[201af9f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | * TODO: add 2D function |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | #include <math.h> |
---|
| 24 | #include "parameters.hh" |
---|
| 25 | #include <stdio.h> |
---|
| 26 | #include <iostream> |
---|
| 27 | using namespace std; |
---|
| 28 | |
---|
| 29 | extern "C" { |
---|
| 30 | #include "libCylinder.h" |
---|
| 31 | #include "libStructureFactor.h" |
---|
| 32 | #include "libmultifunc/libfunc.h" |
---|
| 33 | } |
---|
| 34 | #include "RectangularHollowPrism.h" |
---|
| 35 | |
---|
| 36 | // Convenience parameter structure |
---|
| 37 | typedef struct { |
---|
| 38 | double scale; |
---|
| 39 | double short_side; |
---|
| 40 | double b2a_ratio; |
---|
| 41 | double c2a_ratio; |
---|
| 42 | double thickness; |
---|
| 43 | double sldPipe; |
---|
| 44 | double sldSolv; |
---|
| 45 | double background; |
---|
| 46 | } RectangularHollowPrismParameters; |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | RectangularHollowPrismModel :: RectangularHollowPrismModel() { |
---|
| 50 | scale = Parameter(1.0); |
---|
| 51 | short_side = Parameter(35.0, true); |
---|
| 52 | short_side.set_min(1.0); |
---|
| 53 | b2a_ratio = Parameter(1.0, true); |
---|
| 54 | b2a_ratio.set_min(1.0); |
---|
| 55 | c2a_ratio = Parameter(1.0, true); |
---|
| 56 | c2a_ratio.set_min(1.0); |
---|
| 57 | thickness = Parameter(1.0, true); |
---|
| 58 | thickness.set_min(0.0); |
---|
| 59 | sldPipe = Parameter(6.3e-6); |
---|
| 60 | sldSolv = Parameter(1.0e-6); |
---|
| 61 | background = Parameter(0.0); |
---|
| 62 | } |
---|
| 63 | |
---|
| 64 | /** |
---|
| 65 | * Function to evaluate 1D scattering function |
---|
| 66 | * @param q: q-value |
---|
| 67 | * @return: function value |
---|
| 68 | */ |
---|
| 69 | double RectangularHollowPrismModel :: operator()(double q) { |
---|
| 70 | |
---|
| 71 | double dp[8]; |
---|
| 72 | |
---|
| 73 | // Fill parameter array for IGOR library |
---|
| 74 | // Add the background after averaging |
---|
| 75 | dp[0] = scale(); |
---|
| 76 | dp[1] = short_side(); |
---|
| 77 | dp[2] = b2a_ratio(); |
---|
| 78 | dp[3] = c2a_ratio(); |
---|
| 79 | dp[4] = thickness(); |
---|
| 80 | dp[5] = sldPipe(); |
---|
| 81 | dp[6] = sldSolv(); |
---|
| 82 | dp[7] = 0.0; |
---|
| 83 | |
---|
| 84 | // Get the dispersion points for a |
---|
| 85 | vector<WeightPoint> weights_short_side; |
---|
| 86 | short_side.get_weights(weights_short_side); |
---|
| 87 | |
---|
| 88 | // Get the dispersion points for b/a ratio |
---|
| 89 | vector<WeightPoint> weights_b2a_ratio; |
---|
| 90 | b2a_ratio.get_weights(weights_b2a_ratio); |
---|
| 91 | |
---|
| 92 | // Get the dispersion points for c/a ratio |
---|
| 93 | vector<WeightPoint> weights_c2a_ratio; |
---|
| 94 | c2a_ratio.get_weights(weights_c2a_ratio); |
---|
| 95 | |
---|
| 96 | // Get the dispersion points for the thickness |
---|
| 97 | vector<WeightPoint> weights_thickness; |
---|
| 98 | thickness.get_weights(weights_thickness); |
---|
| 99 | |
---|
| 100 | // Perform the computation, with all weight points |
---|
| 101 | double sum = 0.0; |
---|
| 102 | double norm = 0.0; |
---|
| 103 | double vol = 0.0; |
---|
| 104 | |
---|
| 105 | // Loop over short_side weight points |
---|
| 106 | for (int i=0; i < (int)weights_short_side.size(); i++) { |
---|
| 107 | |
---|
| 108 | dp[1] = weights_short_side[i].value; |
---|
| 109 | |
---|
| 110 | // Loop over b/a ratios |
---|
| 111 | for (int j=0; j < (int)weights_b2a_ratio.size(); j++) { |
---|
| 112 | |
---|
| 113 | dp[2] = weights_b2a_ratio[j].value; |
---|
| 114 | |
---|
| 115 | // Loop over c/a ratios |
---|
| 116 | for (int k=0; k < (int)weights_c2a_ratio.size(); k++) { |
---|
| 117 | |
---|
| 118 | dp[3] = weights_c2a_ratio[k].value; |
---|
| 119 | |
---|
| 120 | // Loop over thicknesses |
---|
| 121 | for (int l=0; l < (int)weights_thickness.size(); l++) { |
---|
| 122 | |
---|
| 123 | dp[4] = weights_thickness[l].value; |
---|
| 124 | |
---|
| 125 | // Un-normalize by volume = abc - (a-2*t)*(b-2*t)*(c-2*t) |
---|
| 126 | |
---|
| 127 | double a = dp[1]; |
---|
| 128 | double b = dp[1] * dp[2]; |
---|
| 129 | double c = dp[1] * dp[3]; |
---|
| 130 | double t = dp[4]; |
---|
| 131 | double vol_i = a*b*c - (a-2*t)*(b-2*t)*(c-2*t); |
---|
| 132 | |
---|
| 133 | sum += weights_short_side[i].weight * |
---|
| 134 | weights_b2a_ratio[j].weight * |
---|
| 135 | weights_c2a_ratio[k].weight * |
---|
| 136 | weights_thickness[l].weight * |
---|
| 137 | RectangularHollowPrism(dp, q) * |
---|
| 138 | vol_i; |
---|
| 139 | |
---|
| 140 | //Find average volume (ABC) |
---|
| 141 | |
---|
| 142 | vol += weights_short_side[i].weight * |
---|
| 143 | weights_b2a_ratio[j].weight * |
---|
| 144 | weights_c2a_ratio[k].weight * |
---|
| 145 | weights_thickness[l].weight * |
---|
| 146 | vol_i; |
---|
| 147 | |
---|
| 148 | norm += weights_short_side[i].weight * |
---|
| 149 | weights_b2a_ratio[j].weight * |
---|
| 150 | weights_c2a_ratio[k].weight * |
---|
| 151 | weights_thickness[l].weight; |
---|
| 152 | } |
---|
| 153 | } |
---|
| 154 | } |
---|
| 155 | } |
---|
| 156 | |
---|
| 157 | if (vol != 0.0 && norm != 0.0) { |
---|
| 158 | //Re-normalize by avg volume |
---|
| 159 | sum = sum/(vol/norm);} |
---|
| 160 | |
---|
| 161 | return sum/norm + background(); |
---|
| 162 | |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | /** |
---|
| 166 | * Function to evaluate 2D scattering function |
---|
| 167 | * @param q_x: value of Q along x |
---|
| 168 | * @param q_y: value of Q along y |
---|
| 169 | * @return: function value |
---|
| 170 | */ |
---|
| 171 | double RectangularHollowPrismModel :: operator()(double qx, double qy) { |
---|
| 172 | return 1.0; |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | /** |
---|
| 177 | * Function to evaluate 2D scattering function |
---|
| 178 | * @param pars: parameters of the cylinder |
---|
| 179 | * @param q: q-value |
---|
| 180 | * @param phi: angle phi |
---|
| 181 | * @return: function value |
---|
| 182 | */ |
---|
| 183 | double RectangularHollowPrismModel :: evaluate_rphi(double q, double phi) { |
---|
| 184 | double qx = q*cos(phi); |
---|
| 185 | double qy = q*sin(phi); |
---|
| 186 | return (*this).operator()(qx, qy); |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | /** |
---|
| 190 | * Function to calculate effective radius |
---|
| 191 | * @return: effective radius value |
---|
| 192 | */ |
---|
| 193 | double RectangularHollowPrismModel :: calculate_ER() { |
---|
| 194 | return 1.0; |
---|
| 195 | |
---|
| 196 | } |
---|
| 197 | double RectangularHollowPrismModel :: calculate_VR() { |
---|
| 198 | return 1.0; |
---|
| 199 | } |
---|