa/bb; |
---|
| 3187 | ta=(aa+2.0*ta)/bb; |
---|
| 3188 | tb=(aa+2.0*tb)/bb; |
---|
| 3189 | |
---|
| 3190 | Pi = 4.0*atan(1.0); |
---|
| 3191 | |
---|
| 3192 | arg1 = (mu*aa/2.0)*sin(Pi*uu/2.0); |
---|
| 3193 | arg2 = (mu/2.0)*cos(Pi*uu/2.0); |
---|
| 3194 | arg3= (mu*ta/2.0)*sin(Pi*uu/2.0); |
---|
| 3195 | arg4= (mu*tb/2.0)*cos(Pi*uu/2.0); |
---|
| 3196 | |
---|
| 3197 | if(arg1==0.0){ |
---|
| 3198 | t1 = 1.0; |
---|
| 3199 | } else { |
---|
| 3200 | t1 = (sin(arg1)/arg1); //defn for CSPP model sin(arg1)/arg1 test: (sin(arg1)/arg1)*(sin(arg1)/arg1) |
---|
| 3201 | } |
---|
| 3202 | if(arg2==0.0){ |
---|
| 3203 | t2 = 1.0; |
---|
| 3204 | } else { |
---|
| 3205 | t2 = (sin(arg2)/arg2); //defn for CSPP model sin(arg2)/arg2 test: (sin(arg2)/arg2)*(sin(arg2)/arg2) |
---|
| 3206 | } |
---|
| 3207 | if(arg3==0.0){ |
---|
| 3208 | t3 = 1.0; |
---|
| 3209 | } else { |
---|
| 3210 | t3 = sin(arg3)/arg3; |
---|
| 3211 | } |
---|
| 3212 | if(arg4==0.0){ |
---|
| 3213 | t4 = 1.0; |
---|
| 3214 | } else { |
---|
| 3215 | t4 = sin(arg4)/arg4; |
---|
| 3216 | } |
---|
| 3217 | retVal =( dr0*t1*t2*Vin + drA*(t3-t1)*t2*V1+ drB*t1*(t4-t2)*V2 )*( dr0*t1*t2*Vin + drA*(t3-t1)*t2*V1+ drB*t1*(t4-t2)*V2 ); // correct FF : square of sum of phase factors |
---|
| 3218 | return(retVal); |
---|
| 3219 | |
---|
| 3220 | } |
---|
| 3221 | |
---|
| 3222 | /* CSParallelepiped : calculates the form factor of a Parallelepiped with a core-shell structure |
---|
| 3223 | -- different SLDs can be used for the face and rim |
---|
| 3224 | |
---|
| 3225 | Uses 76 pt Gaussian quadrature for both integrals |
---|
| 3226 | */ |
---|
| 3227 | double |
---|
| 3228 | CSParallelepiped(double dp[], double q) |
---|
| 3229 | { |
---|
| 3230 | int i,j; |
---|
| 3231 | double scale,aa,bb,cc,ta,tb,tc,rhoA,rhoB,rhoC,rhoP,rhosolv,bkg; //local variables of coefficient wave |
---|
| 3232 | int nordi=76; //order of integration |
---|
| 3233 | int nordj=76; |
---|
| 3234 | double va,vb; //upper and lower integration limits |
---|
| 3235 | double summ,yyy,answer; //running tally of integration |
---|
| 3236 | double summj,vaj,vbj; //for the inner integration |
---|
| 3237 | double mu,mudum,arg,sigma,uu,vol; |
---|
| 3238 | |
---|
| 3239 | |
---|
| 3240 | // Pi = 4.0*atan(1.0); |
---|
| 3241 | va = 0.0; |
---|
| 3242 | vb = 1.0; //orintational average, outer integral |
---|
| 3243 | vaj = 0.0; |
---|
| 3244 | vbj = 1.0; //endpoints of inner integral |
---|
| 3245 | |
---|
| 3246 | summ = 0.0; //initialize intergral |
---|
| 3247 | |
---|
| 3248 | scale = dp[0]; |
---|
| 3249 | aa = dp[1]; |
---|
| 3250 | bb = dp[2]; |
---|
| 3251 | cc = dp[3]; |
---|
| 3252 | ta = dp[4]; |
---|
| 3253 | tb = dp[5]; |
---|
| 3254 | tc = dp[6]; // is 0 at the moment |
---|
| 3255 | rhoA=dp[7]; //rim A SLD |
---|
| 3256 | rhoB=dp[8]; //rim B SLD |
---|
| 3257 | rhoC=dp[9]; //rim C SLD |
---|
| 3258 | rhoP = dp[10]; //Parallelpiped core SLD |
---|
| 3259 | rhosolv=dp[11]; // Solvent SLD |
---|
| 3260 | bkg = dp[12]; |
---|
| 3261 | |
---|
| 3262 | mu = q*bb; |
---|
| 3263 | vol = aa*bb*cc+2.0*ta*bb*cc+2.0*aa*tb*cc+2.0*aa*bb*tc; //calculate volume before rescaling |
---|
| 3264 | |
---|
| 3265 | // do the rescaling here, not in the kernel |
---|
| 3266 | // normalize all WRT bb |
---|
| 3267 | aa = aa/bb; |
---|
| 3268 | cc = cc/bb; |
---|
| 3269 | |
---|
| 3270 | for(i=0;i<nordi;i++) { |
---|
| 3271 | //setup inner integral over the ellipsoidal cross-section |
---|
| 3272 | summj=0.0; |
---|
| 3273 | sigma = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy |
---|
| 3274 | |
---|
| 3275 | for(j=0;j<nordj;j++) { |
---|
| 3276 | //76 gauss points for the inner integral |
---|
| 3277 | uu = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy |
---|
| 3278 | mudum = mu*sqrt(1.0-sigma*sigma); |
---|
| 3279 | yyy = Gauss76Wt[j] * CSPPKernel(dp,mudum,uu); |
---|
| 3280 | summj += yyy; |
---|
| 3281 | } |
---|
| 3282 | //now calculate the value of the inner integral |
---|
| 3283 | answer = (vbj-vaj)/2.0*summj; |
---|
| 3284 | |
---|
| 3285 | //finish the outer integral cc already scaled |
---|
| 3286 | arg = mu*cc*sigma/2.0; |
---|
| 3287 | if ( arg == 0.0 ) { |
---|
| 3288 | answer *= 1.0; |
---|
| 3289 | } else { |
---|
| 3290 | answer *= sin(arg)*sin(arg)/arg/arg; |
---|
| 3291 | } |
---|
| 3292 | |
---|
| 3293 | //now sum up the outer integral |
---|
| 3294 | yyy = Gauss76Wt[i] * answer; |
---|
| 3295 | summ += yyy; |
---|
| 3296 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 3297 | |
---|
| 3298 | answer = (vb-va)/2.0*summ; |
---|
| 3299 | |
---|
| 3300 | //normalize by volume |
---|
| 3301 | answer /= vol; |
---|
| 3302 | //convert to [cm-1] |
---|
| 3303 | answer *= 1.0e8; |
---|
| 3304 | //Scale |
---|
| 3305 | answer *= scale; |
---|
| 3306 | // add in the background |
---|
| 3307 | answer += bkg; |
---|
| 3308 | |
---|
| 3309 | return answer; |
---|
| 3310 | } |
---|
| 3311 | |
---|
[201af9f] | 3312 | |
---|
| 3313 | /* |
---|
| 3314 | * Massive rectangular prism (a <= b <=c) |
---|
| 3315 | * using eqns. (12)+(16) from Nayuk & Huber, Z. Phys. Chem. 226, 837 (2012). |
---|
| 3316 | * It is totally equivalent to the Parallelepiped model in this library, |
---|
| 3317 | * but instead of using as input the a, b, and c sides of the prism, |
---|
| 3318 | * it uses a and the ratios (b/a) and (c/a). |
---|
| 3319 | * This allows to keep the shape when using the polydispersity. |
---|
| 3320 | */ |
---|
| 3321 | |
---|
| 3322 | double |
---|
| 3323 | RectangularPrism(double dp[], double q) |
---|
| 3324 | { |
---|
| 3325 | int i, j; |
---|
| 3326 | double scale, aa, bb, cc, delrho, bkg; |
---|
| 3327 | int nordi=76; //order of integration |
---|
| 3328 | int nordj=76; |
---|
| 3329 | double Pi; |
---|
| 3330 | double sumi, sumj; |
---|
| 3331 | double v1a, v1b, v2a, v2b; // upper and lower integration limits |
---|
| 3332 | double answer; |
---|
| 3333 | double theta, phi, arg, termA, termB, termC, AP, ahalf, bhalf, chalf; |
---|
| 3334 | double vol, sldp, sld; |
---|
| 3335 | |
---|
| 3336 | Pi = 4.0*atan(1.0); |
---|
| 3337 | |
---|
| 3338 | scale = dp[0]; |
---|
| 3339 | aa = dp[1]; // parameter short_side |
---|
| 3340 | bb = aa * dp[2]; // parameter b/a ratio |
---|
| 3341 | cc = aa * dp[3]; // parameter c/a ratio |
---|
| 3342 | sldp = dp[4]; // scattering length density of the object |
---|
| 3343 | sld = dp[5]; // scattering length density of the solvent |
---|
| 3344 | delrho = sldp - sld; |
---|
| 3345 | bkg = dp[6]; |
---|
| 3346 | |
---|
| 3347 | vol = aa*bb*cc; |
---|
| 3348 | ahalf = 0.5 * aa; |
---|
| 3349 | bhalf = 0.5 * bb; |
---|
| 3350 | chalf = 0.5 * cc; |
---|
| 3351 | |
---|
| 3352 | //Integration limits to use in Gaussian quadrature |
---|
| 3353 | v1a = 0.; |
---|
| 3354 | v1b = Pi/2.; //theta integration limits |
---|
| 3355 | v2a = 0.; |
---|
| 3356 | v2b = Pi/2.; //phi integration limits |
---|
| 3357 | |
---|
| 3358 | sumi = 0.0; |
---|
| 3359 | for(i=0;i<nordi;i++) { |
---|
| 3360 | |
---|
| 3361 | theta = ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b )/2.0; //z values for gaussian quadrature |
---|
| 3362 | |
---|
| 3363 | arg = q*chalf*cos(theta); |
---|
| 3364 | if (fabs(arg) > 1.e-16) {termC = sin(arg) / arg;} else {termC = 1.0;} |
---|
| 3365 | |
---|
| 3366 | sumj = 0.0; |
---|
| 3367 | for(j=0;j<nordj;j++) { |
---|
| 3368 | |
---|
| 3369 | phi = ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b )/2.0; //z values for gaussian quadrature |
---|
| 3370 | |
---|
| 3371 | // Amplitude AP from eqn. (12), rewritten to avoid round-off effects when arg=0 |
---|
| 3372 | |
---|
| 3373 | arg = q*ahalf*sin(theta)*sin(phi); |
---|
| 3374 | if (fabs(arg) > 1.e-16) {termA = sin(arg) / arg;} else {termA = 1.0;} |
---|
| 3375 | |
---|
| 3376 | arg = q*bhalf*sin(theta)*cos(phi); |
---|
| 3377 | if (fabs(arg) > 1.e-16) {termB = sin(arg) / arg;} else {termB = 1.0;} |
---|
| 3378 | |
---|
| 3379 | AP = termA * termB * termC; |
---|
| 3380 | |
---|
| 3381 | sumj += Gauss76Wt[j] * (AP*AP); |
---|
| 3382 | |
---|
| 3383 | } |
---|
| 3384 | |
---|
| 3385 | sumj = (v2b-v2a) * sumj / 2.0; |
---|
| 3386 | sumi += Gauss76Wt[i] * sumj * sin(theta); |
---|
| 3387 | |
---|
| 3388 | } |
---|
| 3389 | |
---|
| 3390 | answer = (v1b-v1a)/2.0*sumi; |
---|
| 3391 | |
---|
| 3392 | // Normalize by Pi (Eqn. 16). |
---|
| 3393 | // The term (ABC)^2 does not appear because it was introduced before from the defs of termA, termB, termC |
---|
| 3394 | // The factor 2 appears because the theta integral has been defined between 0 and pi/2, instead of 0 to pi |
---|
| 3395 | answer = 2.0 * answer / Pi; //Form factor P(q) |
---|
| 3396 | |
---|
| 3397 | // Multiply by contrast^2 |
---|
| 3398 | answer *= delrho*delrho; |
---|
| 3399 | |
---|
| 3400 | //normalize by volume |
---|
| 3401 | answer *= vol; |
---|
| 3402 | |
---|
| 3403 | //convert to [cm-1] |
---|
| 3404 | answer *= 1.0e8; |
---|
| 3405 | |
---|
| 3406 | //Scale |
---|
| 3407 | answer *= scale; |
---|
| 3408 | |
---|
| 3409 | // add in the background |
---|
| 3410 | answer += bkg; |
---|
| 3411 | |
---|
| 3412 | return answer; |
---|
| 3413 | } |
---|
| 3414 | |
---|
| 3415 | |
---|
| 3416 | /* |
---|
| 3417 | * Hollow rectangular prism (a <= b <=c) with infinitely thin walls |
---|
| 3418 | * using eqn. (7-11) from Nayuk & Huber, Z. Phys. Chem. 226, 837 (2012) |
---|
| 3419 | */ |
---|
| 3420 | |
---|
| 3421 | double |
---|
| 3422 | RectangularHollowPrismInfThinWalls(double dp[], double q) |
---|
| 3423 | { |
---|
| 3424 | int i,j; |
---|
| 3425 | double scale,aa,bb,cc,delrho,bkg; |
---|
| 3426 | int nordi=76; |
---|
| 3427 | int nordj=76; |
---|
| 3428 | double Pi; |
---|
| 3429 | double sumi, sumj; |
---|
| 3430 | double v1a, v1b, v2a, v2b; //upper and lower integration limits |
---|
| 3431 | double answer; |
---|
| 3432 | double theta, phi, termAL_theta, termAT_theta, AL, AT, ahalf, bhalf, chalf, vol; |
---|
| 3433 | double sldp, sld ; |
---|
| 3434 | |
---|
| 3435 | Pi = 4.0*atan(1.0); |
---|
| 3436 | |
---|
| 3437 | scale = dp[0]; //make local copies in case memory moves |
---|
| 3438 | aa = dp[1]; |
---|
| 3439 | bb = aa * dp[2]; |
---|
| 3440 | cc = aa * dp[3]; |
---|
| 3441 | sldp = dp[4]; // scattering length density of the object |
---|
| 3442 | sld = dp[5]; // scattering length density of the solvent |
---|
| 3443 | delrho = sldp - sld; |
---|
| 3444 | bkg = dp[6]; |
---|
| 3445 | |
---|
| 3446 | ahalf = 0.5 * aa; |
---|
| 3447 | bhalf = 0.5 * bb; |
---|
| 3448 | chalf = 0.5 * cc; |
---|
| 3449 | |
---|
| 3450 | //Integration limits to use in Gaussian quadrature |
---|
| 3451 | v1a = 0.; |
---|
| 3452 | v1b = Pi/2; //theta integration limits |
---|
| 3453 | v2a = 0.; |
---|
| 3454 | v2b = Pi/2.; //phi integration limits |
---|
| 3455 | |
---|
| 3456 | sumi = 0.0; |
---|
| 3457 | for(i=0;i<nordi;i++) { |
---|
| 3458 | |
---|
| 3459 | theta = ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b )/2.0; //z values for gaussian quadrature |
---|
| 3460 | |
---|
| 3461 | // To check potential problems if denominator goes to zero here !!! |
---|
| 3462 | termAL_theta = 8.0*cos(q*chalf*cos(theta)) / (q*q*sin(theta)*sin(theta)); |
---|
| 3463 | termAT_theta = 8.0*sin(q*chalf*cos(theta)) / (q*q*sin(theta)*cos(theta)); |
---|
| 3464 | |
---|
| 3465 | sumj = 0.0; |
---|
| 3466 | for(j=0;j<nordj;j++) { |
---|
| 3467 | |
---|
| 3468 | phi = ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b )/2.0; //z values for gaussian quadrature |
---|
| 3469 | |
---|
| 3470 | // Amplitude AL from eqn. (7c) |
---|
| 3471 | AL = termAL_theta * sin(q*ahalf*sin(theta)*sin(phi)) * sin(q*bhalf*sin(theta)*cos(phi)) / (sin(phi)*cos(phi)); |
---|
| 3472 | |
---|
| 3473 | // Amplitude AT from eqn. (9) |
---|
| 3474 | AT = termAT_theta * ( (cos(q*ahalf*sin(theta)*sin(phi))*sin(q*bhalf*sin(theta)*cos(phi))/cos(phi)) + (cos(q*bhalf*sin(theta)*cos(phi))*sin(q*ahalf*sin(theta)*sin(phi))/sin(phi)) ); |
---|
| 3475 | |
---|
| 3476 | sumj += Gauss76Wt[j] * (AL+AT)*(AL+AT); |
---|
| 3477 | |
---|
| 3478 | } |
---|
| 3479 | |
---|
| 3480 | sumj = (v2b-v2a) * sumj / 2.0; |
---|
| 3481 | sumi += Gauss76Wt[i] * sumj * sin(theta); |
---|
| 3482 | |
---|
| 3483 | } |
---|
| 3484 | |
---|
| 3485 | answer = (v1b-v1a)/2.0*sumi; |
---|
| 3486 | |
---|
| 3487 | // Normalize as in Eqn. (11). The factor 2 is due to the different theta integration limit (pi/2 instead of pi) |
---|
| 3488 | vol = 2.0*aa*bb+2.0*aa*cc+2.0*bb*cc; |
---|
| 3489 | answer = 2.0 * answer / Pi / vol / vol; |
---|
| 3490 | |
---|
| 3491 | // Multiply by contrast^2 |
---|
| 3492 | answer *= delrho*delrho; |
---|
| 3493 | |
---|
| 3494 | //normalize by volume |
---|
| 3495 | answer *= vol; |
---|
| 3496 | |
---|
| 3497 | //convert to [cm-1] |
---|
| 3498 | answer *= 1.0e8; |
---|
| 3499 | |
---|
| 3500 | //Scale |
---|
| 3501 | answer *= scale; |
---|
| 3502 | |
---|
| 3503 | // add in the background |
---|
| 3504 | answer += bkg; |
---|
| 3505 | |
---|
| 3506 | return answer; |
---|
| 3507 | } |
---|
| 3508 | |
---|
| 3509 | |
---|
| 3510 | /* |
---|
| 3511 | * Hollow rectangular prism (a <= b <=c) |
---|
| 3512 | * using eqn. (13-15) from Nayuk & Huber, Z. Phys. Chem. 226, 837 (2012) |
---|
| 3513 | */ |
---|
| 3514 | |
---|
| 3515 | double |
---|
| 3516 | RectangularHollowPrism(double dp[], double q) |
---|
| 3517 | { |
---|
| 3518 | int i, j; |
---|
| 3519 | double scale, aa, bb, cc, thickness, delrho, bkg; |
---|
| 3520 | int nordi=76; |
---|
| 3521 | int nordj=76; |
---|
| 3522 | double Pi; |
---|
| 3523 | double sumi, sumj; |
---|
| 3524 | double v1a, v1b, v2a, v2b; //upper and lower integration limits |
---|
| 3525 | double answer; |
---|
| 3526 | double theta, phi, arg, termA1, termB1, termC1, termA2, termB2, termC2, AP1, AP2, AP, ahalf, bhalf, chalf, vol; |
---|
| 3527 | double sldp, sld ; |
---|
| 3528 | |
---|
| 3529 | Pi = 4.0*atan(1.0); |
---|
| 3530 | |
---|
| 3531 | scale = dp[0]; |
---|
| 3532 | aa = dp[1]; |
---|
| 3533 | bb = aa * dp[2]; |
---|
| 3534 | cc = aa * dp[3]; |
---|
| 3535 | thickness = dp[4]; |
---|
| 3536 | sldp = dp[5]; // scattering length density of the object |
---|
| 3537 | sld = dp[6]; // scattering length density of the solvent |
---|
| 3538 | delrho = sldp - sld; |
---|
| 3539 | bkg = dp[7]; |
---|
| 3540 | |
---|
| 3541 | ahalf = 0.5 * aa; |
---|
| 3542 | bhalf = 0.5 * bb; |
---|
| 3543 | chalf = 0.5 * cc; |
---|
| 3544 | |
---|
| 3545 | //Integration limits to use in Gaussian quadrature |
---|
| 3546 | v1a = 0.; |
---|
| 3547 | v1b = Pi/2; //theta integration limits |
---|
| 3548 | v2a = 0.; |
---|
| 3549 | v2b = Pi/2.; //phi integration limits |
---|
| 3550 | |
---|
| 3551 | sumi = 0.0; |
---|
| 3552 | for(i=0;i<nordi;i++) { |
---|
| 3553 | |
---|
| 3554 | theta = ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b )/2.0; //z values for gaussian quadrature |
---|
| 3555 | |
---|
| 3556 | arg = q*chalf*cos(theta); |
---|
| 3557 | if (fabs(arg) > 1.e-16) {termC1 = sin(arg) / arg;} else {termC1 = 1.0;} |
---|
| 3558 | arg = q*(chalf-thickness)*cos(theta); |
---|
| 3559 | if (fabs(arg) > 1.e-16) {termC2 = sin(arg) / arg;} else {termC2 = 1.0;} |
---|
| 3560 | |
---|
| 3561 | sumj = 0.0; |
---|
| 3562 | for(j=0;j<nordj;j++) { |
---|
| 3563 | |
---|
| 3564 | phi = ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b )/2.0; //z values for gaussian quadrature |
---|
| 3565 | |
---|
| 3566 | // Amplitude AP from eqn. (13), rewritten to avoid round-off effects when arg=0 |
---|
| 3567 | |
---|
| 3568 | arg = q*ahalf*sin(theta)*sin(phi); |
---|
| 3569 | if (fabs(arg) > 1.e-16) {termA1 = sin(arg) / arg;} else {termA1 = 1.0;} |
---|
| 3570 | arg = q*(ahalf-thickness)*sin(theta)*sin(phi); |
---|
| 3571 | if (fabs(arg) > 1.e-16) {termA2 = sin(arg) / arg;} else {termA2 = 1.0;} |
---|
| 3572 | |
---|
| 3573 | arg = q*bhalf*sin(theta)*cos(phi); |
---|
| 3574 | if (fabs(arg) > 1.e-16) {termB1 = sin(arg) / arg;} else {termB1 = 1.0;} |
---|
| 3575 | arg = q*(bhalf-thickness)*sin(theta)*cos(phi); |
---|
| 3576 | if (fabs(arg) > 1.e-16) {termB2 = sin(arg) / arg;} else {termB2 = 1.0;} |
---|
| 3577 | |
---|
| 3578 | AP1 = (aa*bb*cc) * termA1 * termB1 * termC1; |
---|
| 3579 | AP2 = 8 * (ahalf-thickness) * (bhalf-thickness) * (chalf-thickness) * termA2 * termB2 * termC2; |
---|
| 3580 | AP = AP1 - AP2; |
---|
| 3581 | |
---|
| 3582 | sumj += Gauss76Wt[j] * (AP*AP); |
---|
| 3583 | |
---|
| 3584 | } |
---|
| 3585 | |
---|
| 3586 | sumj = (v2b-v2a) * sumj / 2.0; |
---|
| 3587 | sumi += Gauss76Wt[i] * sumj * sin(theta); |
---|
| 3588 | |
---|
| 3589 | } |
---|
| 3590 | |
---|
| 3591 | answer = (v1b-v1a)/2.0*sumi; |
---|
| 3592 | |
---|
| 3593 | // Normalize as in Eqn. (15). |
---|
| 3594 | // The factor 2 is due to the different theta integration limit (pi/2 instead of pi) |
---|
| 3595 | vol = (aa*bb*cc-((aa-2*thickness)*(bb-2*thickness)*(cc-2*thickness))); |
---|
| 3596 | answer = 2.0 * answer / Pi / vol / vol; |
---|
| 3597 | |
---|
| 3598 | // Multiply by contrast^2 |
---|
| 3599 | answer *= delrho*delrho; |
---|
| 3600 | |
---|
| 3601 | //normalize by volume |
---|
| 3602 | answer *= vol; |
---|
| 3603 | |
---|
| 3604 | //convert to [cm-1] |
---|
| 3605 | answer *= 1.0e8; |
---|
| 3606 | |
---|
| 3607 | //Scale |
---|
| 3608 | answer *= scale; |
---|
| 3609 | |
---|
| 3610 | // add in the background |
---|
| 3611 | answer += bkg; |
---|
| 3612 | |
---|
| 3613 | return answer; |
---|
| 3614 | } |
---|
| 3615 | |
---|
| 3616 | |
---|