source: sasview/sansmodels/src/sans/models/ProlateModel.py @ 95fe70d

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 95fe70d was 96656e3, checked in by Jae Cho <jhjcho@…>, 14 years ago

update models due to changes of template

  • Property mode set to 100644
File size: 5.5 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\prolate.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CProlateModel
29import copy   
30
31def create_ProlateModel():
32    obj = ProlateModel()
33    #CProlateModel.__init__(obj) is called by ProlateModel constructor
34    return obj
35
36class ProlateModel(CProlateModel, BaseComponent):
37    """
38    Class that evaluates a ProlateModel model.
39    This file was auto-generated from ..\c_extensions\prolate.h.
40    Refer to that file and the structure it contains
41    for details of the model.
42    List of default parameters:
43         scale           = 1.0
44         major_core      = 100.0 [A]
45         minor_core      = 50.0 [A]
46         major_shell     = 110.0 [A]
47         minor_shell     = 60.0 [A]
48         contrast        = 1e-006 [1/A^(2)]
49         sld_solvent     = 6.3e-006 [1/A^(2)]
50         background      = 0.001 [1/cm]
51
52    """
53       
54    def __init__(self):
55        """ Initialization """
56       
57        # Initialize BaseComponent first, then sphere
58        BaseComponent.__init__(self)
59        #apply(CProlateModel.__init__, (self,))
60        CProlateModel.__init__(self)
61       
62        ## Name of the model
63        self.name = "ProlateModel"
64        ## Model description
65        self.description ="""[ProlateCoreShellModel] Calculates the form factor for a prolate
66                ellipsoid particle with a core_shell structure.
67                The form factor is averaged over all possible
68                orientations of the ellipsoid such that P(q)
69                = scale*<f^2>/Vol + bkg, where f is the
70                single particle scattering amplitude.
71                [Parameters]:
72                major_core = radius of major_core,
73                minor_core = radius of minor_core,
74                major_shell = radius of major_shell,
75                minor_shell = radius of minor_shell,
76                contrast = SLD_core - SLD_shell
77                sld_solvent = SLD_solvent
78                background = Incoherent bkg
79                scale = scale
80                Note:It is the users' responsibility to ensure
81                that shell radii are larger than core radii."""
82       
83        ## Parameter details [units, min, max]
84        self.details = {}
85        self.details['scale'] = ['', None, None]
86        self.details['major_core'] = ['[A]', None, None]
87        self.details['minor_core'] = ['[A]', None, None]
88        self.details['major_shell'] = ['[A]', None, None]
89        self.details['minor_shell'] = ['[A]', None, None]
90        self.details['contrast'] = ['[1/A^(2)]', None, None]
91        self.details['sld_solvent'] = ['[1/A^(2)]', None, None]
92        self.details['background'] = ['[1/cm]', None, None]
93
94        ## fittable parameters
95        self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width']
96       
97        ## non-fittable parameters
98        self.non_fittable = []
99       
100        ## parameters with orientation
101        self.orientation_params = []
102   
103    def __reduce_ex__(self, proto):
104        """
105        Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
106        c model.
107        """
108        return (create_ProlateModel,tuple())
109       
110    def clone(self):
111        """ Return a identical copy of self """
112        return self._clone(ProlateModel())   
113       
114   
115    def run(self, x=0.0):
116        """
117        Evaluate the model
118       
119        :param x: input q, or [q,phi]
120       
121        :return: scattering function P(q)
122       
123        """
124       
125        return CProlateModel.run(self, x)
126   
127    def runXY(self, x=0.0):
128        """
129        Evaluate the model in cartesian coordinates
130       
131        :param x: input q, or [qx, qy]
132       
133        :return: scattering function P(q)
134       
135        """
136       
137        return CProlateModel.runXY(self, x)
138       
139    def evalDistribution(self, x=[]):
140        """
141        Evaluate the model in cartesian coordinates
142       
143        :param x: input q[], or [qx[], qy[]]
144       
145        :return: scattering function P(q[])
146       
147        """
148        return CProlateModel.evalDistribution(self, x)
149       
150    def calculate_ER(self):
151        """
152        Calculate the effective radius for P(q)*S(q)
153       
154        :return: the value of the effective radius
155       
156        """       
157        return CProlateModel.calculate_ER(self)
158       
159    def set_dispersion(self, parameter, dispersion):
160        """
161        Set the dispersion object for a model parameter
162       
163        :param parameter: name of the parameter [string]
164        :param dispersion: dispersion object of type DispersionModel
165       
166        """
167        return CProlateModel.set_dispersion(self, parameter, dispersion.cdisp)
168       
169   
170# End of file
Note: See TracBrowser for help on using the repository browser.