source: sasview/sansmodels/src/sans/models/c_models/ellipsoid.cpp @ 0b99881

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 0b99881 was 0f5bc9f, checked in by Mathieu Doucet <doucetm@…>, 16 years ago

Update of all C models to the new style of C++ models

  • Property mode set to 100644
File size: 4.9 KB
RevLine 
[0f5bc9f]1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/**
16 * Scattering model classes
17 * The classes use the IGOR library found in
18 *   sansmodels/src/libigor
19 *
20 *      TODO: refactor so that we pull in the old sansmodels.c_extensions
21 */
22
23#include <math.h>
24#include "models.hh"
25#include "parameters.hh"
26#include <stdio.h>
27using namespace std;
28
29extern "C" {
30        #include "libCylinder.h"
31        #include "ellipsoid.h"
32}
33
34EllipsoidModel :: EllipsoidModel() {
35        scale      = Parameter(1.0);
36        radius_a   = Parameter(20.0, true);
37        radius_a.set_min(0.0);
38        radius_b   = Parameter(400.0, true);
39        radius_b.set_min(0.0);
40        contrast   = Parameter(3.e-6);
41        background = Parameter(0.0);
42        axis_theta  = Parameter(1.57, true);
43        axis_phi    = Parameter(0.0, true);
44}
45
46/**
47 * Function to evaluate 1D scattering function
48 * The NIST IGOR library is used for the actual calculation.
49 * @param q: q-value
50 * @return: function value
51 */
52double EllipsoidModel :: operator()(double q) {
53        double dp[5];
54
55        // Fill parameter array for IGOR library
56        // Add the background after averaging
57        dp[0] = scale();
58        dp[1] = radius_a();
59        dp[2] = radius_b();
60        dp[3] = contrast();
61        dp[4] = 0.0;
62
63        // Get the dispersion points for the radius_a
64        vector<WeightPoint> weights_rad_a;
65        radius_a.get_weights(weights_rad_a);
66
67        // Get the dispersion points for the radius_b
68        vector<WeightPoint> weights_rad_b;
69        radius_b.get_weights(weights_rad_b);
70
71        // Perform the computation, with all weight points
72        double sum = 0.0;
73        double norm = 0.0;
74
75        // Loop over radius_a weight points
76        for(int i=0; i<weights_rad_a.size(); i++) {
77                dp[1] = weights_rad_a[i].value;
78
79                // Loop over radius_b weight points
80                for(int j=0; j<weights_rad_b.size(); j++) {
81                        dp[2] = weights_rad_b[j].value;
82
83                        sum += weights_rad_a[i].weight
84                                * weights_rad_b[j].weight * EllipsoidForm(dp, q);
85                        norm += weights_rad_a[i].weight
86                                * weights_rad_b[j].weight;
87                }
88        }
89        return sum/norm + background();
90}
91
92/**
93 * Function to evaluate 2D scattering function
94 * @param q_x: value of Q along x
95 * @param q_y: value of Q along y
96 * @return: function value
97 */
98double EllipsoidModel :: operator()(double qx, double qy) {
99        EllipsoidParameters dp;
100        // Fill parameter array
101        dp.scale      = scale();
102        dp.radius_a   = radius_a();
103        dp.radius_b   = radius_b();
104        dp.contrast   = contrast();
105        dp.background = 0.0;
106        dp.axis_theta = axis_theta();
107        dp.axis_phi   = axis_phi();
108
109        // Get the dispersion points for the radius_a
110        vector<WeightPoint> weights_rad_a;
111        radius_a.get_weights(weights_rad_a);
112
113        // Get the dispersion points for the radius_b
114        vector<WeightPoint> weights_rad_b;
115        radius_b.get_weights(weights_rad_b);
116
117        // Get angular averaging for theta
118        vector<WeightPoint> weights_theta;
119        axis_theta.get_weights(weights_theta);
120
121        // Get angular averaging for phi
122        vector<WeightPoint> weights_phi;
123        axis_phi.get_weights(weights_phi);
124
125        // Perform the computation, with all weight points
126        double sum = 0.0;
127        double norm = 0.0;
128
129        // Loop over radius weight points
130        for(int i=0; i<weights_rad_a.size(); i++) {
131                dp.radius_a = weights_rad_a[i].value;
132
133
134                // Loop over length weight points
135                for(int j=0; j<weights_rad_b.size(); j++) {
136                        dp.radius_b = weights_rad_b[j].value;
137
138                        // Average over theta distribution
139                        for(int k=0; k<weights_theta.size(); k++) {
140                                dp.axis_theta = weights_theta[k].value;
141
142                                // Average over phi distribution
143                                for(int l=0; l<weights_phi.size(); l++) {
144                                        dp.axis_phi = weights_phi[l].value;
145
146                                        double _ptvalue = weights_rad_a[i].weight
147                                                * weights_rad_b[j].weight
148                                                * weights_theta[k].weight
149                                                * weights_phi[l].weight
150                                                * ellipsoid_analytical_2DXY(&dp, qx, qy);
151                                        if (weights_theta.size()>1) {
152                                                _ptvalue *= sin(weights_theta[k].value);
153                                        }
154                                        sum += _ptvalue;
155
156                                        norm += weights_rad_a[i].weight
157                                                * weights_rad_b[j].weight
158                                                * weights_theta[k].weight
159                                                * weights_phi[l].weight;
160
161                                }
162                        }
163                }
164        }
165        // Averaging in theta needs an extra normalization
166        // factor to account for the sin(theta) term in the
167        // integration (see documentation).
168        if (weights_theta.size()>1) norm = norm / asin(1.0);
169        return sum/norm + background();
170}
171
172/**
173 * Function to evaluate 2D scattering function
174 * @param pars: parameters of the cylinder
175 * @param q: q-value
176 * @param phi: angle phi
177 * @return: function value
178 */
179double EllipsoidModel :: evaluate_rphi(double q, double phi) {
180        double qx = q*cos(phi);
181        double qy = q*sin(phi);
182        return (*this).operator()(qx, qy);
183}
Note: See TracBrowser for help on using the repository browser.