Changeset 201af9f in sasview
- Timestamp:
- Apr 5, 2014 6:29:18 AM (11 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- beda555
- Parents:
- f44b076
- Files:
-
- 6 added
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
sansview/default_categories.json
r27b7acc r201af9f 1 {"Shapes": [["PearlNecklaceModel", true], ["HollowCylinderModel", true], ["CoreMultiShellModel", true], ["FCCrystalModel", true], ["ParallelepipedModel", true], ["FuzzySphereModel", true], ["LamellarPCrystalModel", true], ["BCCrystalModel", true], ["LamellarFFHGModel", true], ["CSParallelepipedModel", true], ["OnionExpShellModel", true], ["MultiShellModel", true], ["RaspBerryModel", true], ["CoreShellEllipsoidModel", true], ["CappedCylinderModel", true], ["CylinderModel", true], ["SphericalSLDModel", true], ["SCCrystalModel", true], ["StackedDisksModel", true], ["LamellarPSHGModel", true], ["CoreShellBicelleModel", true], ["LamellarPSModel", true], ["EllipsoidModel", true], ["SphereModel", true], ["VesicleModel", true], ["TriaxialEllipsoidModel", true], ["LamellarModel", true], ["BarBellModel", true], ["CoreShellCylinderModel", true], ["BinaryHSModel", true], ["FlexibleCylinderModel", true], ["EllipticalCylinderModel", true], ["FlexCylEllipXModel", true], ["LinearPearlsModel", true], ["CoreShellModel", true] ], "Structure Factor": [["SquareWellStructure", true], ["HayterMSAStructure", true], ["HardsphereStructure", true], ["StickyHSStructure", true]], "Shape-Independent": [["TwoPowerLawModel", true], ["GelFitModel", true], ["DABModel", true], ["PowerLawAbsModel", true], ["PorodModel", true], ["GuinierModel", true], ["TeubnerStreyModel", true], ["StarPolymer", true], ["BEPolyelectrolyte", true], ["UnifiedPowerRgModel", true], ["GuinierPorodModel", true], ["MassSurfaceFractal", true], ["Core2ndMomentModel", true], ["RPA10Model", true], ["TwoLorentzianModel", true], ["DebyeModel", true], ["MassFractalModel", true], ["Poly_GaussCoil", true], ["CorrLengthModel", true], ["PolymerExclVolume", true], ["FractalModel", true], ["PeakLorentzModel", true], ["BroadPeakModel", true], ["PeakGaussModel", true], ["FractalCoreShellModel", true], ["SurfaceFractalModel", true], ["GaussLorentzGelModel", true], ["LorentzModel", true]], "Uncategorized": [["ReflectivityModel", true], ["ReflectivityIIModel", true], ["PringlesModel", true], ["LineModel", true]]}1 {"Shapes": [["PearlNecklaceModel", true], ["HollowCylinderModel", true], ["CoreMultiShellModel", true], ["FCCrystalModel", true], ["ParallelepipedModel", true], ["FuzzySphereModel", true], ["LamellarPCrystalModel", true], ["BCCrystalModel", true], ["LamellarFFHGModel", true], ["CSParallelepipedModel", true], ["OnionExpShellModel", true], ["MultiShellModel", true], ["RaspBerryModel", true], ["CoreShellEllipsoidModel", true], ["CappedCylinderModel", true], ["CylinderModel", true], ["SphericalSLDModel", true], ["SCCrystalModel", true], ["StackedDisksModel", true], ["LamellarPSHGModel", true], ["CoreShellBicelleModel", true], ["LamellarPSModel", true], ["EllipsoidModel", true], ["SphereModel", true], ["VesicleModel", true], ["TriaxialEllipsoidModel", true], ["LamellarModel", true], ["BarBellModel", true], ["CoreShellCylinderModel", true], ["BinaryHSModel", true], ["FlexibleCylinderModel", true], ["EllipticalCylinderModel", true], ["FlexCylEllipXModel", true], ["LinearPearlsModel", true], ["CoreShellModel", true], ["RectangularPrismModel", true], ["RectangularHollowPrismModel", true],["RectangularHollowPrismInfThinWallsModel", true]], "Structure Factor": [["SquareWellStructure", true], ["HayterMSAStructure", true], ["HardsphereStructure", true], ["StickyHSStructure", true]], "Shape-Independent": [["TwoPowerLawModel", true], ["GelFitModel", true], ["DABModel", true], ["PowerLawAbsModel", true], ["PorodModel", true], ["GuinierModel", true], ["TeubnerStreyModel", true], ["StarPolymer", true], ["BEPolyelectrolyte", true], ["UnifiedPowerRgModel", true], ["GuinierPorodModel", true], ["MassSurfaceFractal", true], ["Core2ndMomentModel", true], ["RPA10Model", true], ["TwoLorentzianModel", true], ["DebyeModel", true], ["MassFractalModel", true], ["Poly_GaussCoil", true], ["CorrLengthModel", true], ["PolymerExclVolume", true], ["FractalModel", true], ["PeakLorentzModel", true], ["BroadPeakModel", true], ["PeakGaussModel", true], ["FractalCoreShellModel", true], ["SurfaceFractalModel", true], ["GaussLorentzGelModel", true], ["LorentzModel", true]], "Uncategorized": [["ReflectivityModel", true], ["ReflectivityIIModel", true], ["PringlesModel", true], ["LineModel", true]]} -
src/sans/models/c_extension/libigor/libCylinder.c
r230f479 r201af9f 3310 3310 } 3311 3311 3312 3313 /* 3314 * Massive rectangular prism (a <= b <=c) 3315 * using eqns. (12)+(16) from Nayuk & Huber, Z. Phys. Chem. 226, 837 (2012). 3316 * It is totally equivalent to the Parallelepiped model in this library, 3317 * but instead of using as input the a, b, and c sides of the prism, 3318 * it uses a and the ratios (b/a) and (c/a). 3319 * This allows to keep the shape when using the polydispersity. 3320 */ 3321 3322 double 3323 RectangularPrism(double dp[], double q) 3324 { 3325 int i, j; 3326 double scale, aa, bb, cc, delrho, bkg; 3327 int nordi=76; //order of integration 3328 int nordj=76; 3329 double Pi; 3330 double sumi, sumj; 3331 double v1a, v1b, v2a, v2b; // upper and lower integration limits 3332 double answer; 3333 double theta, phi, arg, termA, termB, termC, AP, ahalf, bhalf, chalf; 3334 double vol, sldp, sld; 3335 3336 Pi = 4.0*atan(1.0); 3337 3338 scale = dp[0]; 3339 aa = dp[1]; // parameter short_side 3340 bb = aa * dp[2]; // parameter b/a ratio 3341 cc = aa * dp[3]; // parameter c/a ratio 3342 sldp = dp[4]; // scattering length density of the object 3343 sld = dp[5]; // scattering length density of the solvent 3344 delrho = sldp - sld; 3345 bkg = dp[6]; 3346 3347 vol = aa*bb*cc; 3348 ahalf = 0.5 * aa; 3349 bhalf = 0.5 * bb; 3350 chalf = 0.5 * cc; 3351 3352 //Integration limits to use in Gaussian quadrature 3353 v1a = 0.; 3354 v1b = Pi/2.; //theta integration limits 3355 v2a = 0.; 3356 v2b = Pi/2.; //phi integration limits 3357 3358 sumi = 0.0; 3359 for(i=0;i<nordi;i++) { 3360 3361 theta = ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b )/2.0; //z values for gaussian quadrature 3362 3363 arg = q*chalf*cos(theta); 3364 if (fabs(arg) > 1.e-16) {termC = sin(arg) / arg;} else {termC = 1.0;} 3365 3366 sumj = 0.0; 3367 for(j=0;j<nordj;j++) { 3368 3369 phi = ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b )/2.0; //z values for gaussian quadrature 3370 3371 // Amplitude AP from eqn. (12), rewritten to avoid round-off effects when arg=0 3372 3373 arg = q*ahalf*sin(theta)*sin(phi); 3374 if (fabs(arg) > 1.e-16) {termA = sin(arg) / arg;} else {termA = 1.0;} 3375 3376 arg = q*bhalf*sin(theta)*cos(phi); 3377 if (fabs(arg) > 1.e-16) {termB = sin(arg) / arg;} else {termB = 1.0;} 3378 3379 AP = termA * termB * termC; 3380 3381 sumj += Gauss76Wt[j] * (AP*AP); 3382 3383 } 3384 3385 sumj = (v2b-v2a) * sumj / 2.0; 3386 sumi += Gauss76Wt[i] * sumj * sin(theta); 3387 3388 } 3389 3390 answer = (v1b-v1a)/2.0*sumi; 3391 3392 // Normalize by Pi (Eqn. 16). 3393 // The term (ABC)^2 does not appear because it was introduced before from the defs of termA, termB, termC 3394 // The factor 2 appears because the theta integral has been defined between 0 and pi/2, instead of 0 to pi 3395 answer = 2.0 * answer / Pi; //Form factor P(q) 3396 3397 // Multiply by contrast^2 3398 answer *= delrho*delrho; 3399 3400 //normalize by volume 3401 answer *= vol; 3402 3403 //convert to [cm-1] 3404 answer *= 1.0e8; 3405 3406 //Scale 3407 answer *= scale; 3408 3409 // add in the background 3410 answer += bkg; 3411 3412 return answer; 3413 } 3414 3415 3416 /* 3417 * Hollow rectangular prism (a <= b <=c) with infinitely thin walls 3418 * using eqn. (7-11) from Nayuk & Huber, Z. Phys. Chem. 226, 837 (2012) 3419 */ 3420 3421 double 3422 RectangularHollowPrismInfThinWalls(double dp[], double q) 3423 { 3424 int i,j; 3425 double scale,aa,bb,cc,delrho,bkg; 3426 int nordi=76; 3427 int nordj=76; 3428 double Pi; 3429 double sumi, sumj; 3430 double v1a, v1b, v2a, v2b; //upper and lower integration limits 3431 double answer; 3432 double theta, phi, termAL_theta, termAT_theta, AL, AT, ahalf, bhalf, chalf, vol; 3433 double sldp, sld ; 3434 3435 Pi = 4.0*atan(1.0); 3436 3437 scale = dp[0]; //make local copies in case memory moves 3438 aa = dp[1]; 3439 bb = aa * dp[2]; 3440 cc = aa * dp[3]; 3441 sldp = dp[4]; // scattering length density of the object 3442 sld = dp[5]; // scattering length density of the solvent 3443 delrho = sldp - sld; 3444 bkg = dp[6]; 3445 3446 ahalf = 0.5 * aa; 3447 bhalf = 0.5 * bb; 3448 chalf = 0.5 * cc; 3449 3450 //Integration limits to use in Gaussian quadrature 3451 v1a = 0.; 3452 v1b = Pi/2; //theta integration limits 3453 v2a = 0.; 3454 v2b = Pi/2.; //phi integration limits 3455 3456 sumi = 0.0; 3457 for(i=0;i<nordi;i++) { 3458 3459 theta = ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b )/2.0; //z values for gaussian quadrature 3460 3461 // To check potential problems if denominator goes to zero here !!! 3462 termAL_theta = 8.0*cos(q*chalf*cos(theta)) / (q*q*sin(theta)*sin(theta)); 3463 termAT_theta = 8.0*sin(q*chalf*cos(theta)) / (q*q*sin(theta)*cos(theta)); 3464 3465 sumj = 0.0; 3466 for(j=0;j<nordj;j++) { 3467 3468 phi = ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b )/2.0; //z values for gaussian quadrature 3469 3470 // Amplitude AL from eqn. (7c) 3471 AL = termAL_theta * sin(q*ahalf*sin(theta)*sin(phi)) * sin(q*bhalf*sin(theta)*cos(phi)) / (sin(phi)*cos(phi)); 3472 3473 // Amplitude AT from eqn. (9) 3474 AT = termAT_theta * ( (cos(q*ahalf*sin(theta)*sin(phi))*sin(q*bhalf*sin(theta)*cos(phi))/cos(phi)) + (cos(q*bhalf*sin(theta)*cos(phi))*sin(q*ahalf*sin(theta)*sin(phi))/sin(phi)) ); 3475 3476 sumj += Gauss76Wt[j] * (AL+AT)*(AL+AT); 3477 3478 } 3479 3480 sumj = (v2b-v2a) * sumj / 2.0; 3481 sumi += Gauss76Wt[i] * sumj * sin(theta); 3482 3483 } 3484 3485 answer = (v1b-v1a)/2.0*sumi; 3486 3487 // Normalize as in Eqn. (11). The factor 2 is due to the different theta integration limit (pi/2 instead of pi) 3488 vol = 2.0*aa*bb+2.0*aa*cc+2.0*bb*cc; 3489 answer = 2.0 * answer / Pi / vol / vol; 3490 3491 // Multiply by contrast^2 3492 answer *= delrho*delrho; 3493 3494 //normalize by volume 3495 answer *= vol; 3496 3497 //convert to [cm-1] 3498 answer *= 1.0e8; 3499 3500 //Scale 3501 answer *= scale; 3502 3503 // add in the background 3504 answer += bkg; 3505 3506 return answer; 3507 } 3508 3509 3510 /* 3511 * Hollow rectangular prism (a <= b <=c) 3512 * using eqn. (13-15) from Nayuk & Huber, Z. Phys. Chem. 226, 837 (2012) 3513 */ 3514 3515 double 3516 RectangularHollowPrism(double dp[], double q) 3517 { 3518 int i, j; 3519 double scale, aa, bb, cc, thickness, delrho, bkg; 3520 int nordi=76; 3521 int nordj=76; 3522 double Pi; 3523 double sumi, sumj; 3524 double v1a, v1b, v2a, v2b; //upper and lower integration limits 3525 double answer; 3526 double theta, phi, arg, termA1, termB1, termC1, termA2, termB2, termC2, AP1, AP2, AP, ahalf, bhalf, chalf, vol; 3527 double sldp, sld ; 3528 3529 Pi = 4.0*atan(1.0); 3530 3531 scale = dp[0]; 3532 aa = dp[1]; 3533 bb = aa * dp[2]; 3534 cc = aa * dp[3]; 3535 thickness = dp[4]; 3536 sldp = dp[5]; // scattering length density of the object 3537 sld = dp[6]; // scattering length density of the solvent 3538 delrho = sldp - sld; 3539 bkg = dp[7]; 3540 3541 ahalf = 0.5 * aa; 3542 bhalf = 0.5 * bb; 3543 chalf = 0.5 * cc; 3544 3545 //Integration limits to use in Gaussian quadrature 3546 v1a = 0.; 3547 v1b = Pi/2; //theta integration limits 3548 v2a = 0.; 3549 v2b = Pi/2.; //phi integration limits 3550 3551 sumi = 0.0; 3552 for(i=0;i<nordi;i++) { 3553 3554 theta = ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b )/2.0; //z values for gaussian quadrature 3555 3556 arg = q*chalf*cos(theta); 3557 if (fabs(arg) > 1.e-16) {termC1 = sin(arg) / arg;} else {termC1 = 1.0;} 3558 arg = q*(chalf-thickness)*cos(theta); 3559 if (fabs(arg) > 1.e-16) {termC2 = sin(arg) / arg;} else {termC2 = 1.0;} 3560 3561 sumj = 0.0; 3562 for(j=0;j<nordj;j++) { 3563 3564 phi = ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b )/2.0; //z values for gaussian quadrature 3565 3566 // Amplitude AP from eqn. (13), rewritten to avoid round-off effects when arg=0 3567 3568 arg = q*ahalf*sin(theta)*sin(phi); 3569 if (fabs(arg) > 1.e-16) {termA1 = sin(arg) / arg;} else {termA1 = 1.0;} 3570 arg = q*(ahalf-thickness)*sin(theta)*sin(phi); 3571 if (fabs(arg) > 1.e-16) {termA2 = sin(arg) / arg;} else {termA2 = 1.0;} 3572 3573 arg = q*bhalf*sin(theta)*cos(phi); 3574 if (fabs(arg) > 1.e-16) {termB1 = sin(arg) / arg;} else {termB1 = 1.0;} 3575 arg = q*(bhalf-thickness)*sin(theta)*cos(phi); 3576 if (fabs(arg) > 1.e-16) {termB2 = sin(arg) / arg;} else {termB2 = 1.0;} 3577 3578 AP1 = (aa*bb*cc) * termA1 * termB1 * termC1; 3579 AP2 = 8 * (ahalf-thickness) * (bhalf-thickness) * (chalf-thickness) * termA2 * termB2 * termC2; 3580 AP = AP1 - AP2; 3581 3582 sumj += Gauss76Wt[j] * (AP*AP); 3583 3584 } 3585 3586 sumj = (v2b-v2a) * sumj / 2.0; 3587 sumi += Gauss76Wt[i] * sumj * sin(theta); 3588 3589 } 3590 3591 answer = (v1b-v1a)/2.0*sumi; 3592 3593 // Normalize as in Eqn. (15). 3594 // The factor 2 is due to the different theta integration limit (pi/2 instead of pi) 3595 vol = (aa*bb*cc-((aa-2*thickness)*(bb-2*thickness)*(cc-2*thickness))); 3596 answer = 2.0 * answer / Pi / vol / vol; 3597 3598 // Multiply by contrast^2 3599 answer *= delrho*delrho; 3600 3601 //normalize by volume 3602 answer *= vol; 3603 3604 //convert to [cm-1] 3605 answer *= 1.0e8; 3606 3607 //Scale 3608 answer *= scale; 3609 3610 // add in the background 3611 answer += bkg; 3612 3613 return answer; 3614 } 3615 3616 -
src/sans/models/c_extension/libigor/libCylinder.h
r230f479 r201af9f 38 38 double PolyCoreBicelle(double dp[], double q); 39 39 double CSParallelepiped(double dp[], double q); 40 double RectangularPrism(double dp[], double q); 41 double RectangularHollowPrismInfThinWalls(double dp[], double q); 42 double RectangularHollowPrism(double dp[], double q); 40 43 41 44 /* internal functions */ -
src/sans/perspectives/fitting/models.py
r27b7acc r201af9f 677 677 self.model_name_list.append(PringlesModel.__name__) 678 678 679 from sans.models.RectangularPrismModel import RectangularPrismModel 680 self.model_dictionary[RectangularPrismModel.__name__] = RectangularPrismModel 681 self.shape_list.append(RectangularPrismModel) 682 self.multiplication_factor.append(RectangularPrismModel) 683 self.model_name_list.append(RectangularPrismModel.__name__) 684 685 from sans.models.RectangularHollowPrismInfThinWallsModel import RectangularHollowPrismInfThinWallsModel 686 self.model_dictionary[RectangularHollowPrismInfThinWallsModel.__name__] = RectangularHollowPrismInfThinWallsModel 687 self.shape_list.append(RectangularHollowPrismInfThinWallsModel) 688 self.multiplication_factor.append(RectangularHollowPrismInfThinWallsModel) 689 self.model_name_list.append(RectangularHollowPrismInfThinWallsModel.__name__) 690 691 from sans.models.RectangularHollowPrismModel import RectangularHollowPrismModel 692 self.model_dictionary[RectangularHollowPrismModel.__name__] = RectangularHollowPrismModel 693 self.shape_list.append(RectangularHollowPrismModel) 694 self.multiplication_factor.append(RectangularHollowPrismModel) 695 self.model_name_list.append(RectangularHollowPrismModel.__name__) 696 679 697 #from sans.models.FractalO_Z import FractalO_Z 680 698 #self.model_dictionary[FractalO_Z.__name__] = FractalO_Z
Note: See TracChangeset
for help on using the changeset viewer.