[51f14603] | 1 | |
---|
| 2 | |
---|
| 3 | |
---|
| 4 | """ |
---|
[fd5ac0d] | 5 | ParkFitting module contains SasParameter,Model,Data |
---|
[51f14603] | 6 | FitArrange, ParkFit,Parameter classes.All listed classes work together |
---|
| 7 | to perform a simple fit with park optimizer. |
---|
| 8 | """ |
---|
| 9 | #import time |
---|
| 10 | import numpy |
---|
| 11 | import math |
---|
| 12 | from numpy.linalg.linalg import LinAlgError |
---|
| 13 | #import park |
---|
| 14 | from park import fit |
---|
| 15 | from park import fitresult |
---|
| 16 | from park.fitresult import FitParameter |
---|
| 17 | import park.simplex |
---|
| 18 | from park.assembly import Assembly |
---|
| 19 | from park.assembly import Part |
---|
| 20 | from park.fitmc import FitSimplex |
---|
| 21 | import park.fitmc |
---|
| 22 | from park.fit import Fitter |
---|
| 23 | from park.formatnum import format_uncertainty |
---|
[79492222] | 24 | from sas.fit.AbstractFitEngine import FitEngine |
---|
| 25 | from sas.fit.AbstractFitEngine import FResult |
---|
[6fe5100] | 26 | |
---|
[fd5ac0d] | 27 | class SasParameter(park.Parameter): |
---|
[6fe5100] | 28 | """ |
---|
[fd5ac0d] | 29 | SAS model parameters for use in the PARK fitting service. |
---|
[6fe5100] | 30 | The parameter attribute value is redirected to the underlying |
---|
[fd5ac0d] | 31 | parameter value in the SAS model. |
---|
[6fe5100] | 32 | """ |
---|
| 33 | def __init__(self, name, model, data): |
---|
| 34 | """ |
---|
| 35 | :param name: the name of the model parameter |
---|
[79492222] | 36 | :param model: the sas model to wrap as a park model |
---|
[6fe5100] | 37 | """ |
---|
| 38 | park.Parameter.__init__(self, name) |
---|
[8d074d9] | 39 | #self._model, self._name = model, name |
---|
[6fe5100] | 40 | self.data = data |
---|
| 41 | self.model = model |
---|
| 42 | #set the value for the parameter of the given name |
---|
| 43 | self.set(model.getParam(name)) |
---|
| 44 | |
---|
[8d074d9] | 45 | # TODO: model is missing parameter ranges for dispersion parameters |
---|
| 46 | if name not in model.details: |
---|
| 47 | #print "setting details for",name |
---|
| 48 | model.details[name] = ["", None, None] |
---|
| 49 | |
---|
[6fe5100] | 50 | def _getvalue(self): |
---|
| 51 | """ |
---|
| 52 | override the _getvalue of park parameter |
---|
| 53 | |
---|
| 54 | :return value the parameter associates with self.name |
---|
| 55 | |
---|
| 56 | """ |
---|
[8d074d9] | 57 | return self.model.getParam(self.name) |
---|
[6fe5100] | 58 | |
---|
| 59 | def _setvalue(self, value): |
---|
| 60 | """ |
---|
| 61 | override the _setvalue pf park parameter |
---|
| 62 | |
---|
| 63 | :param value: the value to set on a given parameter |
---|
| 64 | |
---|
| 65 | """ |
---|
[8d074d9] | 66 | self.model.setParam(self.name, value) |
---|
[6fe5100] | 67 | |
---|
| 68 | value = property(_getvalue, _setvalue) |
---|
| 69 | |
---|
| 70 | def _getrange(self): |
---|
| 71 | """ |
---|
| 72 | Override _getrange of park parameter |
---|
| 73 | return the range of parameter |
---|
| 74 | """ |
---|
| 75 | #if not self.name in self._model.getDispParamList(): |
---|
[8d074d9] | 76 | lo, hi = self.model.details[self.name][1:3] |
---|
[6fe5100] | 77 | if lo is None: lo = -numpy.inf |
---|
| 78 | if hi is None: hi = numpy.inf |
---|
| 79 | if lo > hi: |
---|
| 80 | raise ValueError, "wrong fit range for parameters" |
---|
| 81 | |
---|
| 82 | return lo, hi |
---|
| 83 | |
---|
| 84 | def get_name(self): |
---|
| 85 | """ |
---|
| 86 | """ |
---|
| 87 | return self._getname() |
---|
| 88 | |
---|
| 89 | def _setrange(self, r): |
---|
| 90 | """ |
---|
| 91 | override _setrange of park parameter |
---|
| 92 | |
---|
| 93 | :param r: the value of the range to set |
---|
| 94 | |
---|
| 95 | """ |
---|
[8d074d9] | 96 | self.model.details[self.name][1:3] = r |
---|
[6fe5100] | 97 | range = property(_getrange, _setrange) |
---|
| 98 | |
---|
| 99 | |
---|
[95d58d3] | 100 | class ParkModel(park.Model): |
---|
[6fe5100] | 101 | """ |
---|
[fd5ac0d] | 102 | PARK wrapper for SAS models. |
---|
[6fe5100] | 103 | """ |
---|
[fd5ac0d] | 104 | def __init__(self, sas_model, sas_data=None, **kw): |
---|
[6fe5100] | 105 | """ |
---|
[fd5ac0d] | 106 | :param sas_model: the sas model to wrap using park interface |
---|
[6fe5100] | 107 | |
---|
| 108 | """ |
---|
| 109 | park.Model.__init__(self, **kw) |
---|
[fd5ac0d] | 110 | self.model = sas_model |
---|
| 111 | self.name = sas_model.name |
---|
| 112 | self.data = sas_data |
---|
[6fe5100] | 113 | #list of parameters names |
---|
[fd5ac0d] | 114 | self.sasp = sas_model.getParamList() |
---|
[6fe5100] | 115 | #list of park parameter |
---|
[fd5ac0d] | 116 | self.parkp = [SasParameter(p, sas_model, sas_data) for p in self.sasp] |
---|
[6fe5100] | 117 | #list of parameter set |
---|
[fd5ac0d] | 118 | self.parameterset = park.ParameterSet(sas_model.name, pars=self.parkp) |
---|
[6fe5100] | 119 | self.pars = [] |
---|
| 120 | |
---|
| 121 | def get_params(self, fitparams): |
---|
| 122 | """ |
---|
| 123 | return a list of value of paramter to fit |
---|
| 124 | |
---|
| 125 | :param fitparams: list of paramaters name to fit |
---|
| 126 | |
---|
| 127 | """ |
---|
| 128 | list_params = [] |
---|
| 129 | self.pars = fitparams |
---|
| 130 | for item in fitparams: |
---|
| 131 | for element in self.parkp: |
---|
| 132 | if element.name == str(item): |
---|
| 133 | list_params.append(element.value) |
---|
| 134 | return list_params |
---|
| 135 | |
---|
| 136 | def set_params(self, paramlist, params): |
---|
| 137 | """ |
---|
| 138 | Set value for parameters to fit |
---|
| 139 | |
---|
| 140 | :param params: list of value for parameters to fit |
---|
| 141 | |
---|
| 142 | """ |
---|
| 143 | try: |
---|
| 144 | for i in range(len(self.parkp)): |
---|
| 145 | for j in range(len(paramlist)): |
---|
| 146 | if self.parkp[i].name == paramlist[j]: |
---|
| 147 | self.parkp[i].value = params[j] |
---|
| 148 | self.model.setParam(self.parkp[i].name, params[j]) |
---|
| 149 | except: |
---|
| 150 | raise |
---|
| 151 | |
---|
| 152 | def eval(self, x): |
---|
| 153 | """ |
---|
| 154 | Override eval method of park model. |
---|
| 155 | |
---|
| 156 | :param x: the x value used to compute a function |
---|
| 157 | """ |
---|
| 158 | try: |
---|
| 159 | return self.model.evalDistribution(x) |
---|
| 160 | except: |
---|
| 161 | raise |
---|
| 162 | |
---|
| 163 | def eval_derivs(self, x, pars=[]): |
---|
| 164 | """ |
---|
| 165 | Evaluate the model and derivatives wrt pars at x. |
---|
| 166 | |
---|
| 167 | pars is a list of the names of the parameters for which derivatives |
---|
| 168 | are desired. |
---|
| 169 | |
---|
| 170 | This method needs to be specialized in the model to evaluate the |
---|
| 171 | model function. Alternatively, the model can implement is own |
---|
| 172 | version of residuals which calculates the residuals directly |
---|
| 173 | instead of calling eval. |
---|
| 174 | """ |
---|
| 175 | return [] |
---|
| 176 | |
---|
| 177 | |
---|
[fd5ac0d] | 178 | class SasFitResult(fitresult.FitResult): |
---|
[51f14603] | 179 | def __init__(self, *args, **kwrds): |
---|
| 180 | fitresult.FitResult.__init__(self, *args, **kwrds) |
---|
| 181 | self.theory = None |
---|
| 182 | self.inputs = [] |
---|
| 183 | |
---|
[fd5ac0d] | 184 | class SasFitSimplex(FitSimplex): |
---|
[51f14603] | 185 | """ |
---|
| 186 | Local minimizer using Nelder-Mead simplex algorithm. |
---|
| 187 | |
---|
| 188 | Simplex is robust and derivative free, though not very efficient. |
---|
| 189 | |
---|
| 190 | This class wraps the bounds contrained Nelder-Mead simplex |
---|
| 191 | implementation for `park.simplex.simplex`. |
---|
| 192 | """ |
---|
| 193 | radius = 0.05 |
---|
| 194 | """Size of the initial simplex; this is a portion between 0 and 1""" |
---|
| 195 | xtol = 1 |
---|
| 196 | #xtol = 1e-4 |
---|
| 197 | """Stop when simplex vertices are within xtol of each other""" |
---|
| 198 | ftol = 5e-5 |
---|
| 199 | """Stop when vertex values are within ftol of each other""" |
---|
| 200 | maxiter = None |
---|
| 201 | """Maximum number of iterations before fit terminates""" |
---|
| 202 | def __init__(self, ftol=5e-5): |
---|
| 203 | self.ftol = ftol |
---|
| 204 | |
---|
| 205 | def fit(self, fitness, x0): |
---|
| 206 | """Run the fit""" |
---|
| 207 | self.cancel = False |
---|
| 208 | pars = fitness.fit_parameters() |
---|
| 209 | bounds = numpy.array([p.range for p in pars]).T |
---|
| 210 | result = park.simplex.simplex(fitness, x0, bounds=bounds, |
---|
| 211 | radius=self.radius, xtol=self.xtol, |
---|
| 212 | ftol=self.ftol, maxiter=self.maxiter, |
---|
| 213 | abort_test=self._iscancelled) |
---|
| 214 | #print "calls:",result.calls |
---|
| 215 | #print "simplex returned",result.x,result.fx |
---|
| 216 | # Need to make our own copy of the fit results so that the |
---|
| 217 | # values don't get stomped on by the next fit iteration. |
---|
[fd5ac0d] | 218 | fitpars = [SasFitParameter(pars[i].name,pars[i].range,v, pars[i].model, pars[i].data) |
---|
[51f14603] | 219 | for i,v in enumerate(result.x)] |
---|
[fd5ac0d] | 220 | res = SasFitResult(fitpars, result.calls, result.fx) |
---|
[51f14603] | 221 | res.inputs = [(pars[i].model, pars[i].data) for i,v in enumerate(result.x)] |
---|
| 222 | # Compute the parameter uncertainties from the jacobian |
---|
| 223 | res.calc_cov(fitness) |
---|
| 224 | return res |
---|
| 225 | |
---|
[fd5ac0d] | 226 | class SasFitter(Fitter): |
---|
[51f14603] | 227 | """ |
---|
| 228 | """ |
---|
| 229 | def fit(self, fitness, handler): |
---|
| 230 | """ |
---|
| 231 | Global optimizer. |
---|
| 232 | |
---|
| 233 | This function should return immediately |
---|
| 234 | """ |
---|
| 235 | # Determine initial value and bounds |
---|
| 236 | pars = fitness.fit_parameters() |
---|
| 237 | bounds = numpy.array([p.range for p in pars]).T |
---|
| 238 | x0 = [p.value for p in pars] |
---|
| 239 | |
---|
| 240 | # Initialize the monitor and results. |
---|
| 241 | # Need to make our own copy of the fit results so that the |
---|
| 242 | # values don't get stomped on by the next fit iteration. |
---|
| 243 | handler.done = False |
---|
| 244 | self.handler = handler |
---|
[fd5ac0d] | 245 | fitpars = [SasFitParameter(pars[i].name, pars[i].range, v, |
---|
[51f14603] | 246 | pars[i].model, pars[i].data) |
---|
| 247 | for i,v in enumerate(x0)] |
---|
| 248 | handler.result = fitresult.FitResult(fitpars, 0, numpy.NaN) |
---|
| 249 | |
---|
| 250 | # Run the fit (fit should perform _progress and _improvement updates) |
---|
| 251 | # This function may return before the fit is complete. |
---|
| 252 | self._fit(fitness, x0, bounds) |
---|
| 253 | |
---|
[fd5ac0d] | 254 | class SasFitMC(SasFitter): |
---|
[51f14603] | 255 | """ |
---|
| 256 | Monte Carlo optimizer. |
---|
| 257 | |
---|
| 258 | This implements `park.fit.Fitter`. |
---|
| 259 | """ |
---|
[fd5ac0d] | 260 | localfit = SasFitSimplex() |
---|
[51f14603] | 261 | start_points = 10 |
---|
| 262 | def __init__(self, localfit, start_points=10): |
---|
| 263 | self.localfit = localfit |
---|
| 264 | self.start_points = start_points |
---|
| 265 | |
---|
| 266 | def _fit(self, objective, x0, bounds): |
---|
| 267 | """ |
---|
| 268 | Run a monte carlo fit. |
---|
| 269 | |
---|
| 270 | This procedure maps a local optimizer across a set of initial points. |
---|
| 271 | """ |
---|
| 272 | try: |
---|
| 273 | park.fitmc.fitmc(objective, x0, bounds, self.localfit, |
---|
| 274 | self.start_points, self.handler) |
---|
| 275 | except: |
---|
| 276 | raise ValueError, "Fit did not converge.\n" |
---|
| 277 | |
---|
[fd5ac0d] | 278 | class SasPart(Part): |
---|
[51f14603] | 279 | """ |
---|
| 280 | Part of a fitting assembly. Part holds the model itself and |
---|
| 281 | associated data. The part can be initialized with a fitness |
---|
| 282 | object or with a pair (model,data) for the default fitness function. |
---|
| 283 | |
---|
| 284 | fitness (Fitness) |
---|
| 285 | object implementing the `park.assembly.Fitness` interface. In |
---|
| 286 | particular, fitness should provide a parameterset attribute |
---|
| 287 | containing a ParameterSet and a residuals method returning a vector |
---|
| 288 | of residuals. |
---|
| 289 | weight (dimensionless) |
---|
| 290 | weight for the model. See comments in assembly.py for details. |
---|
| 291 | isfitted (boolean) |
---|
| 292 | True if the model residuals should be included in the fit. |
---|
| 293 | The model parameters may still be used in parameter |
---|
| 294 | expressions, but there will be no comparison to the data. |
---|
| 295 | residuals (vector) |
---|
| 296 | Residuals for the model if they have been calculated, or None |
---|
| 297 | degrees_of_freedom |
---|
| 298 | Number of residuals minus number of fitted parameters. |
---|
| 299 | Degrees of freedom for individual models does not make |
---|
| 300 | sense in the presence of expressions combining models, |
---|
| 301 | particularly in the case where a model has many parameters |
---|
| 302 | but no data or many computed parameters. The degrees of |
---|
| 303 | freedom for the model is set to be at least one. |
---|
| 304 | chisq |
---|
| 305 | sum(residuals**2); use chisq/degrees_of_freedom to |
---|
| 306 | get the reduced chisq value. |
---|
| 307 | |
---|
| 308 | Get/set the weight on the given model. |
---|
| 309 | |
---|
| 310 | assembly.weight(3) returns the weight on model 3 (0-origin) |
---|
| 311 | assembly.weight(3,0.5) sets the weight on model 3 (0-origin) |
---|
| 312 | """ |
---|
| 313 | |
---|
| 314 | def __init__(self, fitness, weight=1., isfitted=True): |
---|
| 315 | Part.__init__(self, fitness=fitness, weight=weight, |
---|
| 316 | isfitted=isfitted) |
---|
| 317 | |
---|
| 318 | self.model, self.data = fitness[0], fitness[1] |
---|
| 319 | |
---|
[fd5ac0d] | 320 | class SasFitParameter(FitParameter): |
---|
[51f14603] | 321 | """ |
---|
| 322 | Fit result for an individual parameter. |
---|
| 323 | """ |
---|
| 324 | def __init__(self, name, range, value, model, data): |
---|
| 325 | FitParameter.__init__(self, name, range, value) |
---|
| 326 | self.model = model |
---|
| 327 | self.data = data |
---|
| 328 | |
---|
| 329 | def summarize(self): |
---|
| 330 | """ |
---|
| 331 | Return parameter range string. |
---|
| 332 | |
---|
| 333 | E.g., " Gold .....|.... 5.2043 in [2,7]" |
---|
| 334 | """ |
---|
| 335 | bar = ['.']*10 |
---|
| 336 | lo,hi = self.range |
---|
| 337 | if numpy.isfinite(lo)and numpy.isfinite(hi): |
---|
| 338 | portion = (self.value-lo)/(hi-lo) |
---|
| 339 | if portion < 0: portion = 0. |
---|
| 340 | elif portion >= 1: portion = 0.99999999 |
---|
| 341 | barpos = int(math.floor(portion*len(bar))) |
---|
| 342 | bar[barpos] = '|' |
---|
| 343 | bar = "".join(bar) |
---|
| 344 | lostr = "[%g"%lo if numpy.isfinite(lo) else "(-inf" |
---|
| 345 | histr = "%g]"%hi if numpy.isfinite(hi) else "inf)" |
---|
| 346 | valstr = format_uncertainty(self.value, self.stderr) |
---|
| 347 | model_name = str(None) |
---|
| 348 | if self.model is not None: |
---|
| 349 | model_name = self.model.name |
---|
| 350 | data_name = str(None) |
---|
| 351 | if self.data is not None: |
---|
| 352 | data_name = self.data.name |
---|
| 353 | |
---|
| 354 | return "%25s %s %s in %s,%s, %s, %s" % (self.name,bar,valstr,lostr,histr, |
---|
| 355 | model_name, data_name) |
---|
| 356 | def __repr__(self): |
---|
| 357 | #return "FitParameter('%s')"%self.name |
---|
| 358 | return str(self.__class__) |
---|
| 359 | |
---|
| 360 | class MyAssembly(Assembly): |
---|
| 361 | def __init__(self, models, curr_thread=None): |
---|
| 362 | """Build an assembly from a list of models.""" |
---|
| 363 | self.parts = [] |
---|
| 364 | for m in models: |
---|
[fd5ac0d] | 365 | self.parts.append(SasPart(m)) |
---|
[51f14603] | 366 | self.curr_thread = curr_thread |
---|
| 367 | self.chisq = None |
---|
| 368 | self._cancel = False |
---|
| 369 | self.theory = None |
---|
| 370 | self._reset() |
---|
| 371 | |
---|
| 372 | def fit_parameters(self): |
---|
| 373 | """ |
---|
| 374 | Return an alphabetical list of the fitting parameters. |
---|
| 375 | |
---|
| 376 | This function is called once at the beginning of a fit, |
---|
| 377 | and serves as a convenient place to precalculate what |
---|
| 378 | can be precalculated such as the set of fitting parameters |
---|
| 379 | and the parameter expressions evaluator. |
---|
| 380 | """ |
---|
| 381 | self.parameterset.setprefix() |
---|
| 382 | self._fitparameters = self.parameterset.fitted |
---|
| 383 | self._restraints = self.parameterset.restrained |
---|
| 384 | pars = self.parameterset.flatten() |
---|
| 385 | context = self.parameterset.gather_context() |
---|
| 386 | self._fitexpression = park.expression.build_eval(pars,context) |
---|
| 387 | #print "constraints",self._fitexpression.__doc__ |
---|
| 388 | |
---|
| 389 | self._fitparameters.sort(lambda a,b: cmp(a.path,b.path)) |
---|
| 390 | # Convert to fitparameter a object |
---|
| 391 | |
---|
[fd5ac0d] | 392 | fitpars = [SasFitParameter(p.path,p.range,p.value, p.model, p.data) |
---|
[51f14603] | 393 | for p in self._fitparameters] |
---|
| 394 | #print "fitpars", fitpars |
---|
| 395 | return fitpars |
---|
| 396 | |
---|
[95d58d3] | 397 | def extend_results_with_calculated_parameters(self, result): |
---|
[51f14603] | 398 | """ |
---|
| 399 | Extend result from the fit with the calculated parameters. |
---|
| 400 | """ |
---|
[fd5ac0d] | 401 | calcpars = [SasFitParameter(p.path,p.range,p.value, p.model, p.data) |
---|
[51f14603] | 402 | for p in self.parameterset.computed] |
---|
| 403 | result.parameters += calcpars |
---|
| 404 | result.theory = self.theory |
---|
| 405 | |
---|
| 406 | def eval(self): |
---|
| 407 | """ |
---|
| 408 | Recalculate the theory functions, and from them, the |
---|
| 409 | residuals and chisq. |
---|
| 410 | |
---|
| 411 | :note: Call this after the parameters have been updated. |
---|
| 412 | """ |
---|
| 413 | # Handle abort from a separate thread. |
---|
| 414 | self._cancel = False |
---|
| 415 | if self.curr_thread != None: |
---|
| 416 | try: |
---|
| 417 | self.curr_thread.isquit() |
---|
| 418 | except: |
---|
| 419 | self._cancel = True |
---|
| 420 | |
---|
| 421 | # Evaluate the computed parameters |
---|
| 422 | try: |
---|
| 423 | self._fitexpression() |
---|
| 424 | except NameError: |
---|
| 425 | pass |
---|
| 426 | |
---|
| 427 | # Check that the resulting parameters are in a feasible region. |
---|
| 428 | if not self.isfeasible(): return numpy.inf |
---|
| 429 | |
---|
| 430 | resid = [] |
---|
| 431 | k = len(self._fitparameters) |
---|
| 432 | for m in self.parts: |
---|
| 433 | # In order to support abort, need to be able to propagate an |
---|
| 434 | # external abort signal from self.abort() into an abort signal |
---|
| 435 | # for the particular model. Can't see a way to do this which |
---|
| 436 | # doesn't involve setting a state variable. |
---|
| 437 | self._current_model = m |
---|
| 438 | if self._cancel: return numpy.inf |
---|
| 439 | if m.isfitted and m.weight != 0: |
---|
| 440 | m.residuals, self.theory = m.fitness.residuals() |
---|
| 441 | N = len(m.residuals) |
---|
| 442 | m.degrees_of_freedom = N-k if N>k else 1 |
---|
| 443 | # dividing residuals by N in order to be consistent with Scipy |
---|
| 444 | m.chisq = numpy.sum(m.residuals**2/N) |
---|
[95d58d3] | 445 | resid.append(m.weight*m.residuals) |
---|
[51f14603] | 446 | self.residuals = numpy.hstack(resid) |
---|
| 447 | N = len(self.residuals) |
---|
| 448 | self.degrees_of_freedom = N-k if N>k else 1 |
---|
| 449 | self.chisq = numpy.sum(self.residuals**2) |
---|
[95d58d3] | 450 | return self.chisq/self.degrees_of_freedom |
---|
[51f14603] | 451 | |
---|
| 452 | class ParkFit(FitEngine): |
---|
| 453 | """ |
---|
| 454 | ParkFit performs the Fit.This class can be used as follow: |
---|
| 455 | #Do the fit Park |
---|
| 456 | create an engine: engine = ParkFit() |
---|
| 457 | Use data must be of type plottable |
---|
[79492222] | 458 | Use a sas model |
---|
[51f14603] | 459 | |
---|
| 460 | Add data with a dictionnary of FitArrangeList where Uid is a key and data |
---|
| 461 | is saved in FitArrange object. |
---|
| 462 | engine.set_data(data,Uid) |
---|
| 463 | |
---|
| 464 | Set model parameter "M1"= model.name add {model.parameter.name:value}. |
---|
| 465 | |
---|
| 466 | ..note:: |
---|
[5ba88d3] | 467 | |
---|
| 468 | Set_param() if used must always preceded set_model() for the fit to be performed. ``engine.set_param( model,"M1", {'A':2,'B':4})`` |
---|
[51f14603] | 469 | |
---|
| 470 | Add model with a dictionnary of FitArrangeList{} where Uid is a key |
---|
| 471 | and model |
---|
| 472 | is save in FitArrange object. |
---|
| 473 | engine.set_model(model,Uid) |
---|
| 474 | |
---|
| 475 | engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] |
---|
| 476 | chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) |
---|
| 477 | |
---|
| 478 | ..note:: |
---|
[5ba88d3] | 479 | |
---|
[51f14603] | 480 | {model.parameter.name:value} is ignored in fit function since |
---|
| 481 | the user should make sure to call set_param himself. |
---|
| 482 | |
---|
| 483 | """ |
---|
| 484 | def __init__(self): |
---|
| 485 | """ |
---|
| 486 | Creates a dictionary (self.fitArrangeList={})of FitArrange elements |
---|
| 487 | with Uid as keys |
---|
| 488 | """ |
---|
| 489 | FitEngine.__init__(self) |
---|
| 490 | self.fit_arrange_dict = {} |
---|
| 491 | self.param_list = [] |
---|
| 492 | |
---|
| 493 | def create_assembly(self, curr_thread, reset_flag=False): |
---|
| 494 | """ |
---|
[fd5ac0d] | 495 | Extract sasmodel and sasdata from |
---|
[51f14603] | 496 | self.FitArrangelist ={Uid:FitArrange} |
---|
| 497 | Create parkmodel and park data ,form a list couple of parkmodel |
---|
| 498 | and parkdata |
---|
| 499 | create an assembly self.problem= park.Assembly([(parkmodel,parkdata)]) |
---|
| 500 | """ |
---|
| 501 | mylist = [] |
---|
| 502 | #listmodel = [] |
---|
| 503 | #i = 0 |
---|
| 504 | fitproblems = [] |
---|
| 505 | for fproblem in self.fit_arrange_dict.itervalues(): |
---|
| 506 | if fproblem.get_to_fit() == 1: |
---|
| 507 | fitproblems.append(fproblem) |
---|
[fb7180c] | 508 | if len(fitproblems) == 0: |
---|
[51f14603] | 509 | raise RuntimeError, "No Assembly scheduled for Park fitting." |
---|
| 510 | for item in fitproblems: |
---|
[95d58d3] | 511 | model = item.get_model() |
---|
| 512 | parkmodel = ParkModel(model.model, model.data) |
---|
[8d074d9] | 513 | parkmodel.pars = item.pars |
---|
[51f14603] | 514 | if reset_flag: |
---|
| 515 | # reset the initial value; useful for batch |
---|
| 516 | for name in item.pars: |
---|
| 517 | ind = item.pars.index(name) |
---|
| 518 | parkmodel.model.setParam(name, item.vals[ind]) |
---|
[fb7180c] | 519 | |
---|
| 520 | # set the constraints into the model |
---|
[8d074d9] | 521 | for p,v in item.constraints: |
---|
[fb7180c] | 522 | parkmodel.parameterset[str(p)].set(str(v)) |
---|
[51f14603] | 523 | |
---|
| 524 | for p in parkmodel.parameterset: |
---|
| 525 | ## does not allow status change for constraint parameters |
---|
| 526 | if p.status != 'computed': |
---|
[fb7180c] | 527 | if p.get_name() in item.pars: |
---|
[51f14603] | 528 | ## make parameters selected for |
---|
| 529 | #fit will be between boundaries |
---|
| 530 | p.set(p.range) |
---|
| 531 | else: |
---|
| 532 | p.status = 'fixed' |
---|
| 533 | data_list = item.get_data() |
---|
| 534 | parkdata = data_list |
---|
| 535 | fitness = (parkmodel, parkdata) |
---|
| 536 | mylist.append(fitness) |
---|
| 537 | self.problem = MyAssembly(models=mylist, curr_thread=curr_thread) |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | def fit(self, msg_q=None, |
---|
| 541 | q=None, handler=None, curr_thread=None, |
---|
[6fe5100] | 542 | ftol=1.49012e-8, reset_flag=False): |
---|
[51f14603] | 543 | """ |
---|
| 544 | Performs fit with park.fit module.It can perform fit with one model |
---|
| 545 | and a set of data, more than two fit of one model and sets of data or |
---|
| 546 | fit with more than two model associated with their set of data and |
---|
| 547 | constraints |
---|
| 548 | |
---|
| 549 | :param pars: Dictionary of parameter names for the model and their |
---|
| 550 | values. |
---|
| 551 | :param qmin: The minimum value of data's range to be fit |
---|
| 552 | :param qmax: The maximum value of data's range to be fit |
---|
| 553 | |
---|
| 554 | :note: all parameter are ignored most of the time.Are just there |
---|
| 555 | to keep ScipyFit and ParkFit interface the same. |
---|
| 556 | |
---|
| 557 | :return: result.fitness Value of the goodness of fit metric |
---|
| 558 | :return: result.pvec list of parameter with the best value |
---|
| 559 | found during fitting |
---|
| 560 | :return: result.cov Covariance matrix |
---|
| 561 | |
---|
| 562 | """ |
---|
| 563 | self.create_assembly(curr_thread=curr_thread, reset_flag=reset_flag) |
---|
[fd5ac0d] | 564 | localfit = SasFitSimplex() |
---|
[51f14603] | 565 | localfit.ftol = ftol |
---|
[95d58d3] | 566 | localfit.xtol = 1e-6 |
---|
| 567 | |
---|
[51f14603] | 568 | # See `park.fitresult.FitHandler` for details. |
---|
[fd5ac0d] | 569 | fitter = SasFitMC(localfit=localfit, start_points=1) |
---|
[51f14603] | 570 | if handler == None: |
---|
| 571 | handler = fitresult.ConsoleUpdate(improvement_delta=0.1) |
---|
| 572 | |
---|
| 573 | result_list = [] |
---|
| 574 | try: |
---|
| 575 | result = fit.fit(self.problem, fitter=fitter, handler=handler) |
---|
[95d58d3] | 576 | self.problem.extend_results_with_calculated_parameters(result) |
---|
[51f14603] | 577 | |
---|
| 578 | except LinAlgError: |
---|
| 579 | raise ValueError, "SVD did not converge" |
---|
[8d074d9] | 580 | |
---|
| 581 | if result is None: |
---|
| 582 | raise RuntimeError("park did not return a fit result") |
---|
[51f14603] | 583 | |
---|
| 584 | for m in self.problem.parts: |
---|
| 585 | residuals, theory = m.fitness.residuals() |
---|
[fd5ac0d] | 586 | small_result = FResult(model=m.model, data=m.data.sas_data) |
---|
[51f14603] | 587 | small_result.fitter_id = self.fitter_id |
---|
| 588 | small_result.theory = theory |
---|
| 589 | small_result.residuals = residuals |
---|
[8d074d9] | 590 | small_result.index = m.data.idx |
---|
| 591 | small_result.fitness = result.fitness |
---|
| 592 | |
---|
| 593 | # Extract the parameters that are part of this model; make sure |
---|
| 594 | # they match the fitted parameters for this model, and place them |
---|
| 595 | # in the same order as they occur in the model. |
---|
| 596 | pars = {} |
---|
| 597 | for p in result.parameters: |
---|
| 598 | #if p.data.name == small_result.data.name and |
---|
| 599 | if p.model.name == small_result.model.name: |
---|
| 600 | model_name, par_name = p.name.split('.', 1) |
---|
| 601 | pars[par_name] = (p.value, p.stderr) |
---|
| 602 | #assert len(pars.keys()) == len(m.model.pars) |
---|
| 603 | v,dv = zip(*[pars[p] for p in m.model.pars]) |
---|
| 604 | small_result.pvec = v |
---|
| 605 | small_result.stderr = dv |
---|
| 606 | small_result.param_list = m.model.pars |
---|
| 607 | |
---|
| 608 | # normalize chisq by degrees of freedom |
---|
| 609 | dof = len(small_result.residuals)-len(small_result.pvec) |
---|
| 610 | small_result.fitness = numpy.sum(residuals**2)/dof |
---|
| 611 | |
---|
[51f14603] | 612 | result_list.append(small_result) |
---|
| 613 | if q != None: |
---|
| 614 | q.put(result_list) |
---|
| 615 | return q |
---|
| 616 | return result_list |
---|
[444c900e] | 617 | |
---|