source: sasview/sansmodels/src/sans/models/media/pd_help.html @ 077207b

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 077207b was 87f8971, checked in by Jae Cho <jhjcho@…>, 12 years ago

small correction of links for images

  • Property mode set to 100644
File size: 5.4 KB
RevLine 
[50764a4]1<head>
2<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
3<meta name=Generator content="Microsoft Word 12 (filtered)">
4
5</head>
6
7<body lang=EN-US>
8
9<div class=WordSection1>
10
11<p class=MsoNormal><h3><span style='font-family:"Times New Roman","serif"'>Polydisperisty
12and Angular Distributions</span></h3></p>
13
14<p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Calculates
15the form factor for a polydisperse and/or angular population of particles with
16uniform scattering length density. The resultant form factor is normalized by
17the average particle volume such that P(q) = scale*&lt;F*F&gt;/Vol + bkg, where
18F is the scattering amplitude and the &lt; &gt; denote an average over the size
[b9958b3]19distribution.  Users should use PD (polydispersity: this definition is different from the typical definition in polymer science)
20for a size distribution and Sigma for an
21angular distribution (see below).</span></p>
[50764a4]22<p> Note that this computation is very time intensive thus applying polydispersion/angular distrubtion for
[b9958b3]23more than one paramters or increasing Npts values might need extensive patience to complete the computation. Also
24note that even though it is time consuming, it is safer to have larger values of Npts and Nsigmas.</p>
[50764a4]25
26<p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span
27style='font-family:"Times New Roman","serif"'>The following five distribution
28functions are provided;</span></p>
29<ul>
30<li><a href="#Rectangular">Rectangular distribution</a></li>
31<li><a href="#Array">Array distribution</a></li>
32<li><a href="#Gaussian">Gaussian distribution</a></li>
33<li><a href="#Lognormal">Lognormal distribution</a></li>
34<li><a href="#Schulz">Schulz distribution</a></li>
35</ul>
36<p>&nbsp;</p>
[318b5bbb]37<p><a name="Rectangular"><h4>Rectangular distribution</a></h4></p>
[87f8971]38<p><img src="img/pd_image001.png"></p>
[50764a4]39<p>&nbsp;</p>
[318b5bbb]40<p>The x<sub>mean</sub> is the mean
[50764a4]41of the distribution, w is the half-width, and Norm is a normalization factor
42which is determined during the numerical calculation. Note that the Sigma and
[318b5bbb]43the half width <i>w</i> are different.</p>
44<p>The standard deviation is </p>
[87f8971]45<p><img src="img/pd_image002.png"></p>
[318b5bbb]46<p>&nbsp;</p>
47<p>The PD (polydispersity) is </p>
[87f8971]48<p><img src="img/pd_image003.png"></p>
[318b5bbb]49<p>&nbsp;</p>
50<p><img width=511 height=270
[87f8971]51id="Picture 1" src="img/pd_image004.jpg" alt=flat.gif></p>
[318b5bbb]52<p>&nbsp;</p>
53<p>&nbsp;</p>
54<p><a name="Array"><h4>Array distribution</h4></a></p>
[50764a4]55
[318b5bbb]56<p>This distribution is to be given
[50764a4]57by users as a txt file where the array should be defined by two columns in the
58order of x and f(x) values. The f(x) will be normalized by SansView during the
[318b5bbb]59computation.</p>
[50764a4]60
[318b5bbb]61<p>Example of an array in the file;</p>
[50764a4]62
[318b5bbb]63<p>30        0.1</p>
[50764a4]64
[318b5bbb]65<p>32        0.3</p>
[50764a4]66
[318b5bbb]67<p>35        0.4</p>
[50764a4]68
[318b5bbb]69<p>36        0.5</p>
[50764a4]70
[318b5bbb]71<p>37        0.6</p>
[50764a4]72
[318b5bbb]73<p>39        0.7</p>
[50764a4]74
[318b5bbb]75<p>41        0.9</p>
[50764a4]76
[318b5bbb]77<p'>&nbsp;</p>
[50764a4]78
[318b5bbb]79<p>We use only these array values in
[50764a4]80the computation, therefore the mean value given in the control panel, for
[318b5bbb]81example ‘radius = 60’, will be ignored.</p>
82<p>&nbsp;</p>
[50764a4]83
84
[318b5bbb]85<p><a name="Gaussian"><h4>Gaussian distribution</h4></a></p>
86<p>&nbsp;</p>
[50764a4]87
[87f8971]88<p><img src="img/pd_image005.png"></p>
[50764a4]89
[318b5bbb]90<p>&nbsp;</p>
[50764a4]91
[318b5bbb]92<p>The x<sub>mean</sub> is the mean
[50764a4]93of the distribution and Norm is a normalization factor which is determined
[318b5bbb]94during the numerical calculation.</p>
[50764a4]95
[318b5bbb]96<p>&nbsp;</p>
[50764a4]97
[318b5bbb]98<p>The PD (polydispersity) is </p>
[50764a4]99
[87f8971]100<p><img src="img/pd_image003.png"></p>
[50764a4]101
[318b5bbb]102<p>&nbsp;</p>
[50764a4]103
[318b5bbb]104<p><img width=518 height=275
[87f8971]105id="Picture 2" src="img/pd_image006.jpg" alt=gauss.gif></p>
[50764a4]106
[318b5bbb]107<p>&nbsp;</p>
[50764a4]108
[318b5bbb]109<p><a name="Lognormal"><h4>Lognormal distribution</h4></a></p>
[50764a4]110
[318b5bbb]111<p>&nbsp;</p>
[50764a4]112
[87f8971]113<p><img src="img/pd_image007.png"></p>
[50764a4]114
[318b5bbb]115<p>&nbsp;</p>
[50764a4]116
[318b5bbb]117<p>The &#956; = ln(x<sub>med</sub>),  x<sub>med</sub>
[50764a4]118is the median value of the distribution, and Norm is a normalization factor
119which will be determined during the numerical calculation. The median value is
120the value given in the size parameter in the control panel, for example,
[318b5bbb]121“radius = 60”.</p>
[50764a4]122
[318b5bbb]123<p >&nbsp;</p>
[50764a4]124
[318b5bbb]125<p>The PD (polydispersity) is given
126by &#963;,</p>
[50764a4]127
[87f8971]128<p><img src="img/pd_image008.png"></p>
[50764a4]129
[318b5bbb]130<p>&nbsp;</p>
[50764a4]131
[318b5bbb]132<p>For the angular distribution,</p>
[50764a4]133
[87f8971]134<p><img src="img/pd_image009.png"></p>
[50764a4]135
[318b5bbb]136<p>&nbsp;</p>
[50764a4]137
[318b5bbb]138<p>The mean value is given by x<sub>mean</sub>
139=exp(&#956;+p<sup>2</sup>/2).</p>
[50764a4]140
[318b5bbb]141<p>The peak value is given by x<sub>peak</sub>=exp(&#956;-p<sup>2</sup>).</span></p>
[50764a4]142
[318b5bbb]143<p>&nbsp;</p>
[50764a4]144
[318b5bbb]145<p><img width=450 height=239
[87f8971]146id="Picture 7" src="img/pd_image010.jpg" alt=lognormal.gif></p>
[50764a4]147
[318b5bbb]148<p>&nbsp;</p>
[50764a4]149
[318b5bbb]150<p>This distribution function
[50764a4]151spreads more and the peak shifts to the left as the p increases, requiring
[318b5bbb]152higher values of Nsigmas and Npts.</p>
[50764a4]153
[318b5bbb]154<p>&nbsp;</p>
[50764a4]155
[318b5bbb]156<p><a name="Schulz"><h4>Schulz distribution</h4></a></p>
[50764a4]157
[318b5bbb]158<p>&nbsp;</p>
[50764a4]159
[87f8971]160<p><img src="img/pd_image011.png"></p>
[50764a4]161
[318b5bbb]162<p>&nbsp;</p>
[50764a4]163
[318b5bbb]164<p>The x<sub>mean</sub> is the mean
[50764a4]165of the distribution and Norm is a normalization factor which is determined
[318b5bbb]166during the numerical calculation. </p>
[50764a4]167
[318b5bbb]168<p>The z = 1/p<sup>2</sup> – 1.</p>
169<p>&nbsp;</p>
[50764a4]170
[318b5bbb]171<p>The PD (polydispersity) is </p>
[87f8971]172<p'><img src="img/pd_image012.png"></p>
[318b5bbb]173<p>Note that the higher PD (polydispersity)
[b9958b3]174 might need higher values of Npts and Nsigmas. For example, at PD = 0.7 and  radisus = 60 A,
[318b5bbb]175 Npts >= 160, and Nsigmas >= 15 at least.</p>
[b9958b3]176 <p/>
[318b5bbb]177<p><img width=438 height=232
[87f8971]178id="Picture 4" src="img/pd_image013.jpg" alt=schulz.gif></p>
[50764a4]179
180</div>
[318b5bbb]181<br>
[50764a4]182</body>
Note: See TracBrowser for help on using the repository browser.